circuit Breakers

□ Restriking voltage

$$V = E\left(1 - \cos\frac{1}{\sqrt{LC}}t\right)$$

where, L, C = Inductance and capacitance per phase of the system upto the point of circuit breaker location.

E = System voltage at the instant of arc interruption

V = Restriking voltage

- ☐ The maximum value of restriking voltage = $2 \times E_{peak}$ where, E_{peak} = Peak value of the system voltage
- Natural frequency of oscillation

$$f_{\rm p} = \frac{1}{2\pi} \frac{1}{\sqrt{LC}}$$

☐ Rate of rise of restriking voltage (RRRV)

$$RRRV = \omega_n E \sin \omega_n t$$

 $\hfill \Box$ The maximum value of RRRV $= \omega_n \, E_{peak}$

Resistance Switching

Frequency of damped oscillation

Note:

If value of the resistance connected across the contacts of circuit breaker, is equal to or less than $\frac{1}{2}\sqrt{\frac{L}{C}}$, then there will be no transient oscillation.

Transient Oscillation for Different Values of R

Transient oscilations for different values of R

- If $R > \frac{1}{2}\sqrt{\frac{L}{C}}$. There will be oscillation.
- $R = \frac{1}{2}\sqrt{\frac{L}{C}}$ is known as critical resistance. There will be no oscillation.