Square root of Complex Number

Q.1. Find the square root of 5 – 12i.

Solution: 1 Let $\sqrt{(5 - 12i)} = x + iy$ Squaring both sides, we get $5 - 12i = x^2 + 2ixy + (iy)^2 = x^2 - y^2 + 2xyi$ Equating real and imaginary parts, we get $5 = x^2 - y^2$ ------ (1) & xy = -6 ------ (2) Squaring (1), we get $25 = (x^2 - y^2)^2 = (x^2 + y^2)^2 - 4x^2y^2$ Or, $25 = (x^2 + y^2)^2 - 4(-6)^2$ Or, $(x^2 + y^2)^2 = 169$ Or, $x^2 + y^2 = 13$ ----- (3) Adding (1) and (3) we get $2x^2 = 18 => x = \pm 3$. Subtracting (1) from (3) we get $2y^2 = 8 = y = \pm 2$. Therefore, $\sqrt{(5 - 12i)} = 3 + 2i$ or, 3 - 2i or, -3 + 2i or, -3 - 2i. As imaginary part of 5 – 12i is negative, the square root is $\pm(3 - 2i)$.

Q.2. Find the square root of : -15 - 8i.

Solution: 2

Let $\sqrt{(-15 - 8i)} = x + iy$. Squaring both sides, we get $-15 - 8i = (x + iy)^2 = x^2 - y^2 + 2ixy$ Equating real and imaginary parts, we get $-15 = x^2 - y^2$ ------(1) And -4 = xy ------(2) Squaring (1), we get $225 = (x^2 - y^2)^2 = (x^2 + y^2)^2 - 4x^2y^2$ Or, $225 = (x^2 + y^2)^2 - 4(-4)^2$ Or, $(x^2 + y^2)^2 = 289$ Or, $x^2 + y^2 = 17$ ----- (3) Adding (1) and (3), we get $2x^2 = 2 = x^2 = 1 = x = \pm 1$. Subtracting (1) from (3), we get $2v^2 = 32 => v^2 = 16 => v \pm 4$. Therefore, $\sqrt{(-15 - 8i)} = 1 + 4i$ or, 1 - 4i, -1 + 4i, -1 - 4i. As imaginary part of -15 - 8i is negative, the square root is $\pm (1 - 4i)$.

Q.3. Find the square root of i.

Solution: 3

Let $\sqrt{i} = x + iy$.

Squaring, we get

 $i = (x + iy)^2 = x^2 - y^2 + 2xyi$

Equating real and imaginary parts, we get

 $x^2 - y^2 = 0$ ------(1)

2xy = 1 ------ (2) Squaring (1), we get $(x^2 - y^2)^2 = 0$ Or, $(x^2 + y^2)^2 - 4x^2y^2 = 0$ Or, $(x^2 + y^2)^2 = 4x^2y^2 = (2xy)^2 = (1)^2 = 1$ Or, $x^2 + y^2 = 1$ ------- (3) Solving (1) and (3) we get $x = \pm 1/\sqrt{2}$ and $y = \pm 1/\sqrt{2}$. As imaginary part of i is positive, the square root is $\pm (1/\sqrt{2} + 1/\sqrt{2})$ $= \pm 1/\sqrt{2} (1 + i)$.