IONIC EQUILIBRIUM, PH AND HYDROLYSIS

Physical Equilibrium

It is the equilibrium between the same chemical species in different phases. e.g.

- (i) Equilibrium between a liquid and its vapour.
- (ii) Equilibrium between a vapour and its saturated solution.

Homogeneous Equilibrium

A reversible reaction having all the species in same phase throughout, is called in homogeneous equilibrium.

$$\begin{array}{cccc} \text{Here,} & \text{H}_2\left(\mathbf{g}\right) & + & \text{I}_2\left(\mathbf{g}\right) & \rightleftharpoons & 2\text{HI}\left(\mathbf{g}\right) \\ & \text{Hydrogen} & \text{Iodine} & \text{Hydrogen iodide} \end{array}$$

Here all reactants and products are gases.

Heterogeneous Equilibrium

A reversible reaction having its species in two or more phases, is called in heterogeneous equilibrium.

In this reaction $CaCO_3$ and CaO are solids, but CO_2 is a gas.

Ionic Equilibrium

A reversible reaction between species and its ions is called in ionic equilibrium.

e.g.
$$H_2O(l) \rightleftharpoons H^+(aq) + OH^-(aq)$$

Relationship between K_c and K_p

 K_c = Equilibrium constant expressed in

 K_p = Equilibrium constant expressed in pressures.

$$K_{p} = K_{c} (RT)^{\Delta n}$$

where R = 0.08206 litre atm K^{-1} mol⁻¹.

T = absolute temperature.

 Δn = number of moles of the gaseous products – number of moles of the gaseous reactants in the balanced equation.

Le-Chatelier Principle

It states that if some change is introduced in a system at equilibrium, the system proceeds in such a way that the effect of change is minimised.

Factors influencing equilibrium

- (i) Concentration of reactant or a product
- (ii) Reaction volume or applied pressure.
- (iii) Temperature

Electrolytes and non-electrolytes

Electrolyte: A compound whose aqueous solution or melt conducts electricity, is known as an electrolyte.

Non-electrolyte: A compound whose aqueous solution or melt does not conduct electricity, is known as a non-electrolyte.

Strong electrolyte: A substance which dissociates completely into its ions in an aqueous

solution and hence is a very good conductor of electricity, is known as strong electrolyte.

Weak electrolyte: A substance which dissociates to a small extent is an aqueous solution, is known as weak electrolyte.

Degree of dissociation or ionisation (\alpha): Fraction of electrolyte that dissociates into its ions when it is dissolved in water, is known as its degree of dissociation or ionisation, α is 1 for strong electrolytes and less than one for weak electrolytes.

Ionisation Constant of a Weak Electrolyte

According to this law, for a weak electrolyte, the degree of ionisation is inversely proportional to the square root of its molar concentration. It can be proved as follows – Here,

$$\begin{array}{c} {\rm AB+H_2O} \ensuremath{\rightleftharpoons} {\rm A^+\,(aq)+B^-\,(aq)} \\ \Rightarrow {\rm AB\,\,(aq)} \ensuremath{\rightleftharpoons} {\rm A^+\,(aq)+B^-\,(aq)} \\ {\rm Moles \ before \ dissociation:} \qquad 1 \qquad 0 \qquad 0 \\ {\rm Moles \ after \ dissociation:} \qquad (1-\alpha) \qquad \alpha \qquad \alpha \end{array}$$

If C mol/litre is initial concentration of the electrolyte AB.

[AB] = C $(1 - \alpha)$ mol/litre [A⁺] = [B⁻] = C α mol/litre According to, law of equilibrium,

$$K = \frac{\left[A^{+}\right]\left[B^{-}\right]}{\left[AB\right]}$$
$$= \frac{C\alpha \times C\alpha}{C(1-\alpha)} = \frac{C\alpha^{2}}{1-\alpha}$$

where K is ionisation constant for weak electrolytes. For weak electrolytes, $\alpha \ll 1$, so α can be neglected as compared to 1 *i.e.* $1 - \alpha \approx 1$.

$$\therefore \qquad \qquad K = C\alpha^2$$

$$\Rightarrow \qquad \qquad \alpha = \sqrt{\frac{K}{C}}$$

Arrhenius Concept of Acids and Bases

Acid: An acid is a substance which contains hydrogen and which when dissolved into water gives hydrogen ions (H⁺). The acid ionizes completely when dissolved in water, is called strong acid. An acid ionizes partially when dissolved in water, is called **weak acid**.

A weak acid solution contains unionized molecules in addition to ions. In general,

$$HA (aq) \rightleftharpoons H^+ (aq) + A^- (aq)$$
Acid

Base: A base is a substance which contains hydroxyl group and which when dissolved into water gives hydroxyl ions (OH⁻).

A base that ionizes completely into its ions when dissolved in water, is called a **strong base**, and a base ionizes partially when dissolved in water is called a **weak base**. In general,

BOH (aq)
$$\rightleftharpoons$$
 B⁺ (aq) + OH⁻ (aq)

Base

Neutralisation is the process in which hydrogen ions and hydroxyl ions combine to form unionized molecules of water.

$$H^+$$
 (aq) $+ OH^-$ (aq) $\rightleftharpoons H_2O(l)$

Bronsted-Lowry Concept of Acids and Bases

An **acid** is defined as a substance which has the tendency to give a proton (H⁺).

A **base** is defined as a substance which has a tendency to accept a proton (H⁺).

Conjugate base: The remainder part of an acid after donating a proton, is called conjugate base.

$$\mathrm{HCl}\left(\mathbf{g}\right) + \mathrm{H}_{2}\mathrm{O}\left(l\right) \rightarrow \mathrm{H}_{3}\mathrm{O}^{+}\left(\mathrm{aq}\right) + \mathrm{Cl}^{-}\!\left(\mathrm{aq}\right)$$
 Conjugate base

Conjugate acid: Base when accepts a proton released by an acid is called as conjugate acid.

$$H_2O(l) + H^+$$
 (from an acid) $\rightarrow H_3O^+$ (aq)

Base Conjugate acid

Amphoterism: A particular can behave as an acid by donating a proton in one reaction and as a base in another by accepting a proton. Such a species is called as an amphoteric species. such as water.

Lewis Concept of Acids and Bases

Acid: An acid is a substance or an ion which is capable of accepting a pair of electrons and is called as Lewis acid.

Base: Base is a substance or an ion which is capable of donating an unshared pair of electrons and is called as Lewis base.

Types of Lewis Bases

- (i) Neutral molecules having at least one lone pair of electrons. e.g. NH_3 , $R-NH_2$, R_2-NH , R-OH, H-OH etc.
- (ii) All negative ions like F⁻, Cl⁻, Br⁻, OH⁻, CN⁻ etc.

Types of Lewis Bases

- Electron deficient compounds or molecules having a central atom with incomplete octet : e.g. BF₃, AlCl₃ etc.
- (ii) Cations e.g. Ag^+ , Cu^{2+} , Fe^{3+} , etc.
- (iii) Molecules with multiple bonds between two atoms of different electronegativities e.g. CO₉.
- (iv) Molecules whose central atoms has empty d-orbitals, e.g. SnCl₄, SiF₄, PF₅, PCl₅ etc.

Some Important Results

1.
$$P^{H} = -\log[H^{+}]$$

2.
$$[H^+] = 10^{-P^H}$$

3.
$$P^{OH} = -\log [OH^{-}]$$

4. $P^{Ka} = -\log K_a$
5. $P^{K_b} = -\log K_b$

$$4. P^{Ka} = -\log K_a$$

$$5. P^{K_b} = -\log K_b$$

$$6. \quad \mathbf{P}^{\mathbf{K}_{\mathbf{w}}} = -\log \mathbf{K}_{\mathbf{w}}$$

- 7. P^{H} of acidic solution < 7
- 8. P^{H} of neutral solution = 7
- 9. P^{H} of basic solution > 7
- 10. $P^H + P^{OH} = P^{K_w} = 14$
- 11. K_w is called ionic product of water = $[H^+]$ $[OH^-] = 10^{-14}$ at $25^{\circ}C$ Thus in pure H_2O ; $[H^+] = [OH^-] = 10^{-7}$ molar
- 12. $K_h = \frac{K_w}{K_a}$, for hydrolysis of anion of weak acid
 - $K_h = \frac{K_w}{K_b}$, for hydrolysis of cation of weak

$$K_h = \frac{K_w}{K_a.K_b}$$
, for hydrolysis of weak acid-

weak base salt.

base.

where, K_h is hydrolysis constant, K_a is ionisation constant for an acid otherwise called acid dissociation constant and K_b is ionisation constant for a base otherwise called base dissociation constant.

- 13. P^H of an acidic buffer solution and P^{OH} of an alkaline buffer solution.
 - (a) Acidic Buffer: (Weak acid and its salt which is a strong electrolyte; e.g., CH₃COOH and CH₃COONa); in general, H ⇌ HA⁺ + A⁻

$$P^{H} = P^{K_a} + \log \frac{[A^{-}]}{[HA]}$$
 (Henderson's equation)

(b) Basic Buffer: (Weak base and its salt which is a strong electrolyte; e.g., NH₄OH and NH₄Cl) in general,

BOH
$$\rightleftharpoons$$
 B⁺ + OH⁻, P^{OH} = P^{K_b} + log $\frac{[B^-]}{[BOH]}$