

DPP No. 59

Total Marks : 39

Max. Time : 40 min.

Topics :	Vector, Three Dimensional Geometry
----------	------------------------------------

Type of Questions								
Single choice Objective (no negative marking) Q.1, 2, 3(3 marks, 3 min.)Multiple choice objective (no negative marking) Q.4, 5(5 marks, 4 min.)Subjective Questions (no negative marking) Q.6 to Q.8(4 marks, 5 min.)Match the Following (no negative marking) Q.9(8 marks, 8 min.)					[9, [10, [12, [8,	9] 8] 15] 8]		
1.	If the line $\frac{x-2}{5}$	$=\frac{y+10}{2}=\frac{z+3}{2}$ meets the	e curve					
	$xy = a^2$, $z = 1$, then number of values of a is							
	(A) 0	(B) 1	(C) 2	(D) More than	1 2			
2.	If $ \vec{a} = 2$, $ \vec{b} = 3$ and $\vec{a} \cdot \vec{b} = 0$ then $\vec{a} \times (\vec{a} \times (\vec{a} \times \vec{b}))$ is equal to							
	(A) 48 _b	(B) –48 b	(C) 48 ā	(D) 16 _b				
3.	3. The equation of a line $4x - 4y - z + 11 = 0 = x + 2y - z - 1$ can be put as							
	(A) $\frac{x}{2} = \frac{y-2}{1} = \frac{z-3}{4}$ (B) $\frac{x-2}{2} = \frac{y-2}{1} = \frac{z}{4}$ (C) $\frac{x-2}{2} = \frac{y}{1} = \frac{z-3}{4}$ (D) None of these							
4.	A ray M is sent along the line $\frac{x-0}{2} = \frac{y-2}{2} = \frac{z-1}{0}$ and is reflected by the plane x = 0 at point A. The							
	reflected ray is again reflected by the plane x + 2y = 0 at point B. The initial ray and final reflected ray meets at point J. Then							
	(A) the co-ordin	ordinates of point J is (-3,	-1, 1)					
	(C) the centroid of $\triangle ABJ$ is (0, 0, 0) (D) the co-ordinates of point J is (2, -1, 1)							
5.	The line which intersects each of the two lines $L_1 : 2x + y - 1 = 0 = 3x - 2y + z$,							
	L ₂ : 3x - y - z + 1 = 0 = 4x + y + 5z - 3 and is parallel to the line $\frac{x}{1} = \frac{y}{2} = \frac{z}{-1}$							
	(A) has direction ratio (1, 2, –1)							
		n 8x – 3y + 2z – 1 = 0 = 5x						

(D) is perpendicular to the plane3x + 6y - 3z = 7

(C) having angle with L₂ equal to $\cos^{-1}\left(\sqrt{\frac{3}{7}}\right)$

- 6. Let image of the line $\frac{x-1}{3} = \frac{y-3}{5} = \frac{z-4}{2}$ in the plane 2x y + z + 3 = 0 be L. A plane 7x + By + Cz + D = 0 is such that it contains the line L and perpendicular to the plane 2x y + z + 3 = 0 then find the value of B + C + D
- 7. P is a point and PM, PN are perpendicular from P to the ZX and XY planes. If OP makes angle θ , α , β , γ with the plane OMN and the XY, YZ, ZX plane respectively, then prove that $\csc^2\theta = \csc^2\alpha + \csc^2\beta + \csc^2\gamma$.
- 8. Find the sum of n terms of the series $\frac{3}{1.2} \cdot \frac{1}{2} + \frac{4}{2.3} \cdot \frac{1}{2^2} + \frac{5}{3.4} \cdot \frac{1}{2^3} + \frac{6}{4.5} \cdot \frac{1}{2^4} + \dots$

9. Mathch the column

Column - I

Column - I

(A) If $\vec{a}, \vec{b}, \vec{c}$ non-coplanar vectors, then $(\vec{a} + \vec{b} + \vec{c}) \cdot ((\vec{a} + \vec{b}) \times (2\vec{a} + \vec{b}))$ (p) $\frac{1}{4}a^2b^2$

is equal to

(B) If \vec{b} and \vec{c} are any two non-collinear perpendicular unit vectors and \vec{a} is (q) $-[\vec{a} \ \vec{b} \ \vec{c}]$

any vector , then $(\vec{a} \cdot \vec{b})\vec{b} + (\vec{a} \cdot \vec{c})\vec{c} + \frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{\left|\vec{b} \times \vec{c}\right|^2} (\vec{b} \times \vec{c})$ is equal to

(C) If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors then $[\vec{a} + \vec{b} + \vec{c} \quad \vec{a} - \vec{c} \quad \vec{a} - \vec{b}]$ (r) \vec{a}

is equal to

(D) Let
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
, $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ (s) $-3[\vec{a}\ \vec{b}\ \vec{c}]$

non-zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b} (and angle between \vec{a} and \vec{b} is ($\pi/6$), then

 $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2 \text{ is equal to }$

Answers Key

1. A **2.** D **3.** A **4.** AB **5.** ABD **6.** 30 **8.** $1 - \frac{1}{2^{n}(n+1)}$

9. (A) \rightarrow q ; (B) \rightarrow r ; (C) \rightarrow s ; (D) \rightarrow p