Short Answer Type Questions – I [2 MARKS]

Que 1. Diagonals of a quadrilateral PQRS bisect each other. If $\angle P = 40^{\circ}$, Determine $\angle Q$.

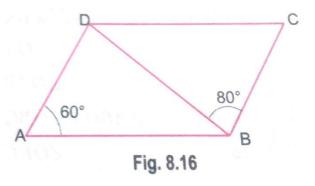
Sol. Since the diagonals of quadrilateral PQRS bisect each other, therefore it must be a parallelogram.

$$\therefore \angle P + \angle Q = 180^{\circ}$$
 (Angles on the same side of the transversal)

$$\Rightarrow \qquad 40^0 + \angle Q = 180^0$$

 $\Rightarrow \qquad \angle Q = 180^{\circ} - 40^{\circ} \Rightarrow \angle Q = 140^{\circ}$

Que 2. In Fig. 8.16, ABCD is a parallelogram. If $\angle DAB = 60^{\circ}$ and $\angle DBC = 80^{\circ}$, Find $\angle CDB$.



Sol. We have, $\angle C = \angle A$ (Opposite angles of parallelogram)

$$\Rightarrow \angle C = 60^{\circ}$$

Now, in $\triangle BDC$

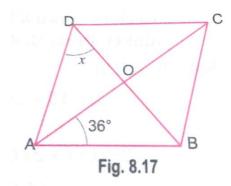
 $\angle C + \angle CDB + \angle DBC = 180^{\circ}$

$$\Rightarrow \qquad 60^{\circ} + \angle \text{CDB} + 80^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 $\angle CDB = 180^{\circ} - 140^{\circ}$

$$\Rightarrow$$
 $\angle CDB = 40^{\circ}$

Que 3. In Fig. 8.17, ABCD is a rhombus. Find the value of x.



Sol. ∠AOB = 90⁰

(Diagonals of rhombus bisect each other at 90⁰)

In ∆AOB, we have

$$\angle OAB + \angle ABO + 90^{\circ} = 180^{\circ}$$

$$36^{\circ} + \angle ABO + 90^{\circ} = 180^{\circ} \implies \angle ABO = 180^{\circ} - 126^{\circ}$$

$$\Rightarrow \angle ABO = 54^{\circ}$$

$$\Rightarrow \angle ADB = \angle ABD \text{ (Angles opposite to equal sides)}$$

$$\Rightarrow \angle ADB = 54^{\circ} \Rightarrow x = 54^{\circ}$$

Que 4. In fig. 8.18, ABCD is a square. Determine ∠DAC.

Sol. As ABCD is a square,

$$\therefore \qquad AD = DC \qquad and \quad \angle ADC = 90^{\circ}$$

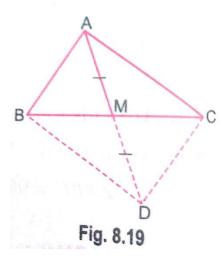
i.e
$$\angle DAC = \angle DCA \text{ and } \angle ADC = 90^{\circ}$$

(Angles opposite to equal sides)

Now, in $\triangle ADC$, we have

 $\angle 1 + \angle 2 + \angle ADC = 180^{0}$ $\Rightarrow \angle 1 + \angle 2 + 90^{0} = 180^{0}$ $\Rightarrow \qquad 2\angle 1 = 90^{0} (\because \angle 1 = \angle 2)$ $\Rightarrow \qquad \angle 1 = 45^{0} \quad \text{or} \quad \angle DAC = 45^{0}$

Que 5. In $\triangle ABC$, median AM is produced to D such that AM = MD [Fig. 8.19].





Sol. In quadrilateral ABDC, we have

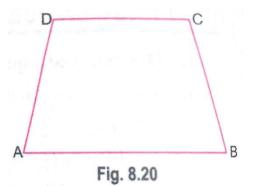
AM = MD (given)

BM = MC (AM is the Median)

As, diagonals AD and BC bisect each other. Therefore,

ABDC is a parallelogram.

Que 6. ABCD is a trapezium [Fig. 8.20] in which AB||CD and $\angle A = \angle B = 45^{\circ}$. Find $\angle D$ of the trapezium.

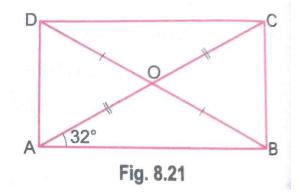


 $\textbf{Sol.} \ \text{Since, AB}||\text{CD} \ \text{and AD} \ \text{is the transversal}.$

$$\therefore \qquad \angle A + \angle D = 180^{\circ}$$

$$45^{\circ} + \angle D = 180^{\circ}$$

$$\Rightarrow \qquad \angle D = 180^{\circ} - 45^{\circ} \qquad \Rightarrow \qquad \angle D = 135^{\circ}$$



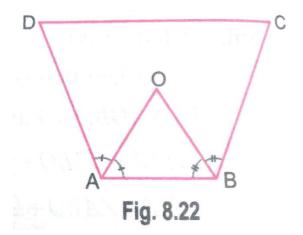
Que 7. In rectangle ABCD, \angle BAC = 32°, Find the measure of \angle DBC.

Sol. Let AC and BD intersect at O [Fig 8.21].

Since diagonals of a rectangle bisect each other and are equal

 $\therefore \qquad OA = OB$ $\Rightarrow \qquad \angle OAB = \angle OBA = 32^{\circ}$ Now, $\angle ABO + \angle OBC = 90^{\circ}$ $\Rightarrow \qquad \angle OBC = 90^{\circ} - 32^{\circ} = 58^{\circ}$ $\Rightarrow \qquad \angle DBC = \angle OBC = 58^{\circ}$

Que 8. Bisectors of two adjacent angles A and B of quad. ABCD intersect at a point O. Prove that $2 \angle AOB = \angle C + \angle D$.



Sol. In ΔAOB

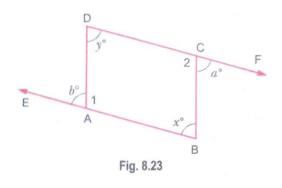
 $\angle OAB + \angle OBA + \angle AOB = 180^{\circ}$

(Angle sum property of Δ)

2∠OAB + 2∠OBA + 2∠AOB = 360°

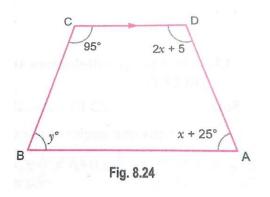
$$\angle A + \angle B + 2\angle AOB = 360^{\circ}$$
But $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ (Angle sum property of quad.) ..(ii)
From (i) and (ii)
 $\angle A + \angle B + 2\angle AOB = \angle A + \angle B + \angle C + \angle D$
 $2\angle AOB = \angle C + \angle D$

Que 9. The sides BA and DC of quad. ABCD are produced as shown in Fig. 8.23. Prove that x + y = a + b.



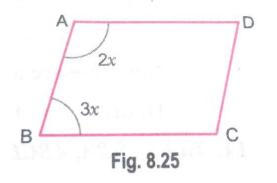
Sol. Proof:	b + ∠1 = 180°		(Linear pair)			
	∠1 = 18	0° – b	(i)			
Again	a + ∠2 = 180) o	(Linear pair)			
∠2 = 180° – a						
But $\angle 1 + x + y + \angle 2 = 360^{\circ}$ (Angle sum property of quad.)						
180° – b	+ x + y + 180° – a	a = 360°	[From (i) and (ii)]			
x + y = a + b						

Que 10. In fig. 8.24, ABCD is a trapezium in which $\angle A = x + 25^{\circ}$, $\angle B = y^{\circ}$, $\angle C = 95^{\circ}$ and CD = 2x + 5°, then Find the value of x and y.



Sol. As CD||BA ∠C + ∠B = 180° (Co-interior angles) $95^{\circ} + y = 180^{\circ}$ y = 85° :. \Rightarrow ∠D + ∠A = 180° Again, $(2x + 5) + (x + 25) = 180^{\circ}$ $3x + 30^{\circ} = 180^{\circ}$ $3x = 150^{\circ} \implies x = 50^{\circ}$ \Rightarrow $x = 50^{\circ}, \quad y = 85^{\circ}$:.

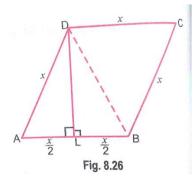
Que 11. Two adjacent angles of a ||^{gm} are in the ratio 2:3. Find all the four angles of the parallelogram.



Sol. Let the angles be 2x and 3x.

Also,
$$\angle A + \angle B = 180^{\circ}$$
 (Co-interior angles)
 $\therefore 2x + 3x = 180^{\circ} \Rightarrow 5x = 180^{\circ}$
 $X = \frac{180^{\circ}}{5} = 36^{\circ}$
 $\therefore \angle A = 2 \times 36^{\circ} = 72^{\circ}$
 $\angle B = 3 \times 36^{\circ} = 108^{\circ}$
Again $\angle A = \angle C = 72^{\circ}$ (Opposite angles of parallelogram)
 $\angle B = \angle D = 108^{\circ}$ (Opposite angles of parallelogram)

Que 12. ABCD is a rhombus in which altitude from D to side AB bisects AB. Find the angles of the rhombus.



Sol. Let sides of a rhombus be AB = BC = CD = DA = x

Now, join DB.

In \triangle ALD and \triangle BLD, \angle DLA = \angle DLB = 90°

[Since, DL is a perpendicular bisector of AB]

 $AL = BL = \frac{x}{2}$

And DL = DL

:.

DL = DL [common side]

 $\Delta ALD \cong \Delta BLD$ [by SAS congruence rule]

Now, in ∆ADB,

$$AD = AB = DB = x$$

Then, ΔADB is an equilateral triangle,

$$\therefore \qquad \angle A = \angle ADB = \angle ABD = 60^{\circ}$$

Similarly, ΔDBC is an equilateral triangle,

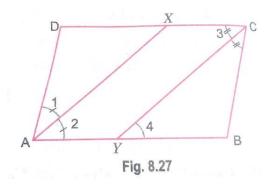
 $\therefore \qquad \angle C = \angle BDC = \angle DBC = 60^{\circ}$

Also, $\angle A = \angle C$

:. $\angle D = \angle B = 180^{\circ} - 60^{\circ} = 120^{\circ}$

[Since, sum of interior angles is 180°]

Que 13. ABCD is a parallelogram and line segments AX, CY bisect $\angle A$ and $\angle C$ respectively. Show that AX||CY.

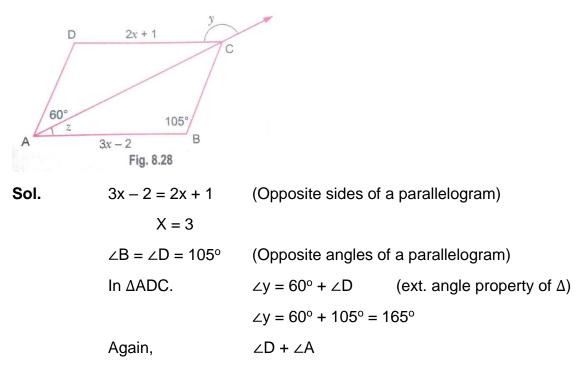


Sol. $\angle DAB = \angle BCD$

(Opposite angles of parallelogram)

$\frac{1}{2} \angle DAB = \frac{1}{2} \angle BCD$				
	Or	∠2 = ∠3		
	But	∠3 = ∠4	(Alt. angles)	
	∴	∠2 = ∠4		
But these are alt. angles.				
	Hence	AX CY.		

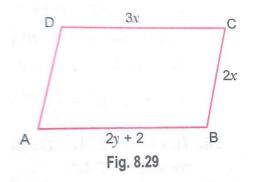
Que 14. In Fig. 8.28, ABCD is a parallelogram. Find the value of x, y and z.



$$60^{\circ} + z + 105^{\circ} = 180^{\circ}$$

Z + 165° = 180° \Rightarrow z = 15°

Que 15. In Fig. 8.29, ABCD is a parallelogram with perimeter 40cm. find x and y.



Sol. Perimeter of parallelogram = 2(I+b)

$$\therefore 40 = 2(I+b) = 20 = I + b$$

$$20 = (2y + 2) + 2x$$

$$20 = 2y + 2x + 2$$

$$18 = 2y + 2x$$

$$9 = y + x$$

Also, opposite sides of a parallogram are equal.

 $\therefore \qquad 3x = 2y + 2 \implies \qquad 3x - 2y = 2$

On putting (i) in (ii), we get

$$3(9 - y) - 2y = 2$$

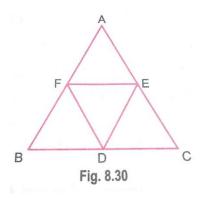
$$27 - 3y - 2y = 2 \qquad \Rightarrow \qquad 25 = 5y \qquad \Rightarrow \qquad 5 = y$$

Putting the value of y in (i), we get

$$x = 9 - 5 = 4$$

Hence x = 4 cm and y = 5 cm.

Que 16. In fig. 8.30, D, E and F are the mid-points of the sides BC, CA and AB respectively of \triangle ABC. If AB = 6.2 cm, BC = 5.6 cm and CA = 4.6 cm, find the perimeter of:



(i) Trapezium FBCE and (ii) $\triangle DEF$

Sol. (i) Perimeter of FBCE

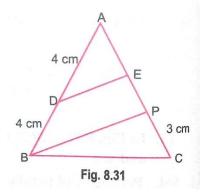
= FB + BC + CE + EF
=
$$\frac{1}{2}$$
 AB + 5.6 + $\frac{1}{2}$ AC + 2.8
= $\frac{1}{2}$ (6.2) + 5.6 + $\frac{1}{2}$ × (4.6) + 2.8 = 13.8 cm

- (ii) F and E are the mid-points of AB and AC respectively.
- $\therefore \quad FE = \frac{1}{2} BC \quad (Midpoint theorem)$ $FE = \frac{1}{2} \times 5.6 = 2.8$ Again, $DE = \frac{1}{2} AB = 3.1 \text{ cm and } DF = \frac{1}{2} AC = 2.3 \text{ cm}$ Baring stars of ADEE = DE + EE + ED

 \therefore Perimeter of $\Delta DEF = DE + EF + FD$

= 3.1 + 2.8 + 2.3 = 8.2 cm

Que 17. In Fig. 8.31, D is the mid-point of AB and PC = $\frac{1}{2}$ AP = 3 cm. If AD = DB = 4 cm and DE||BP. Find AE.



Sol. $\frac{1}{2}$ AP = 3cm (Given)

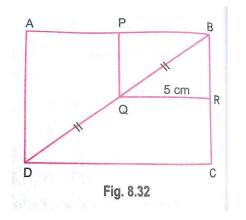
 \Rightarrow AP = 6cm

As D is the mid-point and DE||BP

 \Rightarrow E is the mid-point of AP (By converse of midpoint theorem)

 $\therefore \qquad AE = \frac{1}{2}AP = \frac{1}{2} \times 6 = 3 \text{ cm}$

Que 18. In Fig. 8.32. ABCD and PQRB are rectangle where Q is the mid-point of BD. If QR = 5 cm, Find the measure of AB.



Sol. In \triangle BDC, Q is the mid-point of BD.

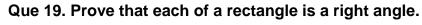
Again, QR||DC (As ABCD is rectangle and PQRB is a rectangle)

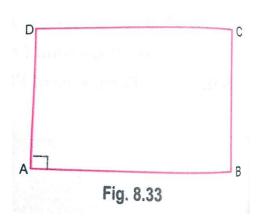
 \Rightarrow R is the mid-point of BC (by converse of mid-point theorem)

Again, in \triangle BDC, Q and R are the mid-point of BD and BC.

⇒
$$QR = \frac{1}{2}DC$$

 $5 = \frac{1}{2}DC$
So, $DC = 10 \text{ cm}$
Also, $DC = AB$
(Opposite sides of rectangle)
∴ $DC = AB = 10 \text{ cm}$

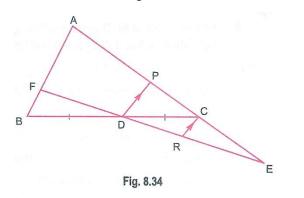




Sol. Let ABCD be a rectangle and $\angle A = 90^{\circ}$

⇒	ABCD is parallelogram also.		
∴	AD BC		
⇒ ∠A	x + ∠B = 180°		
Again	$\angle A = \angle C = 90^{\circ}$	(Opposite angles of parallelogram)	
	$\angle B = \angle D = 90^{\circ}$	(Opposite angles of parallelogram)	

Que 20. In Fig. 8.34, side AC of \triangle ABC produced to E so that CE = $\frac{1}{2}$ AC. D is the mid-point of BC and ED produced meets AB at F. RC, DP are drawn parallel to BA. Prove that FD = $\frac{1}{3}$ FE.



Sol. In $\triangle ABC$, D is the mid-point of BC and DP||BA. (Given)

 \therefore P is the mid-point of AC ...(i) (By the converse of mid-point theorem)

Now, FA||DP||RC and AC is the transversal such that AP=PC and FDR is the other transversal on them.

$$\therefore \quad \mathsf{FD} = \mathsf{DR} \qquad ..(\mathsf{ii})$$

Also $CE = \frac{1}{2}AC$

Or CE = PC [Using (i)]

Now in \triangle EDP, C is the mid-point of DE.

[By the converse of mid-point theorem]

DR = RE \therefore FD = DR = RE [From (ii) and (iii)] FD = $\frac{1}{3}$ FE [\because FE = FD + DR + RE]