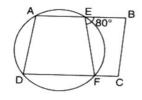
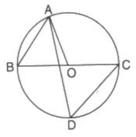
CBSE Test Paper 02 CH-10 Circles

- 1. Two circle are congruent if they have equal
 - a. radius
 - b. diameter
 - c. secant
 - d. chord
- 2. ABCD is a parallelogram. A circle passes through A and D and cuts AB at E and DC at F. If $\angle BEF=80^o$, then $\angle ABC$ is equal to



- a. 80^{o}
- b. 75^{o}
- c. 120°
- d. 100^{o}
- 3. Number of circles that can be drawn through three non-collinear points is
 - a. 2
 - b. 1
 - c. 0
 - d. 3
- 4. If P and Q are any two Points on a circle then PQ is called a

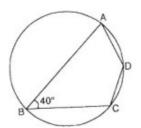
- a. radius
- b. diameter
- c. secant
- d. chord
- 5. BC is a diameter of the circle and $\angle BAO = 60^o$. Then $\angle ADC$ is equal to



- a. 90°
- b. 45°
- c. 60°
- d. 30°
- 6. Fill in the blanks:

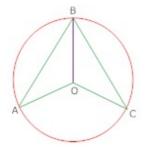
The line drawn through the centre of a circle to bisect a chord is _____ to the chord.

7. In the figure, $\angle ABC = 40^{\circ}$ then find $\angle ADC$



- 8. Prove that of all the chords of a circle through a given point within it, the least is one which is bisected at that point.
- 9. In figure, \angle PQR = 100° , where P, Q, R are points on a circle with centre O. Find \angle OPR.

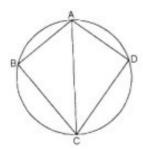
10. AB and CB are two chords of circle. Prove that BO bisects ∠ABC



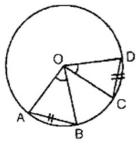
11. In the figure,

i.
$$\angle BAC = 70^{\circ}$$
 and $\angle DAC = 40^{\circ}$, then find $\angle BCD$

ii.
$$\angle BAC = 60^{\circ}$$
 and $\angle BCA = 60^{\circ}$, then find $\angle ADC$



12. Recall two circles are congruent if they have the same radii. Prove that equal chords of congruent circles subtend equal angles at their centres.



- 13. AB and BC are two chords of a circle whose centre is O such that $\angle ABO = \angle CBO$. Prove that AB = CB.
- 14. In figure, AB and AC are two equal chords of a circle whose centre of O. If $OD \perp AB$ and $OE \perp AC$, prove that ADE is an isosceles triangle.
- 15. If two equal chords of a circle intersect within a circle, prove that the segments of one chord are equal to corresponding segments of the other chord.

CBSE Test Paper 02

CH-10 Circles

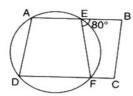
Solution

1. (a) radius

Explanation: Equal radius would generate two same circles that are exact copy of each other, hence making them congruent.

2. (a) 80°

Explanation:



$$\angle AEF + 80^0 = 180^0$$
 (Linear Pair)

$$\angle AEF = 100^0$$

$$\angle ADF + \angle AEF = 180^0$$
 (Opposite angles of a cyclic quadrilateral)

$$\angle ADF = 180^0 - 100^0 = 80^0$$

$$\angle ADF = \angle ABC = 80^{0}$$
 (Opposite angles of a parallelogram)

3. (b) 1

Explanation:

Only 1 circle can be drawn from three non-collinear points.

4. (d) chord

Explanation: A chord is a line formed by any two points on a circle.

5. (c) 60°

Explanation:

In triangle ABO,

OA = OB,
$$\angle A = \angle B = 60^{\circ}$$

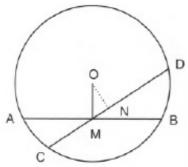
Now,
$$\angle ABO = \angle ADC = 60^{\circ}$$

- 6. perpendicular
- 7. ∴ ∠ABC + ∠ADC = 180° (∵ Opposite angles of a cyclic quadrilateral are supplementary)

$$\angle ADC = 180^{\circ} - \angle ABC$$

$$= 180^{\circ} - 40^{\circ} = 140^{\circ}$$

8. Let C(O, r) be a circle and let M be a point within it. Let AB be a chord whose midpoint is M. Let CD be another chord through M. We have to prove that AB < CD.



Join OM and draw ON \perp CD.

In right triangle ONM, OM is the hypotenuse.

- .: OM > ON
- \Rightarrow Chord CD is nearer to O in comparison to AB
- \Rightarrow CD > AB [:: Of any two chords of a circle, the one which is nearer to the centre is larger]
- \Rightarrow AB < CD
- 9. Since the angle subtented by an arc of a circle at its centre is twice the angle subtented by the same arc at a point on the circumference.

Therefore,
$$\angle ROP = 2 \angle PQR$$

$$\Rightarrow$$
 \angle ROP = $2 \times 100^{\circ}$ = 200°

Now
$$\widehat{mPR} + \widehat{mRP} = 360^\circ \Rightarrow \angle POR + \angle ROP = 360^\circ \Rightarrow \angle POR + 200^\circ = 360^\circ \Rightarrow \angle POR = 360^\circ - 200^\circ = 160^\circ$$
(i)

Now \triangle OPR is an isosceles triangle.

.. OP = OR [Radii of the circle]

$$\Rightarrow$$
 \angle OPR = \angle ORP [Angles opposite to equal sides are equal](ii)
Now in isosceles triangle OPR,
 \angle OPR + \angle ORP + \angle POR = 180° [The sum of the all angles of a traingle is 180°]
 \Rightarrow \angle OPR + \angle ORP + 160° = 180°
 \Rightarrow 2 \angle OPR = 180° – 160° [Using (i) & (ii)]
 \Rightarrow 2 \angle OPR = 20°
 \Rightarrow \angle OPR = 10°

10. Join OA and OC

In \triangle OAB And \triangle OCB

OA = OC (radii of circle)

OB = OB (common)

AB = BC(given)

 \triangle OAB \cong \triangle OCB (by SSS)

Therefore, \angle ABO = \angle CBO [By CPCT]

Hence, BO bisects ∠ABC

11. i. $\angle BCD = 180^{\circ} - \angle BAD$ (: Opposite angles of a cyclic quadrilateral are supplementary)

=
$$180^{\circ}$$
 - ($\angle BAC + \angle DAC$)

$$=180^{\circ} - (70^{\circ} + 40^{\circ}) = 70^{\circ}$$

ii. \angle CBA = 180° - (\angle BAC + \angle BCA) (.:.Opposite angles of a cyclic quadrilateral are supplementary)

$$= 180^{\circ} - (60^{\circ} + 20^{\circ}) = 100^{\circ}$$

$$= 180^{0} - 100^{0} = 80^{0}$$

12. I Part: Two circles are said to be congruent if and only if one of them can be superposed on the other so as to cover it exactly.

Let C (O) and C (O') be two circles. Let us imagine that the circle C (O') is superposed on C (O) so that O' coincide with O. Then it can easily be seen that C (O') will cover C (O) completely.

Hence we can say that two circles are congruent, if and only if they have equal radii.

II Part: Given: In a circle (O), AB and CD are two equal chords, subtend \angle AOB and \angle COB at the centre.

To Prove: ∠AOB = ∠COD

Proof: In \triangle AOB and \triangle COD,

AB = CD [Given]

AO = CO [Radii of the same circle]

BO = DO [Radii of the same circle]

 \triangle AOB \cong \triangle COD [By SSS congruency]

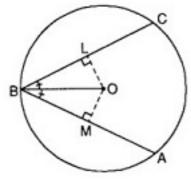
 \Rightarrow \angle AOB = \angle COD [By CPCT]

Hence Proved.

13. AB and BC are two chords of a circle whose centre is 0 such that $\angle ABO = \angle CBO$.

To prove : AB = CB

Construction : Draw $\mathrm{OL} \perp \mathrm{BC}$ and $OM \perp BA$.



Proof: In $\triangle OBL$ and $\triangle OBM$

 $\angle OBL = \angle OBM$ | Given

 $\angle OLB = \angle OMB$ | Each = 90 $^{\rm o}$ (by const.)

OB = OB | Common

 $\therefore \Delta OBL \cong \triangle OBM$ |AAS

 $BL = BM \mid c.p.c.t$

 \Rightarrow 2BL = 2BM

 \Rightarrow BC = BA

[L and M are the mid-points of BC and BA respectively since the perpendicular draw from the centre of a circle to a chord bisects the chord]

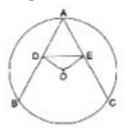
 \Rightarrow BA = BC

 \Rightarrow AB = CB

14. Given: In figure, AB and AC are two equal chords of a circle whose centre is O.

$$OD \perp AB$$
 and $OE \perp AC$

To prove: ADE is an isosceles triangle



Proof: AB = AC

OD = OE | : Equal chords are equidistant from the centre

$$\therefore$$
 In $\triangle ODE$

 $\angle ODE = \angle OED$ | Angle opposite to equal sides

$$\Rightarrow 90^{\circ} - \angle ODE = 90^{\circ} - \angle OED$$

$$\Rightarrow \angle ODA - \angle ODE = \angle OEA - \angle OED$$

$$\Rightarrow \angle ADE = \angle AED$$

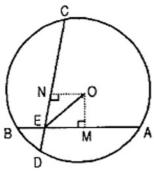
 $\therefore AD = AE$ | Sides opposite to equal angles

 $\therefore \triangle ADE$ is an isosceles triangle.

15. Given: Let AB and CD are two equal chords of a circle of centers

O intersecting each other at point E within the circle.

Construction: Draw OM \perp AB, ON \perp CD. Also join OE.



Proof: In right triangles OME and ONE,

$$\angle$$
OME = \angle ONE = 90°

$$OM = ON$$

[Equal chords are equidistance from the centre]

 $\therefore \triangle$ OME $\cong \triangle$ ONE [RHS rule of congruency]

∴ ME = NE [By CPCT] ...(i)

Now, O is the centre of circle and OM \perp AB

 \therefore AM = $\frac{1}{2}$ AB [Perpendicular from the centre bisects the chord] ...(ii)

Similarly, NC = $\frac{1}{2}$ CD ...(iii)

But AB = CD [Given]

From eq. (ii) and (iii), AM = NC ...(iv)

Also MB = DN ...(v)

Adding (i) and (iv), we get,

AM + ME = NC + NE

 \Rightarrow AE = CE [Proved part (a)]

Now AB = CD [Given] ...(v)

AE = CE [Proved] ...(vi)

Subtracting eq. (vi) from eq. (v), we have

$$\Rightarrow$$
 AB - AE = CD - CE

 \Rightarrow BE = DE [Proved part (b)]