7. Vectors

- The quantity which involves only one value, i.e. magnitude, is called a scalar quantity. For example: time, mass, distance, energy, etc.
- The quantity which has both magnitude and a direction is called a vector quantity. For example: force, momentum, acceleration, etc.
- A line with a direction is called a directed line. Let \overrightarrow{AB} be a directed line along direction B.

Here,

- The length of the line segment AB represents the magnitude of the above directed line. It is denoted by $|\overrightarrow{AB}|_{OT} |\overrightarrow{a}|_{OT} |\overrightarrow{a}|_{OT} a$.
- o \overrightarrow{AB} represents the vector in the direction towards point B. Therefore, the vector represented in the above figure is \overrightarrow{AB} . It can also be denoted by \overrightarrow{a} .
- The point A from where the vector \overrightarrow{AB} starts is called its initial point and the point B where the vector \overrightarrow{AB} ends is called its terminal point.
- The angles a, b, and g made by the vector $\vec{r} = a\hat{i} + b\hat{j} + c\hat{k}$ with the positive directions of the x-axis, y-axis, and z-axis respectively are called its direction angles. The cosines of the angle made by the vector $\vec{r} = a\hat{i} + b\hat{j} + c\hat{k}$ with the positive directions of x, y, and z axes are its direction cosines. These are usually denoted by $l = \cos a$, $m = \cos b$, and $n = \cos g$. Also, $l^2 + m^2 + n^2 = 1$

Example: Write the direction ratio's of the vector $\vec{r} = 2\hat{i} - \hat{j} - 2\hat{k}$ and hence calculate its direction cosines.

Solution: The direction ratio's a, b, c of a vector $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ are the respective components x, y and z of the vector.

The direction ratio's of the given vector are a = 2, b = -1 and c = -2 If l, m and n are the direction cosines of the given vector, then

$$l = \frac{a}{|\vec{r}|}, m = \frac{b}{|\vec{r}|}, n = \frac{c}{|\vec{r}|}$$

$$|\vec{r}| = \sqrt{(2)^2 + (-1)^2 + (-2)^2} = \sqrt{9} = 3$$

$$\therefore l = \frac{2}{3}, m = \frac{-1}{3} \text{ and } n = \frac{-2}{3}$$

• The direction cosines (l, m, n) of a vector $a\hat{i} + b\hat{j} + c\hat{k}$ are

$$l = \frac{a}{r}, m = \frac{b}{r}, n = \frac{c}{r}$$
, where $r =$ magnitude of the vector $a\hat{i} + b\hat{j} + c\hat{k}$

• The various types of vectors are given as follows:

- Zero vector: A vector whose initial and terminal points coincide is called a zero vector (or null vector). It is denoted as $\overrightarrow{0}$. The vectors \overrightarrow{AA} , \overrightarrow{BB} represent zero vectors.
- Unit vector: A vector whose magnitude is unity, i.e. $\hat{1}$ unit, is called a unit vector. The unit vector in the direction of any given vector \vec{a} is denoted by \hat{a} and it is calculated by

Note: that if l, m, and n are direction cosines of a vector, then $l\hat{i} + m\hat{j} + n\hat{k}$ is the unit vector in the direction of that vector.

Example: To find the unit vector along the direction of a vector $\vec{r} = 16\hat{i} - 15\hat{j} + 12\hat{k}$, we may proceed as follows:

- The sum of two vectors $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}_{and}$ $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ is given by, $\vec{a} + \vec{b} = (a_1 + b_1)\hat{i} + (a_2 + b_2)\hat{j} + (a_3 + b_3)\hat{k}$
- The difference of two vectors $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ is given by $\vec{a} \vec{b} = (a_1 b_1)\hat{i} + (a_2 b_2)\hat{j} + (a_3 b_3)\hat{k}$
- Triangle law of vector addition: If two vectors are represented by two sides of a triangle in order, then the third closing side of the triangle in the opposite direction of the order represents the sum of the two vectors.

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

Note: The vector sum of the three sides of a triangle taken in order is $\overrightarrow{0}$.

• Parallelogram law of vector addition: If two vectors are represented by two adjacent sides of a parallelogram in order, then the diagonal of the parallelogram in the opposite direction of the order represents the sum of two vectors.

$$\vec{c} = \vec{a} + \vec{b}$$

- The properties of vector addition are given as follows:
 - Commutative property: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
 - Associative property: $\vec{a} + (b + c) = (a + b) + \vec{c}$

- Existence of additive identity: The vector $\vec{0}$ is additive identity of a vector \vec{a} , since $\vec{a} + \vec{0} = \vec{0} + \vec{a} = \vec{a}$
- Existence of additive inverse: The vector $-\vec{a}$ is called additive inverse of \vec{a} , since $\vec{a} + (-\vec{a}) = (-\vec{a}) + \vec{a} = 0$
- The multiplication of vector $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ by any scalar l is given by,

$$\lambda \vec{a} = (\lambda a_1)\hat{i} + (\lambda a_2)\hat{j} + (\lambda a_3)\hat{k}$$

- The magnitude of the vector $\lambda \vec{a}$ is given by $|\lambda \vec{a}| = |\lambda| |\vec{a}|$
- The vectors $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ are equal, if and only if $a_1 = b_1$, $a_2 = b_2$, and $a_3 = b_3$
- Let $\overrightarrow{a_1}$ and $\overrightarrow{a_2}$ be two vectors, and k_1 and k_2 be any scalars, then the following are the distributive laws of addition and multiplication of a vector by a scalar:
 - $k_1 \vec{a_1} + k_2 \vec{a_1} = (k_1 + k_2) \vec{a_1}$
 - $k_1(k_2\vec{a_1}) = (k_1k_2)\vec{a_1}$
 - $\vec{k_1} (\vec{a_1} + \vec{a_2}) = k_1 a_1 + k_1 a_2$
- Collinear vectors:
 - Two vectors \vec{a} and \vec{b} are collinear, if and only if there exists a non-zero scalar l such that
 - Two vectors $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ are collinear, if and only if

• Three-dimensions coordinate planes

- The coordinate axes of a rectangular Cartesian coordinate system are three mutually perpendicular lines. The axes are called *x*, *y*, and *z*-axes.
- The three planes determined by the pair of axes are the coordinate planes, called XY, YZ and ZX-planes.
- The three coordinate planes divide the space into eight parts known as octants.
- In three-dimensional geometry, the coordinates of a point P are always written in the form of triplets i.e., (x, y, z). Here, x, y, and z are the distances from the YZ, ZX and XY-planes. Also, the coordinates of the origin are (0, 0, 0).

• The sign of the coordinates of a point determine the octant in which the point lies. The following table shows the signs of the coordinates in the eight octants.

Octants →	I	II	III	IV	V	VI	VII	VIII
Coordinates ↓	+	_	_	+	+	_	_	+
y	+	+	_	_	+	+	_	
z	+	+	+	+	_	_	_	_

Example: The point (-5, 6, -7) lies in the VI octant.

- In Coordinates of points lying on different axes:
 - Any point on the x-axis is of the form (x, 0, 0)
 - Any point on the y-axis is of the form (0, y, 0)
 - Any point on the z-axis is of the form (0, 0, z)
- Coordinates of points lying in different planes:
 - Coordinates of a point in the YZ-plane are of the form (0, y, z)
 - Coordinates of a point in the XY-plane are of the form (x, y, 0)
 - Coordinates of a point in the ZX-plane are of the form (x, 0, z)

Example: The points (-5, 6, 0), (0, -5, 6), (-5, 0, 6) lies in the XY-plane, YZ-plane and ZX-plane respectively.

• distance formula

Distance between two points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ is given by

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Example: Find the point(s), lying on the z-axis, whose distance from point (2, -1, 3) is 3 units.

Solution: Let the required point be (0, 0, z).

We know that the distance between two points (x_1, y_1, z_1) and (x_2, y_2, z_2) is given by $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1) + (z_2 - z_1)^2}$

Therefore,

$$\sqrt{(2-0)^2 + (-1-0)^2 + (3-z)^2} = 3$$

On squaring both the sides, we get

$$4+1+9+z^2-6z=9$$

$$\Rightarrow z^2 - 6z + 5 = 0$$

$$\Rightarrow z^2 - 5z - z + 5 = 0$$

$$\Rightarrow z(z-5)-1(z-5)=0$$

$$\Rightarrow z = 1, 5$$

Thus, the required points on the z-axis are (0, 0, 1) and (0, 0, 5).

The position vector of a point P(x, y, z) with respect to the origin (0, 0, 0) is given by $\overrightarrow{OP} = x\hat{i} + y\hat{j} + z\hat{k}$. This form of any vector is known as the component form.

Here,

- i.j., and k are called the unit vectors along the x-axis, y-axis, and z-axis respectively.
 x, y, and z are the scalar components (or rectangular components) along x-axis, y-axis, and z-axis
- o $x\hat{i} + y\hat{j} + z\hat{k}$ are called vector components of \overrightarrow{OP} along the respective axes. o The magnitude of \overrightarrow{OP} is given by $\left|\overrightarrow{OP}\right| = \sqrt{x^2 + y^2 + z^2}$
- The scalar components of a vector are its direction ratios and represent its projections along the respective axes.

The direction ratios of a vector $\vec{p} = a\hat{i} + b\hat{j} + c\hat{k}$ are a, b, and c.

Here, a, b, and c respectively represent projections of \overrightarrow{p} along x-axis, y-axis, and z-axis.

Vector Joining Two Points

The vector joining two points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$, represented as $\overline{P_1P_2}$, is calculated as

$$\overrightarrow{P_1P_2} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$$

The magnitude of $\overline{P_1P_2}$ is given by $\left|\overline{P_1P_2}\right| = \sqrt{\left(x_2 - x_1\right)^2 + \left(y_2 - y_1\right)^2 + \left(z_2 - z_1\right)^2}$

Section Formula

If point R (position vector \vec{r}) lies on the vector \overrightarrow{PQ} joining two points P (position vector \vec{a}) and Q (position vector \vec{b}) such that R divides \overrightarrow{PQ} in the ratio m: $n \left[i.e. \frac{\overrightarrow{PR}}{\overrightarrow{RO}} = \frac{m}{n} \right]$

Internally, then
$$\vec{r} = \frac{m\vec{b} + n\vec{a}}{m+n}$$

Externally, then
$$\vec{r} = \frac{m\vec{b} - n\vec{a}}{m - n}$$

o

• The scalar product of two non-zero vectors \vec{a} and \vec{b} is denoted by $\vec{a} \cdot \vec{b}$ and it is given by the formula $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$, where q is the angle between \vec{a} and \vec{b} such that $0 \le q \le p$

If either $\vec{a} = 0$ or $\vec{b} = 0$, then in this case, θ is not defined and $\vec{a} \cdot \vec{b} = 0$

- The following are the observations related to the scalar product of two vectors:
 - $\overrightarrow{a} \cdot \overrightarrow{b}$ is a real number.
 - The angle q between vectors \vec{a} and \vec{b} is given by,

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} \Rightarrow \theta = \cos^{-1} \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} \right)$$

• Let \vec{a} and \vec{b} be any two non-zero vectors, then $\vec{a} \cdot \vec{b} = 0$, if and only if $\vec{a} \perp \vec{b}$

• If
$$q = 0$$
, then $\begin{vmatrix} \vec{a} & \vec{b} & \vec{a} \end{vmatrix} \begin{vmatrix} \vec{a} & \vec{b} \end{vmatrix}$

• If
$$q = p$$
, then $\vec{a} \cdot \vec{b} = -|\vec{a}|$

o If
$$q = p$$
, then
$$\vec{a} \cdot \vec{b} = -|\vec{a}||\vec{b}|$$
o $\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$, $\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$

• If
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
 and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$, then $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$

• The properties of scalar product are as follows:

• Commutative property:
$$\hat{a} \cdot \hat{b} = \hat{b} \cdot \hat{a}$$

• Distributivity of scalar product over addition:
$$\hat{a} \cdot (\hat{b} + \hat{c}) = \hat{a} \cdot \hat{b} + \hat{a} \cdot \hat{c}$$

Example: Find the angle between the vectors $8\hat{i} - 4\hat{j} - \hat{k}$ and $3\hat{i} - 6\hat{j} + 2\hat{k}$

Let
$$\vec{a} = 8\hat{i} - 4\hat{j} - \hat{k}$$

 $\vec{b} = 3\hat{i} - 6\hat{j} + 2\hat{k}$

Angle between \vec{a} and \vec{b} is given by,

$$\theta = \cos^{-1} \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} \right)$$

However, $\vec{a} \cdot \vec{b} = 8 \times 3 + (-4) \times (-6) + (-1) \times 2 = 46$ $|\vec{a}| = \sqrt{(8)^2 + (-4)^2 + (-1)^2} = 9$

$$|\vec{a}| = \sqrt{(8)^2 + (-4)^2 + (-1)^2} = 9$$

$$\left| \overrightarrow{b} \right| = \sqrt{(3)^2 + (-6)^2 + (2)^2} = 7$$

$$\therefore \theta = \cos^{-1}\left(\frac{46}{9\times7}\right) = \cos^{-1}\left(\frac{46}{63}\right)$$

• Projection of a vector:

• If \hat{p} is the unit vector along a line *l*, then the projection of a vector \vec{a} on the line *l* is given by $\vec{a} \cdot \hat{p}$

• Projection of a vector
$$\vec{a}$$
 on other vector \vec{b} is given by $\vec{a} \cdot \hat{b}$ or $|\vec{b}|$

Example: Find the projection of the vector $3\hat{i} - 8\hat{j} + 6\hat{k}$ on the vector $2\hat{i} - 3\hat{j} - 6\hat{k}$.

Solution:

Let
$$\vec{a} = 3\hat{i} - 8\hat{j} + 6\hat{k}$$
 and $\vec{b} = 2\hat{i} - 3\hat{j} - 6\hat{k}$

Then, the projection of \vec{a} on \vec{b} is given by,

$$\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\left| \overrightarrow{b} \right|} = \frac{\left(3\widehat{a} - 8\widehat{j} + 6\widehat{k}\right) \cdot \left(2\widehat{a} - 3\widehat{j} - 6\widehat{k}\right)}{\sqrt{\left(2\right)^2 + \left(-3\right)^2 + \left(-6\right)^2}}$$
$$= \frac{6 + 24 - 36}{7}$$
$$= -\frac{6}{7}$$

- The vector product (or cross product) of two non-zero vectors \vec{a} and \vec{b} is denoted by $\vec{a} \times \vec{b}$ and is defined by $\overrightarrow{a} \times \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \sin \theta \widehat{n}$, where θ is the angle between \overrightarrow{a} and \overrightarrow{b} , $0 \le \theta \le \pi$, and \widehat{n} is a unit vector perpendicular to both \vec{a} and \vec{b} .
- If $\vec{a} = a_1\hat{i} a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} b_2\hat{j} + b_3\hat{k}$ are two vectors, then their cross product $\vec{a} \times \vec{b}$, is $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$

defined by

The following are the observations made by the vector product of two vectors:

o
$$\vec{a} \times \vec{b} = \vec{0}$$
, if and only if $\vec{a} \parallel \vec{b}$
o $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$

$$\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$$

$$\hat{i} \times \hat{j} = \hat{k}, \ \hat{j} \times \hat{k} = \hat{i}, \ \hat{k} \times \hat{i} = \hat{j}$$
$$\hat{j} \times \hat{i} = -\hat{k}, \ \hat{k} \times \hat{j} = -\hat{i}, \ \hat{i} \times \hat{k} = -\hat{j}$$

- In terms of vector product, the angle θ between two vectors \vec{a} and \vec{b} is given by
- If \vec{a} and \vec{b} represent the adjacent sides of a triangle, then its area is given as $\frac{1}{2} | \vec{a} \times \vec{b} |$

Example:

Find the area of a triangle having the points A (1, 2, 3), B (1, -1, -3) and C (-1, 1, 2) as its vertices

Solution:

$$\overrightarrow{AB} = (1-1)\hat{i} + (-1-2)\hat{j} + (-3-3)\hat{k} = -3\hat{j} - 6\hat{k}$$

$$\overrightarrow{AC} = (-1-1)\hat{i} + (1-2)\hat{j} + (2-3)\hat{k} = -2\hat{i} - \hat{j} - \hat{k}$$

The area of the given triangle is $\frac{1}{2} \left| \overrightarrow{AB} \times \overrightarrow{AC} \right|$

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & -3 & -6 \\ -2 & -1 & -1 \end{vmatrix}$$

$$= \hat{i} \left(3 - 6 \right) - \hat{j} \left(0 - 12 \right) + \hat{k} (0 - 6)$$

$$= -3\hat{i} + 12\hat{j} - 6\hat{k}$$

$$|\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{(-3)^2 + (12)^2 + (-6)^2} = \sqrt{9 + 144 + 36} = \sqrt{189}$$

Thus, the required area is $\frac{1}{2}\sqrt{189}$.

- If \vec{a} and \vec{b} represent the adjacent sides of a parallelogram, then its area is given as $|\vec{a} \times \vec{b}|$.
- The properties of vector product are as follows:
 - Not commutative: $\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}$

However,
$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

• Distributivity of vector product over addition:

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

Example: If the position vectors of vertices P, Q, R, and S of quadrilateral PQRS are $-\hat{i} + 2\hat{j} + \hat{k}$, $\hat{i} - 2\hat{j} + 5\hat{k}$, $4\hat{i} - 7\hat{j} + 8\hat{k}$, and $2\hat{i} - 3\hat{j} + 4\hat{k}_{respectively}$, then find the area of quadrilateral PQRS.

Solution:

$$\overrightarrow{PQ} = (1+1)\hat{i} + (-2-2)\hat{j} + (5-1)\hat{k} = 2\hat{i} - 4\hat{j} + 4\hat{k}$$

$$\overrightarrow{QR} = (4-1)\hat{i} + (-7+2)\hat{j} + (8-5)\hat{k} = 3\hat{i} - 5\hat{j} + 3\hat{k}$$

$$\overrightarrow{RS} = (2-4)\hat{i} + (-3+7)\hat{j} + (4-8)\hat{k} = -2\hat{i} + 4\hat{j} + 4\hat{k}$$

$$= -(2\hat{i} - 4\hat{j} + 4\hat{k})$$

$$= -\overrightarrow{RS}$$

$$\overrightarrow{SP} = (-1-2)\hat{i} + (2+3)\hat{j} + (1-4)\hat{k} = -3\hat{i} + 5\hat{j} - 3\hat{k}$$

$$= -(3\hat{i} - 5\hat{j} + 3\hat{k})$$

$$= -\overrightarrow{OR}$$

Clearly, $\overrightarrow{PQ} \parallel \overrightarrow{RS}$ and $\overrightarrow{QR} \parallel \overrightarrow{SP}$. Hence, PQRS is a parallelogram.

Therefore, area $(PQRS) = \left| \overrightarrow{PQ} \times \overrightarrow{QR} \right|$ Now,

$$\overrightarrow{PQ} \times \overrightarrow{QR} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -4 & 4 \\ 3 & -5 & 3 \end{vmatrix}$$
$$= \left(-12 + 20 \right) \hat{i} - \left(6 - 12 \right) \hat{j} + \left(-10 + 12 \right) \hat{k}$$
$$= 8\hat{i} + 6\hat{j} + 2\hat{k}$$

$$\therefore \left| \overrightarrow{PQ} \times \overrightarrow{QR} \right| = \sqrt{(8)^2 + (6)^2 + (2)^2} = 2\sqrt{26}$$

Hence, area of the quadrilateral PQRS is $2\sqrt{26}$ square units.

Simple Applications of Product of Vectors

(a) Resultant of forces acting at a point :

If F1 \rightarrow , F2 \rightarrow , F3 \rightarrow , ..., Fn \rightarrow are *n* forces acting at a point, then their resultant force R \rightarrow is defined as R \rightarrow = F1 \rightarrow +F2 \rightarrow + ... + Fn \rightarrow

Note:

• Forces F1 \rightarrow , F2 \rightarrow , F3 \rightarrow , ..., Fn \rightarrow are said to be in equilibrium if R \rightarrow = 0 \rightarrow .

• The parallelogram law of vectors and the expressions for the magnitude and the direction of the resultant vector are applicable to the forces also.

(b) Resolved part of a force:

Resolved part of $F \rightarrow \text{along a unit vector } a^{\hat{}} \text{ is } F \rightarrow \cos\theta \ a^{\hat{}}.$

Note:

- The resolved part of $F \rightarrow$ along x, y and z axes are $F \rightarrow i^{\land} i^{\land}$, $F \rightarrow j^{\land} i^{\land}$ and $F \rightarrow k^{\land} k^{\land}$ respectively.
- If $\theta=\pi 2$, then $F \rightarrow a^=0$. Hence, the resolved part of a force along a direction perpendicular to itself is zero.
- The sum of the resolved parts of a number of forces acting at a point along any direction is equal to the resolved part of their resultant along the same direction.

(c) Work done by a force:

The work done by the force $F \rightarrow$ during displacement $r \rightarrow$ is defined as

$$w = F \rightarrow r \rightarrow$$

Note:

- The work done by a force is a scalar quantity.
- The work done by a force in displacing the particle perpendicular to its own direction is zero.
- Total work done during some displacement by a number of forces acting on a particle is equal to the work done by the resultant force during the same displacement.

(d) Moment of a force about a point :

The tendency of a force that causes a body to rotate about a specific point is called moment of the force.

Let a force $F \rightarrow$ act at a point A on the body. If it causes rotation of the body about B, the vector $BA \rightarrow \times F \rightarrow$ is called the moment of the force about the point B.

i.e.
$$M \rightarrow = BA \rightarrow \times F \rightarrow = r \rightarrow \times F \rightarrow$$

Note:

- Moment of force $M \rightarrow$ is a vector quantity.
- $M \rightarrow = BA \rightarrow \times F \rightarrow = BA \rightarrow F \rightarrow \sin \theta$
- $M \rightarrow$ is perpendicular to the plane of BA \rightarrow and F \rightarrow .
- If B lies on the line of action of $F \rightarrow$, i.e. if $BA \rightarrow ||F \rightarrow$, then $M \rightarrow = 0 \rightarrow$.
- The moment of F→ about B is independent of the choice of A, i.e. A can be any point in the line of action of F→.

Varignon's Theorem : The sum of moments of a number of concurrent forces about any point in their plane is equal to the moment of their resultant about the same point.