Chapter 5 Geometry

Ex 5.1

Question 1. Fill in the blanks with the correct term from the given list. (in proportion, similar, corresponding, congruent, shape, area, equal) (i) Corresponding sides of similar triangles are _____. Answer: in proportion (ii) Similar triangles have the same _____ but not necessarily the same size. Answer: Shape (iii) In any triangle _____ sides are opposite to equal angles. Answer: equal (iv) The symbol is used to represent ______ triangles. Answer: congruent (v) The symbol ~ is used to represent ______ triangles. Answer: similar Question 2. In the figure, $\angle CIP \equiv \angle COP$ and $\angle HIP \equiv \angle HOP$. Prove that $IP \equiv OP$. н С

Answer:

Р

0

Statements	Reasons
1. CI = CO	\therefore CIP \equiv COP, by CPCTC
2. $IP = OP$	Ву СРСТС
$3. \mathrm{CP} = \mathrm{CP}$	Ву СРСТС
4. Also HI = HO	CPCTC Δ HIP \equiv HOP given
5. $IP = OP$	By CPCTC and (4)
$6. \therefore IP \equiv OP$	By (2) and (4)

Question 3.

In the given figure, $AC \equiv AD$ and $\angle CBD \equiv \angle DEC$. Prove that $\triangle BCF \equiv \triangle EDF$.

Statements	Reasons
1. ∠BCF = ∠EFD	Vertically opposite angles
2. ∠CBD = ∠DEC	Angles on the same base given
3. ∠BCF = ∠EDF	Remaining angles of Δ BCF and Δ EDF
4. $\Delta BCF \equiv \Delta EDF$	By (1) and (2) AAA criteria

Question 4.

In the given figure, \triangle BCD is isosceles with base BD and \angle BAE $\equiv \angle$ DEA. Prove that AB \equiv ED.

Statements	Reasons
1. ∠BAE \equiv ∠DEA	Given
$2. \mathrm{AC} = \mathrm{EC}$	By (1) sides opposite to equal angles are equal
3. BC = DC	Given BCD is isosceles with base BD

4. AC - BC = EC - DC	2 - 3	
5. $AB \equiv ED$	By 4	

<u>Midpoint Calculator</u> is a free online tool that displays the midpoint of the line segment.

Question 5.

In the given figure, D is the midpoint of OE and $\angle CDE = 90^\circ$. Prove that $\triangle ODC \equiv \triangle EDC$

Answer:

Statements	Reasons
1. OD = ED	D is the midpoint OE (given)
2. DC = DC	Common side
$3. \angle CDE = \angle CDO = 90^{\circ}$	Linear pair and given $\angle CDE = 90^{\circ}$
4. $\triangle ODC \equiv \triangle EDC$	By RHS criteria

Question 6.

Answer: In \triangle PRQ and \triangle PSQ \angle PRQ = \angle PSQ = 90° given PR = QS = 3 cm given PQ = PQ = 5 cm common It satisfies RHS criteria $\therefore \triangle$ PRQ congruent to \triangle QSP.

Question 7. From the given figure, prove that $\triangle ABC \sim \triangle EDF$

From the $\triangle ABC$, AB = ACIt is an isosceles triangle Angles opposite to equal sides are equal $\therefore \angle B = \angle C = 65^{\circ}$ $\therefore \angle B + \angle C = 65^{\circ} + 65^{\circ}$ $= 130^{\circ}$ We know that sum of three angles is a triangle = 180° $\angle A + \angle B + \angle C = 180^{\circ}$ $\angle A + 130^{\circ} = 180^{\circ}$ $\angle A = 180^{\circ} - 130^{\circ}$ $\angle A = 50^{\circ}$ From \triangle EDF, \angle E = 50° \therefore Sum of Remaining angles = $180^{\circ} - 50^{\circ} = 130^{\circ}$ DE = FD $\therefore \angle D = \angle F$ From $\triangle ABC$ and $\triangle EDF \therefore \triangle D = \frac{130}{2} = 65^{\circ}$ $\angle A = \angle E = 50^{\circ}$ $\angle B = \angle D = 65^{\circ}$ $\angle C = \angle F = 65^{\circ}$ \therefore By AAA criteria \triangle EDF ~ \triangle ABC

Question 8.

In the given figure YH || TE. Prove that \triangle WHY ~ \triangle WET and also find HE and TE.

Statements	Reasons	
1. ∠EWT = ∠HWY	Common angle	

2. ∠ETW = ∠HYW	Since YH TE, corresponding angles
3. ∠WET = ∠WHY	Since YH TE corresponding angles
4. \triangle WHY ~ \triangle WET	By AAA criteria

Also \triangle WHY $\sim \triangle$ WET

∴ Corresponding sides are proportionated

WH _	HY	_ WY
WE -	ET	WT
6	4	4
6+HE	ET	16
6	4	
$\overline{6 + \text{HE}} =$	16	
$\Rightarrow 6 + HE = \frac{6}{4} \times$	× 16	
$\Rightarrow 6 + HE = 24$	4	
$\therefore \mathrm{HE} = 24 - 6$		
HE = 18		
Again $\frac{4}{\text{ET}} = \frac{4}{16}$		
$ET = \frac{4}{4}$		
ET = 16		

Question 9.

In the given figure, if $\triangle EAT \sim \triangle BUN$, find the measure of all angles.

Answer: Given $\triangle EAT \equiv \triangle BUN$ \therefore Corresponding angles are equal $\therefore \angle E = \angle B \dots (1)$ $\angle A = \angle U \dots (2)$ $\angle T = \angle N \dots (3)$ $\angle E = x^{\circ}$ $\angle A = 2x^{\circ}$ Sum of three angles of a triangle = 180° In $\triangle EAT$, $x + 2x + \angle T = 180^{\circ}$

```
\angle T = 180^{\circ} - (x^{\circ} + 2x^{\circ})
\angle T = 180^{\circ} - 3x^{\circ}
Also in \triangleBUN
(x + 40)^{\circ} + x^{\circ} + \angle U = 180^{\circ}
x + 40^{\circ} + x + \angle U = 180^{\circ}
2x^{\circ} + 40^{\circ} + \angle U = 180^{\circ}
\angle U = 180^{\circ} - 2x - 40^{\circ} = 140^{\circ} - 2x^{\circ}
Now by (2)
\angle A = \angle U
2x = 140^{\circ} - 2x^{\circ}
2x + 2x = 140^{\circ}
4x = 140^{\circ}
x = \frac{140}{4} = 35^{\circ}
\angle A = 2x^{\circ} = 2 \times 35^{\circ} = 70^{\circ}
\angle N = x + 40^{\circ} = 35^{\circ} + 40^{\circ} = 75^{\circ}
\therefore \angle T = \angle N = 75^{\circ}
\angle E = \angle 8 = 35^{\circ}
\angle A = \angle U = 70^{\circ}
```

Question 10.

In the given figure, UB || AT and CU \equiv CB Prove that \triangle CUB $\sim \triangle$ CAT and hence \triangle CAT is isosceles.

Statements	Reasons
$1. \angle CUB = \angle CBU$	\therefore In \triangle CUB, CU = CB
2. ∠CUB = ∠CAB	∵ UB AT, Corresponding angle if CA is the transversal.
3. ∠CBU = ∠CTA	CT is transversal UB AT,
	Corresponding angle commom angle.
4. $\angle UCB = \angle ACT$	Common angle
5. $\triangle CUB \sim \triangle CAT$	By AAA criteria
6. CA = CT	$\therefore \angle CAT = \angle CTA$

Objective Type Questions

Question 11.

Two similar triangles will always have _____ angles

- (A) acute
- (B) obtuse
- (C) right
- (D) matching

Answer:

(D) matching

Question 12.

If in triangles PQR and XYZ, $\frac{PQ}{XY} = \frac{QR}{ZX}$ then they will be similar if

(A) $\angle Q = \angle Y$ (B) $\angle P = \angle X$ (C) $\angle Q = \angle X$ (D) $\angle P \equiv \angle Z$ Ans: (C) $\angle Q = \angle X$

Question 13.

A flag pole 15 m high casts a shadow of 3m at 10 a.m. The shadow cast by a building at the same time is 18.6m. The height of the building is

- (A) 90 m
- (B) 91 m
- (C) 92 m
- (D) 93 m

Answer:

(D) 93 m

Question 14.

If $\triangle ABC - \triangle PQR$ in which $\angle A = 53^{\circ}$ and $\angle Q = 77^{\circ}$, then $\angle R$ is (A) 50° (B) 60° (C) 70° (D) 80° **Answer:** (A) 50°

Question 15.

In the figure, which of the following statements is true?

Ex 5.2

Question 1. Fill in the blanks: (i) If in a \triangle PQR, PR² = PQ² + QR², then the right angle of \triangle PQR is at the vertex _____. Answer: Q Hint:

(ii) If 'l' and 'm' are the legs and 'n' is the hypotenuse of a right angled triangle then, $l^2 =$

(iii) If the sides of a triangle are in the ratio 5:12:13 then, it is ______. **Answer:** a right angled triangle Hint: $13^2 = 169$ $5^2 = 25$ $12^2 = 144$ 169 = 25 + 144 $\therefore 13^2 = 5^2 + 12^2$ (iv) The medians of a triangle cross each other at _____. **Answer:**

Centroid

(v) The centroid of a triangle divides each medians in the ratio ______.Answer:2:1

o ...

Question 2. Say True or False. (i) 8, 15, 17 is a Pythagorean triplet. Answer: True Hint: $17^2 = 289$ $15^2 = 225$ $8^2 = 64$ $64 + 225 = 289 \Rightarrow 17^2 = 15^2 + 8^2$

(ii) In a right angled triangle, the hypotenuse is the greatest side. **Answer:**

True

Hint:

(iii) In any triangle the centroid and the incentre are located inside the triangle. **Answer:**

True

(iv) The centroid, orthocentre, and incentre of a triangle are collinear. Answer: True

(v) The incentre is equidistant from all the vertices of a triangle. Answer:

False

Question 3.

Check whether given sides are the sides of right-angled triangles, using Pythagoras theorem. (i) 8, 15, 17

Answer:

Take a = 8 b = 15 and c = 17

Now $a^2 + b^2 = 8^2 + 15^2 = 64 + 225 = 289$ $172 = 289 = c^2$ $\therefore a^2 + b^2 = c^2$ By the converse of Pythagoras theorem, the triangle with given measures is a right angled triangle. \therefore Ans: yes (ii) 12, 13, 15 Answer: (ii) 12, 13. 15 Take a = 12, b = 13 and c = 15Now $a^2 + b^2 = 12^2 + 13^2 = 144 + 169 = 313$ $15^2 = 225 \neq 313$ By the converse of Pythagoras theorem, the triangle with given measures is not a right angled triangle. \therefore Ans: No. (iii) 30, 40, 50 Answer: Take a = 30, b = 40 and c = 50Now $a^2 + b^2 = 30^2 + 40^2 = 900 + 1600 = 2500$ $C^2 = 50^2 = 2500$ $\therefore a^2 + b^2 = c^2$ By the converse of Pythagoras theorem, the triangle with given measures is a right angled triangle. ∴ Ans: yes (iv) 9, 40, 41 Answer: Take a = 9, b = 40 and c = 41Now $a^2 + b^2 = 9^2 + 40^2 = 81 + 1600 = 1681$ $c^2 = 41^2 = 1681$ $\therefore a^2 + b^2 = c^2$ By the converse of Pythagoras theorem, the triangle with given measures is a right angled triangle. ∴ Ans: yes (v) 24, 45, 51 Answer: Take a = 24, b = 45 and c = 51Now $a^2 + b^2 = 24^2 + 45^2 = 576 + 2025 = 2601$ $c^2 = 51^2 = 2601$ $\therefore a^2 + b^2 = c^2$ By the converse of Pyhtagoreas theorem, the triangle with given measure is a right angled triangle. \therefore Ans: yes

Question 4.

Find the unknown side in the following triangles.

Answer:

From \triangle ABC, by Pythagoras theorem BC² = AB² + AC² Take AB² + AC² = 9² + 40² = 81 + 1600 = 1681 BC² = AB² + AC² = 1681 = 41² BC² = 41² \Rightarrow BC = 41 \therefore x = 41

Answer:

From \triangle PQR, by Pythagoras theorem. PR² = PQ² + QR² $34^2 = y^2 + 30^2$ $\Rightarrow y^2 = 34^2 - 30^2$ = 1156 - 900 $= 256 = 16^2$ $y^2 = 16^2 \Rightarrow y = 16$

From Δ XYZ, by Pythagoras theorem, $= YZ^2 = XY^2 + XZ^2$ $\Rightarrow XY^2 = YZ^2 - XZ^2$ $Z^2 = 39^2 - 36^2$ = 1521 - 1296 $= 225 = 15^{2}$ $z^2 = 15^2$ \Rightarrow z = 15

Question 5.

An isosceles triangle has equal sides each 13 cm and a base 24 cm in length. Find its height. Answer:

In an isosceles triangle the altitude dives its base into two equal parts. Now in the figure, \triangle ABC is an isosceles triangle with AD as its height In the figure, AD is the altitude and \triangle ABD is a right triangle. By Pythagoras theorem, $AB^2 = AD^2 + BD^2$ $\Rightarrow AD^2 = AB^2 - BD^2$ $= 13^2 - 12^2 = 169 - 144 = 25$ $AD^2 = 25 = 5^2$ Height: AD = 5cm

Question 6.

Find the distance between the helicopter and the ship.

From the figure AS is the distance between the helicopter and the ship. Δ APS is a right angled triangle, by Pythagoras theorem, $AS^2 = AP^2 + PS^2$ $= 80^2 + 150^2 = 6400 + 22500 = 28900 = 170^2$

 \div The distance between the helicopter and the ship is 170 m

Question 7.

In triangle ABC, line I, is a perpendicular bisector of BC. If BC = 12 cm, SM = 8 cm, find CS.

Answer:

Given l₁, is the perpendicular bisector of BC. $\therefore \angle SMC = 90^{\circ}and BM = MC$ BC = 12cm $\Rightarrow BM + MC = 12cm$ MC + MC = 12cm 2MC = 12 MC = $\frac{12}{2}$ MC = 6cm Given SM = 8 cm By Pythagoras theorem SC² = SM² + MC² SC² = 8² + 6² SC² = 64 + 36 CS² = 100 CS² = 10² CS = 10 cm

Question 8. Identify the centroid of Δ PQR.

In \triangle PQR, PT = TR \Rightarrow QT is a median from vertex Q.

 $QS = SR \Rightarrow PS$ is a median from vertex P.

QT and PS meet at W and therefore W is the centroid of Δ PQR.

Question 9.

Name the orthocentre of Δ PQR.

Answer:

This is a right triangle \therefore orthocentre = P [\because In right triangle orthocentre is the vertex containing 90°]

Question 10.

In the given figure, A is the midpoint of YZ and G is the centroid of the triangle XYZ. If the length of GA is 3 cm, find XA.

Given A is the midpoint of YZ. \therefore ZA = AY G is the centroid of XYZ centroid divides each median in a ratio 2 : 1 \Rightarrow XG : GA = 2:1 $\frac{XG}{GA} = \frac{2}{1}$ $\frac{XG}{3} = \frac{2}{1}$ XG = 2 \times 3 XG = 6 cm XA = XG + GA = 6 + 3 \Rightarrow XA = 9cm

Question 11.

If I is the incentre of ΔXYZ , $\angle IYZ = 30^{\circ}$ and $\angle IZY = 40^{\circ}$, find $\angle YXZ$.

Answer:

Since I is the incentre of AXYZ $\angle IYZ = 30^{\circ} \Rightarrow \angle IYX = 30^{\circ}$ $\angle IZY = 40^{\circ} \Rightarrow \angle IZX = 40^{\circ}$ $\therefore \angle XYZ = \angle XYI + \angle IYZ = 30^{\circ} + 30^{\circ}$ $\angle XYZ = 60^{\circ}$ ||| ly $\angle XYZ = \angle XZI + \angle IZY = 40^{\circ} + 40^{\circ}$ $\angle XYZ = 80^{\circ}$ By angle sum property of a triangle $\angle XZY + \angle XYZ + \angle YXZ = 180^{\circ}$ $80^{\circ} + 60^{\circ} + \angle YXZ = 180^{\circ}$ $140^{\circ} + \angle YXZ = 180^{\circ}$ $\angle YXZ = 180^{\circ} - 140^{\circ}$ $\angle YXZ = 40^{\circ}$

Objective Type Questions

Question 12. If Δ GUT is isosceles and right angled, then \angle TUG is _____.

Question 13.

The hypotenuse of a right angled triangle of sides 12cm and 16cm is _____. (A) 28 cm (B) 20 cm (C) 24 cm (D) 21 cm Answer: (B) 20 cm Hint: Side take a = 12 cm b = 16cm The hypotenuse $c^2 = a^2 + b^2$ $= 12^2 + 16^2$ = 144 + 256 $c^2 = 400 \Rightarrow c = 20$ cm

Question 14.

The area of a rectangle of length 21cm and diagonal 29 cm is _____. (A) 609 cm² (B) 580 cm² (C) 420 cm² (D) 210 cm² **Answer:** (C) 420 cm²

length = 21 cm diagonal = 29 cm By the converse of Pythagoras theorem, $AB^2 + BC^2 = AC^2$ $21^2 + x^2 = 29^2$ $x^2 = 841 - 441\ 400 = 20^2$ $x = 20\ cm$ Now area of the rectangle = length × breadth. ie $AB \times BC = 21\ cm \times 20\ cm = 420\ cm^2$

Question 15.

The sides of a right angled triangle are in the ratio 5:12:13 and its perimeter is 120 units then, the sides are .

(A) 25, 36, 59 (B) 10, 24, 26 (C) 36, 39, 45 (D) 20, 48, 52 **Answer:** (D) 20, 48, 52 Hint: The sides of a right angled triangle are in the ratio 5 : 12 : 13 Take the three sides as 5a, 12a, 13a Its perimeter is 5a + 12a + 13a = 30aIt is given that 30a = 120 units a = 4 units \therefore the sides $5a = 5 \times 4 = 20$ units $12a = 12 \times 4 = 48$ units $13a = 13 \times 4 = 52$ units

Ex 5.3

Question 1. In the figure, given that $\angle 1 = \angle 2$ and $\angle 3 \equiv \angle 4$. Prove that Δ MUG $\equiv \Delta$ TUB.

Answer:

Statements	Reasons	
1. In \triangle MUG and \triangle TUG		
	$\angle 3 = \angle 4$, opposite sides of equal angles	
Mu = TU		
	$\angle 1 = \angle 2$	
2. UG = UB		
	Side opposite to equal angles are equal	
3. ∠GUM = ∠BUT	Vertically opposite angle	
	SAS criteria	
4. $\Delta MUG \equiv \Delta TUG$		
	By 1,2 and 3	

Question 2.

From the figure, prove that Δ SUN ~ Δ RAY.

Answer:

Proof: from the Δ SUN and Δ RAY SU = 10 UN = 12 SN = 14 RA = 5 AY = 6

RY = 7	
We have $\frac{SU}{RA} = \frac{10}{5} = \frac{2}{1}$	(1)
$\frac{\mathrm{UN}}{\mathrm{AY}} = \frac{12}{6} = \frac{2}{1}$	(2)
$\frac{\mathrm{SN}}{\mathrm{RY}} = \frac{14}{7} = \frac{2}{1}$	(3)
From (1), (2) and (3) we have	
$\frac{SU}{RA} = \frac{UN}{AY} = \frac{SN}{RY} = \frac{2}{1}$	
The sides are proportional $\therefore \Delta SUN \sim \Delta RAY$	

Question 3.

The height of a tower is measured by a mirror on the ground at R by which the top of the tower's reflection is seen. Find the height of the tower. If $\Delta PQR \sim \Delta STR$

Answer:

The image and its reflection make similar shapes

 $\therefore \Delta PQR \sim \Delta STR$ $\frac{PQ}{ST} = \frac{QR}{TR} = \frac{PR}{SR}$ $\frac{PQ}{ST} = \frac{QR}{TR}$ $\Rightarrow \frac{h}{8} = \frac{60}{10}$ $h = \frac{60}{10} \times 8$

```
= 48 feet∴ Height of the tower = 48 feet.
```

Question 4.

Find the length of the support cable required to support the tower with the floor.

Answer:

From the figure, by Pythagoras theorem, $x^2 = 20^2 + 15^2$ = 400 + 225 = 625 $x^2 = 25^2 \Rightarrow x = 25$ ft. The length of the support cable required to a

 \div The length of the support cable required to support the tower with the floor is 25ft.

Question 5.

Rithika buys an LED TV which has a 25 inches screen. If its height is 7 inches, how wide is the screen? Her TV cabinet is 20 inches wide. Will the TV fit into the cabinet? Give reason. **Answer:**

Take the sides of a right angled triangle $\triangle ABC$ as a = 7 inches b = 25 inches c = ?By Pythagoras theorem, $b^2 = a^2 + c^2$ $25^2 = 7^2 + c^2$ $\Rightarrow c^2 = 25^2 - 7^2 = 625 - 49 = 576$ $\therefore c^2 = 24^2$ $\Rightarrow c = 24$ inches ∴ Width of TV cabinet is 20 inches which is lesser than the width of the screen ie.24 inches.
 ∴ The TV will not fit into the cabinet.

Challenging Problems

Question 6.

In the figure, \angle TMA $\equiv \angle$ IAM and \angle TAM $\equiv \angle$ IMA. P is the midpoint of MI and N is the midpoint of AI. Prove that \triangle PIN $\sim \triangle$ ATM.

Answer: proof:

S.No.	Statements	Reasons
1.	$\angle TMA \equiv \angle IAM$ $\angle TAM = \angle IMA$	given
2.	∠ATM = ∠TIM	Remaining angle By angle sum property
3.	$IP = PM \Rightarrow \frac{IP}{PM} = 1$ $In = NA \Rightarrow \frac{IN}{NA} = 1$	P is the midpoint of IM and N is the midpoint of IA
4.	$\frac{\mathrm{IP}}{\mathrm{PM}} = \frac{\mathrm{IN}}{\mathrm{NA}}$	Ву 3
5.	PN MA	By 4
6.	$\angle IPN = \angle IMN$ $\angle INP = \angle IAM$	By 5
7.	In \triangle PIN and \triangle ATM (i) \angle IPN = \angle TAM (ii) \angle INP = \angle TMA (iii) \angle ATM = \angle PIN	By 1, 2 and 6
8.	$\Delta PIN \sim \Delta ATM$	By AAA criteria

Question 7. In the figure, if \angle FEG $\equiv \angle 1$ then, prove that DG² = DE.DF.

Answer: Proof:

S.No.	Statements	Reasons
1.	$\angle FEG \equiv \angle 1$	Given
	$\Rightarrow \angle DEG = 180^{\circ} - \angle FEG$	linear pair
2.	$\angle FDG + \angle DFG = 1$ $\angle EDG + \angle DFG = 1$	Exterior angle = Sum of interior opposite angles
3.	$\angle DEG = 180^{\circ} - \angle FEG$ $\angle DEG = 180 - \angle 1$	By 1
4.	In ΔDFG $\angle DGF = 180^{\circ} - [\angle FDG + \angle DFG]$	Angle sum property
5.	$\angle DGF = 180^{\circ} - \angle 1$	By 2
6.	$\angle DGF = \angle DEG$	Ву 3
7.	$\angle EDG = \angle EDG$	Common in Δ FDG and Δ EDG
8.	$\therefore \angle DGE = \angle DFG$	Remaining angle by angle sum property and by 6
9.	$\therefore \Delta DGF \sim \Delta DEG$	By 6, 7, 8
		By AAA similarity
10.	$\frac{DG}{DE} = \frac{GF}{EG} = \frac{DF}{DG}$	Corresponding sides of similar trianlge are proportional.
11.	$\frac{DG}{DE} = \frac{DF}{DG}$ DG. DG = DF. DE DG ² = DE.DF	From 9

Question 8.

The diagonals of the rhombus is 12 cm and 16 cm. Find its perimeter. (Hint: the diagonals of rhombus bisect each other at right angles).

Answer:

Here AO = CO = 8 cm BO = DO = 6 cm(: the diagonals of rhombus bisect each other at right angles) : $\ln \Delta AOB, AB^2 = AO^2 + OB^2$ $= 8^2 + 6^2 = 64 + 36$ $= 100 = 10^2$: AB = 10Since it is a rhombus, all the four sides are equal. AB = BC = CD = DA: Its Perimeter = 10 + 10 + 10 + 10 = 40 cm

Question 9.

In the figure, find AR.

Answer:

 Δ AFI, Δ FRI are right triangles. By Pythagoras theorem, AF² = AI² - FI² = 25² - 15² = 625 - 225 = 400 = 20² \therefore AF = 20ft. FR² = RI² - FI² = 17² - 15² = 289 - 225 = 64 = 8² FR = 8ft. $\therefore AR = AF + FR$ = 20 + 8 = 28 ft.

Question 10.

In ΔDEF, DN, EO, FM are medians and point P is the centroid. Find the following.

(i) IF DE = 44, then DM = ?
(ii) IFPD=12, then PN= ?
(iii) IfDO = 8, then PD = ?

Answer:

Given DN, EO, FM are medians. \therefore FN = EN DO = FO EM = DM

(i) If DE = 44,then DM = $\frac{44}{2}$ = 22 DM = 22

(ii) If PD = 12,PN = ?

$$\frac{PD}{PN} = \frac{2}{1}$$

$$\frac{12}{PN} = \frac{2}{1} \Rightarrow PN = \frac{12}{2} = 6.$$

$$PN = 6$$

(iii) If DO = 8, then FD = DO + OF = 8 + 8FD = 16

(iv) If
$$OE = 36$$

then $\frac{EP}{PO} = \frac{2}{1}$
 $\frac{EP}{2} = PO$
 $OE = OP + PE$
 $36 = \frac{PE}{2} + PE$
 $36 = \frac{PE}{2} + \frac{2PE}{2}$
 $36 = \frac{3PE}{2}$
 $PE = \frac{36 \times 2}{3}$
 $PE = 24$

Ex 5.4

I. Construct the following quadrilaterals with the given measurements and also find their area.

Question 1.

ABCD, AB = 5 cm, BC = 4.5 cm, CD = 3.8 cm, DA = 4.4 cm and AC = 6.2 cm. Answer:

Given ABCD, AB = 5 cm, BC = 4.5 cm, CD = 3.8 cm, DA = 4.4 cm and AC = 6.2 cm.

Steps:

- Draw a line segment AB = 5 cm
- With A and B as centers drawn arcs of radii 6.2 cm and 4.5cm respectively and let them cut at C.
- Joined AC and BC.
- With A and C as centrers drawn arcs of radii 4.4cm and 3.8 cm respectively and let them at D.
- Joined AD and CD.
- ABCD is the required quadrilateral.

Calculation of Area:

Area of the quadrilateral ABCD = $\frac{1}{2} \times d \times (h_1 1 + h_2)$ sq. units = $\frac{1}{2} \times 6.2 \times (2.6 + 3.6)$ cm² = $3.1 \times 6.2 = 19.22$ cm²

Question 2. PLAY, PL = 7cm, LA = 6cm, AY = 6cm, PA = 8cm and LY = 7cm. **Answer:** Given PLAY, PL = 7cm, LA = 6cm, AY = 6cm, PA = 8cm and LY = 7cm

- Drawn a line segment PL = 7 cm
- With P and L as centers, drawn arcs of radii 8 cm and 6 cm respectively, let them cut at A.
- Joined PA and LA.
- With L and A as centers, drawn arcs of radii 7 cm and 6 cm respectively and let them cut at Y.
- Joined LY, PY and AY.
- PLAY is the required quadrilateral.

Calculation of Area:

Area of the quadrilateral PLAY = $\frac{1}{2} \times d \times (h_1 + h_2)$ sq. units = $\frac{1}{2} \times 8 \times (5.1 + 1.4)$ cm² $\frac{1}{2} \times 8 \times 6.5$ cm² = 26 cm² Area of the quadrilateral = 26 cm²

Question 3.

PQRS, PQ = QR = 3.5 cm, RS = 5.2 cm, SP = 5.3 cm and $\angle Q = 120^{\circ}$. Answer:

Given PQ = QR = 3.5 cm, RS = 5.2 cm, SP = 5.3 cm and $\angle Q = 120^{\circ}$

Steps:

- Draw a line segment PQ = 3.5 cm
- Made $\angle Q = 120^{\circ}$. Drawn the ray QX.
- With Q as centre drawn an arc of radius 3.5 cm. Let it cut the ray QX at R.
- With R and P as centres drawn arcs of radii 5.2cm and 5.5 cm respectively and let them cut at S.
- Joined PS and RS.
- PQRS is the required quadrilateral.

Calculation of Area:

Area of the quadrilateral PQRS = $\frac{1}{2} \times d \times (h_1 + h_2)$ sq. units = $\frac{1}{2} \times 6 \times (4.3 + 17)$ cm²

 $= \frac{1}{2} \times 6 \times (4.3 + 17) \text{ cm}^2$ = 3 × 6 cm² = 18 cm² Area of the quadrilateral PQRS = 18 cm²

Question 4.

MIND, MI = 3.6 cm, ND = 4 cm, MD = 4 cm, $\angle M = 50^{\circ}$ and $\angle D = 100^{\circ}$. Answer:

Given MI = 3.6 cm, ND = 4 cm, MD = 4 cm, $\angle M$ = 50° and $\angle D$ = 100°

Steps:

- Drawn a line segment MI = 3.6 cm
- At M on MI made an angle $\angle IMX = 500$
- Drawn an arc with center M and radius 4 cm let it cut MX it D
- At D on DM made an angle \angle MDY = 100°
- With I as center drawn an arc of radius 4 cm, let it cut DY at N.
- Joined DN and IN.
- MIND is the required quadrilateral.

Calculation of Area:

Area of the quadrilateral MIND = $\frac{1}{2} \times d \times (h_1 + h_2)$ sq. units = $\frac{1}{2} \times 3.2 \times (2.7 + 33)$ cm² = $\frac{1}{2} \times 3.2 \times 6$ cm² = 9.6 cm² Area of the quadrilateral = 9.6 cm²

Question 5. AGRI, AG = 4.5 cm, GR = 3.8 cm, $\angle A = 60^\circ$, $\angle G = 110^\circ$ and $\angle R = 90^\circ$. **Answer:**

AG = 4.5 cm, GR = 3.8 cm, $\angle A = 60^{\circ}$, $\angle G = 110^{\circ}$ and $\angle R = 90^{\circ}$.

Steps:

- Draw a line segment AG = 4.5 cm
- At G on AG made $\angle AGX = 110^{\circ}$
- With G as centre drawn an arc of radius 3.8 cm let it cut GX at R.
- At R on GR made \angle GRZ = 90°
- At A on AG made $\angle GAY = 90^{\circ}$
- AY and RZ meet at I.
- AGRI is the required quadrilateral.

Calculation of Area:

Area of the quadrilateral AGRI = $\frac{1}{2} \times d \times (h_1 + h_2)$ sq. units = $\times 6.8 \times (2.9 + 2.4)$ cm²

$$=\frac{1}{2}\times 6.8\times 5.3\times \mathrm{cm}^2$$

Area of the quadrilateral = 18.02 cm^2

II. Construct the following trapeziums with the given measures and also find their area.

Question 1.

AIMS with $\overline{AI} \parallel \overline{SM}$, AI = 6cm, IM = 5cm, AM = 9cm and MS = 6.5cm.

Answer:

Given AI = 6 cm, IM = 5 cm AM = 9 cm, and $\overline{AI} \parallel \overline{SM}$

MS = 6.5 cm

Rough Diagram

Construction: Steps:

- Draw a line segment AI = 6cm.
- With A and I as centres, draw arcs of radii 9 cm and 5 cm respectively and let them cut at M
- Join AM and IM.
- Draw MX parallel to AI
- With M as centre, draw an arc of radius 6.5 cm cutting MX at S.
- Join AS AIMS is the required trapezium.

Calculation of Area

Area of the trapezium AIMS = $\frac{1}{2} \times h \times (a + b)$ sq.units

 $=\frac{1}{2} \times 4.6 \times (6+6.5)$

 $=\frac{1}{2} \times 4.6 \times 12.5$ = 28.75 Sq.cm

Question 2.

CUTE with $\overline{CD} \parallel \overline{ET}$, CU = 7cm, \angle UCE = 80° CE = 6cm and TE = 5cm.

Answer:

Given: In the trapezium CUTE,

CU = 7cm, ∠UCE = 80°,

CE = 6cm,TE = 5cm and $\overline{\mathbf{CD}} \parallel \overline{\mathbf{ET}}$

Rough Diagram

Construction: Steps:

- Draw a line segment CU = 7cm.
- Construct an angle $\angle UCE = 80^\circ$ at C
- With C as centre, draw an arc of radius 6 cm cutting CY at E
- Draw EX parallel to CU
- With E as centre, draw an arc 7 cm of radius 5 cm cutting EX at T
- Join UT. CUTE is the required trapezium.

Calculation of area:

Area of the trapezium $CUTE = \frac{1}{2} \times h \times (a + b)$ sq. units

 $=\frac{1}{2} \times 5.9 \times (7+5)$ sq. units = 35.4 sq.cm

Question 3.

ARMY with $\overline{AR} \parallel \overline{YM}$, AR = 7cm, RM = 6.5 cm $\angle RAY$ = 100° and $\angle ARM$ = 60°

Answer:

Given: In the trapezium ARMY

AR = 7 cm, RM = 6.5 cm,

 \angle RAY = 100° and ARM 60°, $\overline{AR} \parallel \overline{YM}$

Rough Diagram

- Draw a line segment AR = 7 cm.
- Construct an angle $\angle RAX = 100^{\circ}$ at A
- Construct an angle $\angle ARN = 60^\circ$ at R
- With R as centre, draw an arc of radius 6.5 cm cutting RN at M
- Draw MY parallel to AR
- ARMY is the required trapezium.

Calcualtion of Area: Area of the trapezium ARMY = $\frac{1}{2} \times h \times (a + b)$ sq. units = $\frac{1}{2} \times 5.6 \times (7 + 4.8)$ sq. units = $\frac{1}{2} \times 5.6 \times 1.18$ = 33.04 sq.cm

Question 4.

CITY with $\overline{CI} \parallel \overline{YT}$, CI = 7cm, IT = 5 .5 cm, TY = 4cm and YC = 6cm. Answer:

Given: In the trapezium CITY,

CI = 7 cm, IT = 5.5 cm, TY = 4 cm

YC = 6cm, and $\overline{CI} \parallel \overline{YT}$

- Draw a line segment CI = 7 cm.
- Mark a point D on CI such that CD = 4cm

- With D and I as centres, draw arcs of radii 6 cm and 5.5 cm respectively. Let them cut at T. Join DT and IT.
- With C as centre, draw an arc of radius 6 cm.
- Draw TY parallel to Cl. Let the line cut the previous arc at Y.
- Join CY. CITY is the required trapezium.

Construction of area:

Area of the trapezium CITY = $\frac{1}{2} \times h \times (a + b)$ sq. units

 $=\frac{1}{\frac{2}{1}}\times 5.5\times (7+4)$ sq.units

$$=\frac{1}{2} \times 5.5 \times 11$$

= 30.25 sq.cm

Ex 5.5

I. Construct the following parallelograms with the given measurements and find their area.

Question 1. ARTS, AR = 6cm, RT = 5cm and $\angle ART = 70^{\circ}$. **Answer:** Given : In the Parallelogram ARTS, AR = 6 cm, RT = 5 cm, and $\angle ART = 70^{\circ}$

Rough Diagram

- Draw a line segment AR = 6 cm.
- Make an angle $\angle ART = 70^{\circ}$ at R on AR
- With R as centre, draw an arc of radius 5 cm cutting RX at T
- Draw a line TY parallel to AR through T.
- With T as centre, draw an arc of radius 6 cm cutting TY at S. Join AS
- ARTS is the required parallelogram.

Calculation of area: Area of the parallelogram $ARTS = b \times h$ sq. units = $6 \times 4.7 = 28.2$ sq.cm

Question 2.

CAMP, CA = 6 cm, AP = 8 cm and CP = 5.5 cm. **Answer:** Given : In the parallelogram CAMP, CA = 6 cm, AP = 8 cm, and CP = 5.5 cm

Rough Diagram

- Draw a line segment CA = 6 cm.
- With C as centre, draw an arc of length 5.5 cm
- With A as centre, draw an arc of length 8 cm
- Mark the intersecting point of these two arcs as P
- Draw a line PX parallel to CA
- With P as centre draw an arc of radius 6 cm cutting PX at M. Join AM
- CAMP is the required parallelogram.

Calculation of area: Area of the Parallelogram CAMP = $b \times h$ sq. units = $6 \times 5.5 = 33$ sq.cm

Question 3.

EARN, ER = 10cm, AN = 7cm and \angle EOA = 110° where \overline{ER} and \overline{AN} intersect at O.

Answer:

Given: In the parallelogram EARN,

ER = 10 cm, AN = 7 cm, and LEOA = 1100

Where \overline{ER} and \overline{AN} intersect at 0

Rough diagram

- Draw a line segment PX. Mark a point O on PX
- Make an angle $\angle EOA = 1100$ on PX at 0
- Draw arcs of radius 3.5 cm with O as centre on either side of PX. Cutting YZ on A and N
- With A as centre, draw an arc of radius 10 cm, cutting PX at E. Join AE
- Draw a line parallel to AE at N cutting PX at R. Join EN and AR
- EARN is the required parallelogram

Calculation of area: Area of the Parallelogram EARN = $b \times h$ sq. units = $10 \times 5.5 = 55$ sq.cm

Question 4.

GAIN, GA = 7.5 cm, GI = 9 cm and $\angle GAI = 100^{\circ}$. Answer:

- Draw a line segment GA = 7.5 cm.
- Make an angle $GAI = 100^{\circ}$ at A.
- With G as centre, draw an arc of radius 9 cm cutting AX at I. Join GI.
- Draw a line IY parallel to GA through I.
- With I as centre, draw an arc of radius 7.5 cm on IY cutting at N. Join GN
- GAIN is the required parallelogram.

Construction of area: Area of the Parallelogram GAIN = $b \times h$ sq. units = 7.5 \times 39 = 29.25 sq. cm

II. Construct the following rhombuses with the given measurements and also find their area.

(i) FACE, FA = 6 cm and FC = 8 cm Answer: Given FA = 6 cm and FC = 8 cm

Rough Diagram

Steps:

- Drawn a line segment FA = 6 cm.
- With F and A as centres, drawn arcs of radii 8 cm and 6 cm respectively and let them cut at C.
- Joined FC and AC.
- With F and C as centres, drawn arcs of radius 6 cm each and let them cut at E.
- Joined FE and EC.
- FACE is the required rhombus.

Calculation of Area : Area of the rhombus = $12 \times d_1 \times d_2$ sq.units = $12 \times 8 \times 9$ sq.units = 36 cm

(ii) CAKE, CA = 5 cm and $\angle A = 65^{\circ}$ Answer: Given CA = 5 cm and $\angle A = 65^{\circ}$

Steps:

- Drawn a line segment CA = 5 cm.
- At A on AC, made $\angle CAX = 65^{\circ}$
- With A as centre, drawn arc of radius 5 cm. Let it cut AX at K.
- With K and C as centres, drawn arcs of radius 5 cm each and let them cut at E.
- Joined KE and CE.
- CAKE is the required rhombus.

Calculation of Area: Area of the rhombus $=\frac{1}{2} \times d_1 \times d_2$ sq.units $=\frac{1}{2} \times 54 \times 85$ cm² = 22.95 cm²

(iii) LUCK, LC = 7.8 cm and UK = 6 cm Answer: Given LC = 7.8 cm and UK = 6 cm

U

Y

Steps:

- Drawn a line segment LC = 7.8 cm.
- Drawn the perpendicular bisector XY to LC. Let it cut LC at '0'
- With O as centres, drawn arc of radius 3 cm on either side of O which cut OX at K and OY at U.
- Joined LU, UC, CK and LK.
- UCK is the required rhombus.

Calculation of Area:

Area of the rhombus = $\frac{1}{2} \times d_1 \times d_2$ sq.units = $\frac{1}{2} \times 7.8 \times 6$ cm² = 23.4 cm²

(iv) PARK, PR = 9 cm and $\angle P = 70^{\circ}$ Answer: Given PR = 9 cm and $\angle P = 70^{\circ}$

Rough Diagram

Steps:

- Drawn a line segment PR = 9 cm.
- At P, made $\angle RPX \angle RPY = 35^{\circ}$ on either side of PR.
- At R, made $\angle PRQ = \angle PRS = 35^{\circ}$ on either side of PR
- Let PX and RQ cut at A and PY and RS at K.
- PARK is the required rhombus

Constructon of Area:

Area of the rhombus = $\frac{1}{2} \times d_1 \times d_2$ sq.units = $\frac{1}{2} \times 9 \times 6.2$ cm² = 27.9 cm²

III. Construct the following rectangles with the given measurements and also find their area.

(i) HAND,HA = 7cm and AN = 4 cm Answer: Given HA = 7cm and AN = 4 cm

Rough Diagram

Steps:

- Drawn a line segment HA = 7 cm.
- At H, constructed HX \perp HA.
- With H as centre, drawn an arc of radius 4 cm and let it cut at HX at D.
- With A and D as centres, drawn arcs of radii 4 cm and 7 cm respectively and let them cut at N.
- Joined AN and DN.
- HAND is the required rectangle.

calculation of area : Area of the rectangle HAND = $l \times b$ sq.units = 7 × 4 cm²

 $= 28 \text{ cm}^2$

(ii) LAND, LA = 8cm and AD = 10 cm Answer: Given LA = 8cm and AD = 10 cm

Sleps :

- Drawn a line segment LA = 8 cm.
- At L, constructed LX \perp LA.
- With A as centre, drawn an arc of radius 10 cm and let it cut at LX at D.
- With A as centre and LD as radius drawn an arc. Also with D as centre and LA as radius drawn another arc. Let then cut at N.
- Joined DN and AN.

• LAND is the required rectangle.

Calcualtion of arca : Area of the rectangle LAND = $l \times b$ sq.units = 8×5.8 cm² = 46.4 cm²

IV. Construct the following squares with the given measurements and also find their area.

(i) EAST, EA = 6.5 cmAnswer: Given side = 6.5 cm

Rough diagram

Steps:

- Drawn a line segment EA = 6.5 cm.
- At E, constructed $EX \perp EA$.
- With E as centre, drawn an arc of radius 6.5 cm and let it cut EX at T.
- With A and T as centre drawn an arc of radius 6.5 cm each and let them cut at S.
- Joined TS and AS.

• EAST is the required square.

Calcualtion of Area: Area of the square EAST = a^2 sq.units = 6.5×6.5 cm² = 42.25 cm²

(ii) WEST, WS = 7.5 cm **Answer:** Given diagonal = 7.5 cm

Rough Diagram

Steps:

- Drawn a line segment WS = 7.5 cm.
- Drawn the perpendicular bisector XY to WS. Let it bisect BS at 0.
- With O as centre, drawn an arc of radius 3.7 cm on either side of O which cut OX at T and OY at E
- Joined BE, ES, ST and BT.
- WEST is the required square.

Calculation of Area: Area of the square WEST = a^2 sq.units = 5.3×53 cm² = 28.09 cm².