CHAPTER 2

DIGRESSION ON STATISTICAL THERMODYNAMICS

§2.01 Microdescriptions and macrodescriptions of a system

According to quantum theory the state of a system is completely specified
by its eigenfunction. To each state there corresponds one eigenfunction and
to each eigenfunction one state. Such a description of the system we shall
call a microdescription.

It is often, though not always, possible to regard the system as consisting
of a large number of almost independent units (molecules, atoms, ions, elec-
trons) and to express each eigenfunction of the system as a linear combina-
tion of products of the eigenfunctions of all the units. According to the
symmetry restrictions, if any, imposed on the eigenfunctions of the system,
we then obtain three alternative sets of statistical formulae referred to by the
names of Fermi-Dirac, Bose-Einstein, and Boltzmann, respectively. These
three alternatives, however, arise only when we express the eigenfunctions
of the system in terms of those of the constituent units. As long as we refer
only to the eigenfunctions of the whole system, we shall not need to consider
these three alternatives separately. Nor shall we do so until we reach §2.10.

When we describe the equilibrium properties of a system by thermo-
dynamic methods, we are not interested in such a precise description as the
microdescription, but are content with a more crude large scale description,
which we shall call a macrodescription. For example a possible macrodescrip-
tion of the system would be a precise statement of the energy, the volume,
the chemical composition (and in special cases other quantities all measur-
able on a large scale) of each homogeneous part or phase. For brevity we
shall confine our discussion initially to systems whose macrodescription
requires a precise statement of only four quantities. The extension of the
argument to more complicated systems should be obvious. Initially we shall
take the first of these quantities to be the energy, the second to be the
volume, the third to be the empirica! composition; the nature of the fourth
quantity is best indicated by some specific examples.

Example 1 Let us consider a definite quantity of hydrogen (free from
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62 DIGRESSION ON STATISTICAL THERMODYNAMICS

deuterium) of given energy and given volume. Then we can complete the
description by a statement of what fraction of it is para, the remaining
fraction being ortho.

Example 2 If instead of hydrogen, we have lactic acid we can complete
the description by a statement of what fraction is dextro, the remaining
fraction being laevo.

Example 3 If the system consists of a given quantity of iodine of given
energy and volume we can complete the description by a statement of what
fraction is in the diatomic form I,, the remainder being in the monatomic
form L

Example 4 If the system consists of a given quantity of tin of given ener-
gy and volume, we can complete the description by stating what fraction is
white, the remainder being grey.

Example 5 If the system consists of a given quantity of sulphur dioxide,
we can complete the description by stating what fraction is /liquid, the
remainder being vapour.

In the first three examples it is assumed either that the system is homo-
geneous or, if it consists of two phases, that we are not interested in the
relative amounts, these being determined by the other conditions. Another
example that might be suggested is a system of a given quantity of hydrogen
of given energy and volume for which we were interested both in the ratio
of para to ortho and in the ratio of liguid to vapour. Such a system, however,
requires five quantities, instead of four, to complete its macrodescription
and so lies outside the class which we shall discuss, although the extension
of the treatment to such a system in fact offers no difficulty.

Having made clear by these examples the nature of the fourth independent
variable describing the system we shall denote this variable by £. It corre-
sponds closely to the quantity & which, following De Donder, we introduced
in§1.44 and which we callthe extent of reaction of a physico-chemical change.
It is not a necessary property of ¢ that one should be able completely to
control its value, provided that its value can in principle be measured by
macroexperiments.

§2.02 System of given energy, volume, and composition

Let us now consider in more detail a system of prescribed energy U, prescrib-
ed volume ¥V, and containing a prescribed number N of molecules of a given
kind. Let the number of independent eigenfunctions of the system consistent
with the prescribed values of U, ¥, N and corresponding to a particular
value of the parameter £ be denoted by 2(£). As long as we are not interested
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in distinguishing between the states of equal £, we may conveniently group
them together.

Then the fundamental assumption of statistical thermodynamics is the
following.

The average properties of the system for prescribed values of U, V, N
can be derived statistically by averaging over all groups of states of given ¢,
assigning to each group a weight Q(&).

In other words it is assumed that for given U, V, N the probability of a
particular value of ¢ is

Q(é)/g Q(8). 2.02.1

It is customary to refer to the numerator Q(&) in (1) as the thermodynamic
probability of the particular value of £. It must be emphasized that thermo-
dynamic probability thus defined is not a probability in the usual sense of the
word. Whereas an ordinary probability such as (1) is a number less than or
equal to unity, the thermodynamic probability is generally a large number.
For reasons which will appear later Q(€) had better be called the thermo-
dynamic probability of & for given U, V, N than merely the thermodynamic
probability of & Another name for Q(&) is the partition function for given
U, V, N, £. The reason for this name will also become clearer as we proceed.
We now define a quantity S(U, ¥, N, &) by the relation

S(U, V, N, &=k In Q&) 2.02.2

where k is a universal arbitrary constant whose value will be settled later.
It can then be shown as we shall see later that, in a macroscopic system, S
has all the properties of the entropy of the system in the macrostate defined
by U, V, N, & Formula (2) is a precise formulation of the well-known
relation due to Boltzmann to whom the name thermodynamic probability
is due.

We shall see that Boltzmann’s relation (2) between the entropy and the
thermodynamic probability or partition function for given U, V, N, £ is merely
one of a number of relations of a similar type between a characteristic
function for a particular set of variables on the one hand and the thermo-
dynamic probability or partition function for the same set of variables on the
other.

§2.03 Characteristic of macroscopic system

According to the fundamental assumption of statistical thermodynamics
in a system of given U, V, N the average value (&) of ¢ is determined by
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& =§§j éﬂ(é)/; Q&) 2.03.1

and the average value (&2) of &% by
<62>=§j 629(6)/4? Q). 2.03.2

Thus in general {&>? is not the same as (&2).
In other words there are fluctuations measured by

E=LED) Py =&y — (&2
= {; (0/(3) ; 6’9(5)—; £Q(¢) ; 59(6)}/{§ Q)2 2033

It can be shown generally that the larger the system the less important is
this fluctuation and that for any macroscopic system the fluctuation is
entirely trivial compared with (£>? itself. Without attempting a proof we
shall consider a little more closely how this comes about.

There is some value &, of £ for which Q(&) has a maximum. Generally
speaking the larger the system the sharper is this maximum and for any
macroscopic system it is very sharp indeed. On each side of this maximum
term Q(&,,) there will be many terms almost as great as Q(&,,). Then there
will be a still greater number of terms appreciably smaller but not negligible;
but an overwhelming majority of the terms will be entirely negligible, and
this majority includes all those terms in which & differs appreciably from &,.

As aresult of such considerations it can be shown that whereas the average
properties are strictly determined by attributing to each & the weight (&)
we may in any macroscopic system with trivial inaccuracy ignore all values
of £ other than the value &, at which Q(&) is maximum.

Thus for any macroscopic system we have with trivial inaccuracy

(ES=¢, 2.03.4
(Ery=¢2 2.03.5

and so on.
It is instructive to relate this important characteristic of a macroscopic
system to the quantity S(U, ¥, N, &) defined by (2.02.2), namely

S(U, V, N, &)=k In Q(&). 2.03.6
Let us now define another quantity S(U, V, N) by
S(U, V, N)=k In {} Q(¢)}. 2.03.7
g

Then by definition it is evident that
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S, V,N)>S(U,V,N, & (all values of ¢&). 2.03.8
Let us now consider the ratio

{In Y (&)—In Q(£,)}/In A(E,). 2.03.9
4

It can be shown that roughly speaking ©2(,,) is of the order N!and Z(2(&)/
Q(&y)isof the order N* where a is comparable with unity. Hence the numer-
ator in (9) is of the order « In NV and the denominator of the order N In N.
Thus the expression (9) is of the order /N or near enough N ™1, which is
entirely negligible in any macroscopic system. Hence, although the inequality
(8) is strictly true by definition for all values of £, in any macroscopic system
when ¢ has the special value &, we may with trivial inaccuracy replace the
inequality (8) by the equality

S(U,V,Ny=S(U, V, N, &). 2.03.10

We shall see in §2.05 that the functions denoted by S have in fact the
properties of entropy. Anticipating this identification let us call S(U, V, N, &)
the entropy for fixed & and S(U, V, N) the entropy for equilibrium &.

Consider now a system of given U, ¥, N with ¢ frozen. Now suppose
that by introduction of a catalyst & is thawed, so that it takes its equilibrium
value. By definition the entropy changes from S(U, V, N, &) to S(U, ¥, N)
and also by definition this is always an increase. Only in the special case
that the initial value of £ was &, the entropy increase from S(U, ¥, N, &)
to S(U, ¥, N) for any macroscopic system is trivial. In other words although
S(U, ¥, N) the entropy for equilibrium & is by definition greater than the
entropy for & fixed at its equilibrium value &, the difference in a macroscopic
system is negligible and trivial.

We shall see later that a macroscopic system has other characteristics
similar and parallel to that just formulated. These characteristics can be
summed up in the single sentence that in a macroscopic system fluctuations
of measurable properties are negligible.

N2.04  System of given temperature, volume, and composition

We shall now consider a system whose volume ¥ and composition N are
still prescribed, but instead of prescribing the energy we shall suppose the
System to be immersed in a large temperature bath with which it can ex-
change energy so that the energy of the system can now take various values
Uy, Uy, and so on. Let us now enumerate the eigenfunctions of the system
for the prescribed values of ¥ and N and for some definite value of &;
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let there be 2, such eigenfunctions corresponding to an energy U,(V, N, &),

From the fundamental assumption of statistical thermodynamics, as stated
in §2.02, without any further assumptions it can be shown that the average
properties of the system in the temperature bath for the prescribed values of
V and N can be derived statistically by averaging over all degenerate energy
values attaching to each state r of specified ¢ and U, a weight

Q, exp(—BU,) 2.04.1

where f is determined entirely by the temperature bath and so may be re-
garded as a temperature scale.

The fact that the parameter f§ is found to appear without any new assump-
tion is the statistical thermodynamic basis of the zeroth law of classical
thermodynamics. The statistical thermodynamic equivalent of the first law
of classical thermodynamics is merely the principle of conservation of energy
applied on the microscopic scale, that is to say applied to molecules, atoms,
electrons, etc. Thus this principle is from the point of view of statistical
thermodynamics not a new law but merely one item in general atomic quan-
tum theory.

To relate the second law of classical thermodynamics to statistical thermo-
dynamics we make certain algebraic transformations. We begin by defining
a function J(B, V, N, &) by

J(B. V, N, &)=k In (T, Q&) exp(—BU,)} 2.04.2

where the summation is over all states of given &, and & is a universal arbitrary
constant,

In the system with temperature specified by f there will be fluctuations of
U, but the experimentally measurable U will be (U, the average value of U.
Let us now consider the value of {U) for specified §, ¥, N, and &. Using the
weighting factors (1) we have

UB, V. N, §)=3, U, Q&) exp(—BU,)/3. @(¢) exp(—BU,)
= —0In{} (&) exp(~pU,)}/0p

=k™'3J(B, V, N, &)/op 2.04.3

using (2).

Again associated with the fluctuations in U there will be fluctuations in
the pressure (—O0U/0V’) but the experimentally measured pressure P will be
{—=0U/oV). We accordingly have for given f, ¥, N, and ¢
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P=(=0U[dV)= -3 (3U,[oV)2\(¢) eXP(—ﬁUr)/g: Q,(¢) exp(—-BU,)
=B~ 10 In{}, 2.(8) exp(—BU,)}/OV

=—k™'B70J(B, V, N, &)[0B 2.04.4
using (2).
Let us now make the further algebraic substitution
T=k"'p7! 2.04.5

and use T as an independent variable instead of f. We now have in place of
(3) and (4)

(U(T, V, N, &)>=—0J(T, V, N, &)[oT~*
=T2dJ(T, V, N, &)[oT 2.04.6

P=T3J(T, V, N, &)[oV. 2.04.7
Combining (6) with (7) we have
dJ=((U>/T*dT+ (P[T)dV. 2.04.8

Comparing (8) with (1.28.15) we see that the dependence of J, defined by (2),
on T defined by (5) and on V is precisely the same as the dependence of the
Massieu function on the thermodynamic temperature and on the volume.
It can in fact be shown that 7 defined by (5) has all the properties of absolute
temperature and J defined by (2) has all the properties of the Massieu
Junction. This constitutes a brief summary of how the second law of classical
thermodynamics follows as a natural deduction from statistical thermo-
dynamics.

For the benefit of the reader not familiar with the Massieu function J we
recall that it is defined by

J=S-U/T 2.04.9

and that either the Massieu function J or the Helmholtz function &= —TJ
is a characteristic function for the independent variables T, ¥, N.
We can now substitute from (5) into (1) and so have as a weighting factor

for each energy U,
Q, exp(—U,[kT) 2.04.10

and this factor is called the Boltzmann factor. From (10) it is clear that kT’
has the dimensions of energy. k is a universal constant called the Boltzmann
constant. If we use the Kelvin scale of thermodynamic temperature then

k=1.3805x% 10723 K™% 2.04.11
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From (10) we see that the average properties of the system for prescribed
values of 7, ¥, N and unspecified & can be obtained by averaging over all ¢
attaching to each £ a weight Q(7, &) defined by

Q(T, &)=Y, 2,(¢) exp(— U,/KT). 2.04.12

The function Q(T, &) is usually called the partition function, but a more
precise name is the partition function for given T, V, N, £. An alternative name
is the thermodynamic probability for given T, V, N, £&.

Substituting from (5) and (12) into (2) we obtain

J(T,V,N, &)=k 1n Q(T, &). 2.04.13

We observe that this relation between the characteristic function J and the
statistical probability Q(T, &) for given T, V, N, & is completely analogous
to Boltzmann’s relation (2.02.2) between the characteristic function § and
the thermodynamic probability Q(&) for given U, ¥, N, &.

§2.05 Further characteristics of macroscopic system

Let us consider the individual terms of Q(7, &) defined by (2.04.12). Let us
denote the maximum term by

Q. exp(—U,/kT) 2.05.1

noting that this Q,, is not the same as the Q(&,,) of §2.03. Generally speaking
the larger the system the sharper this maximum and for any macroscopic
system it is so sharp that all terms in Q(7, &) in which U, differs appreciably
from U, are entirely trivial. Moreover, although the actual number of terms
O(T, &) comparable with (1) may be great, the ratio

In (T, ¢)—1In{Q,, exp(— U, /kT)} 2.05.2
In{Q,, exp(— U /kT)} '

is roughly of the order a/ N where « is far nearer to unity than to N. Hence
in any macroscopic system the ratio (2) is effectively zero and we may there-
fore replace the definition (2.04.2) of J by

J=k In{Q,, exp(— U,/kT)}. 2.05.3
It follows again that with an inaccuracy trivial for a macroscopic system
(Uy=TXJ[dT=U,,. 2.05.4

From the classical definition (1.28.13) of the Massieu function J, we have
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S=J+U|T. 2.05.5

We accordingly in statistical thermodynamics define a function S(T, ¥, N, &)
by

S(T, V,N, &y=J(T, V, N, &)+ (U|T. 2.05.6
Using (3), (4), and (5) we obtain from (6)
S(T, V, N, &)=k In Q,(&). 2.05.7

Now comparing (7) with (2.02.2) we obtain the striking result
S(T, V, N, §)=S(KU>, V, N, ¢). 2.05.8

Thus although the definition of entropy at a specified temperature by
means of (6) together with (2.04.13) is entirely different from the definition
of entropy at a specified energy by means of (2.02.2), yet for a macroscopic
system the difference between the two is trivial.

This characteristic property of a macroscopic system may be described
in the following instructive but less exact way. If we define S by

S=kln Q&) 2.05.9

then in a system of specified energy @ must denote the number of states
having precisely this energy, whereas in a system of specified temperature Q
denotes the number of states of energy nearly equal to the average energy.
The question immediately arises how nearly. The answer is that for a ma-
croscopic system it just does not matter.

§2.06 System of given temperature, pressure, and composition

We now consider a system of prescribed composition surrounded by a
temperature bath and enclosed by a piston subjected to a prescribed pressure
P. We construct the double sum

W(T, P, N, &)=Y Y Q. exp(— U,/kT) exp(—PV,/kT) 2.06.1

where the summation extends over all energies U, and all volumes V¥
consistent with the prescribed value of £. It can then be shown without any
new assumptions that we can correctly derive the average (equilibrium)
properties of the system for the prescribed values of T, P, N, by averaging
over all values of ¢ attaching to each a weight W(T, P, N, ¢&).

We call W(T, P, N, &) the thermodynamic probability for given T, P, N, &
or the partition function for given T, P, N, £. It is related to the Planck
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function Y, which is a characteristic function for the independent variables
T,P, N, ¢ by
Y(T,P,N, &)=kln W(T,P, N, &) 2.06.2
analogous to (2.02.2) and (2.04.13).
For the benefit of the reader unfamiliar with the Planck function Y we
recall its relation to the Gibbs function G, namely

Y=-GT. 2.06.3

Provided the system is macroscopic we may again with only- trivial
inaccuracy replace W by its maximum term, say

Q.(8) exp(— U, /JkT) exp(— PV, /kT) 2.06.4
so that we may replace (2) by
Y(T,P, N, &)= —kIn Q. (&) — Uy, /T—PV,/T. 2.06.5
From (1) and (5) we immediately verify that
U+PV)Yy=T?*0Y|0T=Uy+ PV, 2.06.6
(Vy=—-ToY[oP=V_, 2.06.7

as we should expect according to (1.28.16). Furthermore comparing (5)
with (1.28.14) we obtain

S(T,P, N, &)=k In (%) 2.06.8

verifying that for a macroscopic system the entropy at given 7, P is indistin-
guishable from the entropy at given U=U, and V="V,,.

§2.07 System of given temperature, pressure, and chemical potential

To conclude we choose as independent variables the temperature T, pressure
P, and chemical potential u. An illustrative example is a gas in contact with
a crystal of the same substance; the crystal is not considered as part of the
system. Such a system is called open.

We now construct the triple sum

W(T, P, 4, )=3. . Y Qs exp(— U,/kT) exp(—PV,/kT) exp(uN,/LkT)
st 2.07.1

where L is a general constant called the Avogadro constant defined later in
§3.13 and where Q,,, denotes the number of states of energy U,, volume V5,
and content N, corresponding to the given value of ¢ and the triple summation
extends over all sets of values of U,, ¥, N, corresponding to the given value of
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£. Tt can then be shown without any new assumptions that all the average
properties of the system for the prescribed values of T, P, u are correctly
obtained by averaging over all values of & attaching to each a weight
W(T, P, u, &) this expression being the partition function or thermodynamic
probability of ¢ for given T, P, p.

For a macroscopic system W can in the usual way be replaced by its
maximum term say

Q:,(8) exp(— Un/kT) exp(—PVu/kT) exp(uN,/LkT). 2.07.2
If we now define a quantity O(T, P, u, &) by
O(T,P, i, &)=kIn W(T, P, p, &) 2.07.3
we may for a macroscopic system replace (3) by
SO, P, &)=k In Q,(&)— Up/T—PVo/T+ pNy/LT. 2.07.4

Moreover for a macroscopic system we have as usual

S=kIn Q,(¢) 2.07.5
UY=U, 2.07.6
VS=V, 2.07.7
(N>=N,. 2.07.8

Comparing (5) to (8) with (4), dropping subscripts and replacing N/L by n
we find that

O(T, P, N, £)=S—U|T—PV|T+un|T=0 2.07.9

according to (1.28.5).

From the analogy between (3), (2.02.2), (2.04.13) and (2.06.2) we expect
O(T, P, u, &) to be a characteristic function for the variables T, P, and u.
According to (9) this characteristic function is identically zero. We now
recall the Gibbs-Duhem relation (1.30.2)

SAT—-VdP+Y n;dy;=0. 2.07.10

In a system of one component the sum I, n;dy; reduces to ndu and so (10)
becomes

0=SdT—-VdP+ndu 2.07.11

showing that the characteristic function for the independent variables
T, P, u is indeed zero.
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§2.08 Recapitulation

We can now summarize the content of the several preceding sections*.
For each selected set of three independent variables, other than £, a different
kind of weighting factor w has to be attached to the microstates. The sum
Xw for all microstates consistent with the prescribed values of the three
chosen independent variables other than ¢ and corresponding to a definite
value of ¢ is called the partition function or the thermodynamic probability
for the prescribed values of ¢ and the other three independent variables.
Furthermore in each case k In(Xw) is a characteristic function for the chosen
set of three independent variables other than &. These relationships are
shown in table 2.1.

TABLE 2.1
h "
Independent Weighting factor for each Characteristic
ariables microstate function equal
! to kIn(Zw)
U, V,N, & 1 s
T,V,N, & exp(— U/KkT) J = —&FIT
T,P,N,§ exp(— U/kT) exp(— PV|kT) Y= —G/T
TPy s exp(— U/kT) exp(— PV [kT) exp(uN/LKT) zero

We emphasize again that each of the listed characteristic functions S, J, Y,
and zero is related to the corresponding thermodynamic probability according
to

characteristic function =k In(thermodynamic probability).

The earliest and best known example of this form is Boltzmann’s relation for
S(U, ¥, N, &), but other examples and particularly that for J(T, V, N, &)
are in fact more useful.

It is a fundamental characteristic of a macroscopic system that any
partition function may with trivial inaccuracy be replaced by its maximum
term. It follows that the equilibrium value of ¢ is that value which maximizes
the characteristic function belonging to the chosen set of independent
variables. The alternative equilibrium conditions

for given U and V that S is a maximum 2.08.1
for given T and V that J is a maximum 2.08.2
for given T and P that Y is a maximum 2.08.3

* Guggenheim, J. Chem. Phys. 1939 7 103; Forh. Ste Nordiske Kemikermade Kgbenhavn
1939 p. 205.
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thus obtained are precisely equivalent to (1.35.1), (1.35.3), and (1.35.4)
respectively.

§2.09 Extension to several components. Absolute activities

We have hitherto restricted our exposition to systems of a single component
purely for the sake of brevity. The extension to systems of several components
is straightforward.

In particular for a system at given values of the independent variables
7, P, and the y,’s the weighting factor for each independent microstate will be

exp(— U/kT) exp(— PV/kT) [1%" 2.09.1

where for brevity we have introduced quantities 4; defined by

Ay=exp(u,/LkT)
or
1 =LkT1In 4;. 2.09.2

These quantities 4; may be used instead of the u; and are often more conve-
nient. A; is called the absolute activity of the speciesi. We shall meet these
quantities again in §3.15.

§2.10 Antisymmetric and symmetric eigenfunctions

In §2.01 we mentioned that it is often, though not always, possible to regard
the units (molecules, atoms, ions, electrons) composing the system as almost
indepandent. In this case each eigenfunction of the system can be expressed
as a linear combination of products of the eigenfunctions of all the units.
We begin by considering the case that all the units are of the same kind.
We denote the eigenfunctions of the units by ¢ and the eigenfunctions of the
whole system by . We have now to distinguish two cases.

If each unit is a fundamental particle (proton, neutron, or electron) or is
composed of an odd number of fundamental particles, then each eigenfunction
¥ of the system is constructed by forming a determinant of the eigenfunctions
of the individual units. For the sake of simplicity and brevity we consider
a4 system consisting of only three units, numbered 1, 2, 3. The symbol
¢.(1) then denotes the eigenfunction of the unit | when in the state o.
The eigenfunction is then constructed as follows

6.1 d(1) (1)
$.(2) 9p(2) ¢,(2) 2.10.1
63 $0) )|

wﬁﬁ‘/
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We notice that if we interchange the states of any two units, ¥ changes sign.
We accordingly describe the eigenfunctions ¥ as antisymmetric with respect
to every pair of units. It follows at once that if any two of the states, o, §, v
are identical then 5, vanishes. Thus there is one independent y for each
combination of three ¢,, ¢y, ¢, provided o, B, vy are all different but none
if any two of o, B, y are the same.

If on the other hand each unitis a photon oris composed of an even number
of fundamental particles (protons, neutrons, electrons), then each eigenfunc-
tion of the system is constructed from the eigenfunctions of the units by
forming linear combinations called permanents similar to determinants, but
in which all the terms are added. Thus in the case of only three units 1, 2, 3
the eigenfunction ¥,s, is defined by

“ (1) d5(1) ¢y(1)"
Vs = '¢¢(z> O 4,0 2.10.2
L 6:3) 643 6,3

which differs from (1) in that all the six terms are added. We notice that if
we interchange the states of any two units, i remains unchanged. We accord-
ingly describe the eigenfunction ¥ as symmetric in all the units. It is clear
that there is one independent ¥ for every combination of three eigenfunc-
tions @,, @5, ¢, whether or not any two or more of a, B, y are the same.

§2.11 Fermi-Dirac and Bose—Einstein statistics

Let us now consider a system containing N indistinguishable units and en-
quire how many eigenfunctions Y of the system can be constructed out of g
eigenfunctions ¢ of the units. There are two distinct problems with different
answers according as i is to be antisymmetric or symmetric in the units.
In the case where ¥ is to be antisymmetric, to obtain any such ¢ atall, g
must be at least as great as N and the number of such eigenfunctions ¥ is

then
g!/N'(g—N)! (antisymmetric, g= N). 2.11.1

In the other case where V/ is to be symmetric, the number of such eigen-
functions ¥ is
(g+N-1D!/(g—D!N!  (symmetric) 2.11.2
which, when g>>1, differs only trivially from the simpler expression
(g+N)!/g! N 2.11.3
It is of interest to note that when g>>N, both (1) and (3) are nearly the
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same as
g¥IN!  (g>N). 2.11.4

If now we translate the laws governing the average properties of the
whole system outlined in §§2.01-2.09 into forms relating to the average
distributions of the component units, we shall as a consequence of the
difference between (1) and (2) find different results according as the eigen-
functions ¥ are to be antisymmetric or symmetric in the units. These
distribution laws take the simplest form if we choose as independent variables
the temperature 7, the volume ¥, and the absolute activity 4. We shall now
state these laws without derivation.

Let ¢, denote the energy of a unit in the state o having the eigenfunction
¢,. Then if the unit is a fundamental particle (proton, neutron, or electron)
or is composed of an odd number of fundamental particles, the eigenfunc-
tion Y must be antisymmetric in the units and the average number N, of
units in the state o is found to be given by

N,J(1—=N,)=2exp(—¢&,/kT) 2.11.5
where A denotes the absolute activity of the unit, T the absolute temperature,

and k the Boltzmann constant. This distribution law is called that of Fermi-
Dirac statistics.

If on the other hand the unit is a photon or is composed of an even number
of fundamental particles, the eigenfunction ¢ must be symmetric in the
units and the average number N, of units in the state a is found to be given by

NJ(1+N,) =/ exp(—&,/kT). 2.11.6

This distribution law is called that of Bose-Einstein statistics.

It is to be noted that in both the cases of Fermi-Dirac statistics and Bose—
Einstein statistics the average number N, of units in each state is related
simply and explicitly to the temperature 7 and the absolute activity 4,
which we recall is related to the chemical potential x4 by (2.09.2).

§2.12  Boltzmann statistics

Let the subscript , denote the state of lowest energy &, and let us consider
the case that

Aexp(—eo/kT)<1 2.12.1
so that a fortiori

4 exp(—e /kT)<1 (all ). 2.12.2
It then follows from either (2.11.5) or (2.11.6) that
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N1 (all o). 2.12.3
We may then without loss of accuracy replace either (2.11.5) or (2.11.6) by
N,=2Aexp(—¢,/kT). 2.12.4

This distribution law is called that of Boltzmann statistics.

We now state without proof that in almost all the systems met in practice
the condition (1) is satisfied. There are only two important exceptions.
The first is the system of conducting electrons in a metal; these obey the
Fermi-Dirac distribution law and will not be discussed in this book. The
other is the system of photons forming radiation; these obey the Bose-
Einstein distribution law and will be discussed in chapter 12. Boltzmann
statistics are sufficient for all the other systems to be met in this book and
from here onwards we shall confine our attention to these.

§2.13  Partition functions of units and thermodynamic functions

For any system obeying Boltzmann statistics, we have according to (2.12.4)

N, =21exp(—¢,/kT). 2.13.1
If we apply (1) to every state and add, we obtain
N=7) exp(—&,/kT) 2.13.2
so that )
u/LkT =In A=In{N/Y exp(—¢,/kT)}. 2.13.3

The sum X, exp(—¢,/kT) is called the partition function of the units. Its
structure is similar to that of the partition function of the whole system for
the independent variables 7, ¥, N. Formula (3) is the basis for the evaluation
of the thermodynamic functions in terms of the energies of all the states of
the component units.

Formula (3) is equivalent to the formula for the Massieu function J

J=—&FT=S—-U|T=kIn[{3 exp(—e,/kT)}"/N']. 2.13.4

If we compare (4) with (2.04.13) we see that the two are equivalent when
we bear in mind that the factor N! in the denominator in (4) is required to
avoid counting as distinct states those obtainable from one another by a
mere permutation of indistinguishable units.

The more general formula for a system containing more than one kind
of units (molecules) is
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J=-AF|T=S-U/T=kY In[{} exp(—&,/kT)}¥/N;1].  2.13.5

§2.14 Separable degrees of freedom

It is often the case that there is no appreciable interaction between two or
more degrees of freedom of a unit. Such degrees of freedom are said to be
separable. Each eigenfunction ¢, may then be expressed as a product of the
eigenfunctions for the several separable degrees of freedom, and the energy
¢, as the sum of the energies of the several separable degrees of freedom.
It then follows immediately that the partition function of the unit can be
expressed as the product of partition functions for its several separable
degrees of freedom.

In particular the translational degrees of freedom of molecules are usually
separable from the internal degrees of freedom. Among the internal degrees
of freedom we here include rotational degrees of freedom as well as atomic
vibrations and electronic and nuclear degrees of freedom. We may accord-
ingly write for the partition function of a molecule

Y exp(—e,/kT)=Y exp(—&./kT) Y. exp(—&;n /kT) 2.14.1
where ¢, denotes the energy of the translational degrees of freedom and

&in: the energy of the internal degrees of freedom. Substituting (1) into
(2.13.5) we obtain for the Massieu function J and the Helmholtz function &

~TJ=&F=—kTY In[{3 exp(—e,/kT) Y exp(—&;, /kT)}"/N;1]. 2.14.2
Alternatively we may write

J=Jut+Tin 2.14.3

F=Fp+ Fyy 2.14.4

Fu=~TJ,=—kT Y In[{3 exp(—e,/kT)}"|N:!] 2.14.5

Fro=—TJi=~kT T, N, (Y, exp(—e;a/kT)} 214.6

where the subscript ,, refers throughout to contributions from the transla-
tional degrees of freedom and the subscript ;,, to contributions from the
internal degrees of freedom.

§2.15 Classical and unexcited degrees of freedom

It may happen that there are many energy levels less than kT. When this is
the case, the sum which defines the partition function may without loss of
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accuracy be replaced by an integral, whose evaluation is often elementary.
Such a degree of freedom is called a classical degree of freedom. Whether a
particular degree of freedom is classical depends on the temperature,
Under ordinary conditions the translational and rotational degrees of
freedom of the molecules in a gas are classical.

In the opposite case it may happen that the separation between the states
of lowest energy level and those of the next energy level is several times
greater than k7. The partition function then reduces effectively to the terms
corresponding to the lowest energy level, that is to

8o exp(—&o/kT) 2.15.1

where g, denotes the lowest energy level and g, denotes the number of states
having this energy. Such degrees of freedom are called unexcited degrees of
freedom. The contribution of each such unexcited degree of freedom to the
Helmholtz function 4 is clearly

80_kT1ng0 2.15.2
and the corresponding contribution to the entropy

which we notice is independent of the temperature. Whether a particular
degree of freedom is unexcited depends by definition on the temperature.
At all the temperatures with which we are concerned all degrees of freedom
internal to the atomic nucleus are unexcited. The electronic degrees of
freedom of most molecules may also be regarded as unexcited at most of
the temperatures which concern us; there are however a few exceptions,
notably the molecule NO.

§2.16 Translational degrees of freedom

The translational degrees of freedom of a dilute gas may be regarded as
classical. When the partition function for the translational degrees of freedom
of a molecule is replaced by an integral and the integration is performed,
one obtains

(2rmkT|h*)?V 2.16.1

where m denotes the mass of a molecule and ¥ the volume in which it is
enclosed; 4 denotes the Planck constant and k as usual the Boltzmann
constant. Thus for a dilute gaseous mixture according to (2.14.5) we have

Fo=—TJ,=—kT Y In{(2nmkT/h?)y N1} (dilute gas). 2.16.2
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Let us now consider the translational degrees of freedom in a crystal.
We may regard each molecule as vibrating about an equilibrium position
in the crystal lattice. Let us denote by ¢ the partition function for a molecule
attached to a given lattice position and for the moment let us imagine all the
N molecules to be individually distinguishable but sufficiently alike so that
any one can be interchanged with any other without destroying the crystal
structure. Then the molecules can be permuted over the lattice positions in
N! ways, so that the partition function for the translational motion of the
molecules of the whole crystal would be N!g". Actually the molecules are of
course not individually distinguishable and we must consider only states
whose eigenfunction is symmetric in molecules containing an even number
of fundamental particles and antisymmetric in molecules containing an odd
number of fundamental particles. In the simplest case when all the molecules
in the crystal are of the same kind the number of states is thus reduced by a
factor N!, which cancels the other N!, so that the partition function for the
whole crystal becomes gV. We thus have for a crystal of a pure substance

Fo=~-TJ,=—NkTlngq (crystal). 2.16.3

Each molecule at a given lattice position usually has only one state of lowest
translational energy and so at low temperatures g tends to exp(—ey/kT).
We therefore have for a crystal of a pure substance

F—Neg  (T-0) 2.16.4

and consequently
S,.—0 (T-0). 2.16.5

For a mixed crystal containing several distinguishable kinds of molecules,
c.g. isotopes, the eigenfunctions have to be symmetric, or antisymmetric,
only with respect to identical molecules. Hence we have to divide only by
the product of all the N;! instead of by N!. We therefore have instead of (3)

Fy==TJy=—~kTIn N'—kT ¥ In{qgY/N,'} 2.16.6
i

where N=X;N;. It has been implicitly assumed that interchanging two
molecules of different kinds in the crystal does not affect the partition func-
tion g; of either of them. This assumption is justified provided the molecules
are sufficiently similar, e.g. isotopic. Since at low temperatures each g;
tends to exp(—g;o/kT) it follows that

(Fu= ¥ Nig)kT - =In N'+ Y InN!  (T-0) 216.7
i i
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and consequently

Sy—»kln N!=kYIn Nl (T-0). 2.16.8

§2.17 Third law of thermodynamics

After this brief and necessarily incomplete sketch of statistical thermo-
dynamics we recall the formulation of the third law of thermodynamics
which we adopted in §1.66.

By the standard methods of statistical thermodynamics it is possible to
derive for certain entropy changes general formulae which cannot be derived
from the zeroth, first, or second laws of thermodynamics. In particular we
can obtain formulae for entropy changes in highly disperse systems (i.e.
dilute gases), those in very cold systems (i.e. when T—0), and those asso-
ciated with the mixing of very similar substances (e.g. isotopes).

We shall now briefly state these deductions from statistical thermody-
namics without giving detailed derivations.

In the first place we consider the translational term in the thermodynamic
functions of a highly disperse system, i.e. a dilute gas, containing N, mole-
cules of type 7 having a mass m;. The contributions to the Helmholtz func-
tion & and to the Massieu function J are given by

Fy=—~TJe=~kT Y In{(2rnm,kT/h*) VN N1} 2.17.1

The corresponding contribution S, to the entropy S is

Se=k Y. In{(2nm,kT/h*™M VYN, 1} +k Y 3N;. 2.17.2

In particular in a gaseous single substance
Se=k In{2nmkT/h*)*" VYN 1} + 3 Nk. 2.17.3
Using Stirling’s formula for large N
InN!'=NInN-N 2.17.4
we can rewrite (3) as
S/ Nk=In{(2nmkT[h*)}V|N} +3. 2.17.5

Anticipating the formula given in §§ 3.13-3.14 for the pressure P of a single
perfect gas

P=NKT|V 2.17.6
we can replace (5) by
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S/ Nk=In{(2nm/h*)}(kT)*/P} + 5. 2.17.7

We shall use the equivalent of formula (7) in §3.26.

Our second example is the translational term in the entropy of a crystal
of a pure substance. As the temperature tends towards zero, this contribu-
tion tends to zero. We shall return to this result in §3.51.

Finally we consider the entropy of mixtures of very similar substances
such as isotopes. If several very similar substances, such as isotopes, all at
the same temperature and same number of molecules per unit volume are
mixed, the temperature and number of molecules per unit volume being kept
unchanged, the entropy is increased by AS given by

AS[k=In N!=¥ In N,! 2.17.8

where N; denotes the number of molecules of the species 7 and N=X,N;
denotes the total number of molecules of all species. Using Stirling’s formula
(4), we can rewrite (8) as

AS[k=Y, N; In(N/N)). 2.17.9

This applies to solids, and incidentally to liquids, as well as to gases, provided
the various species are sufficiently similar, e.g. isotopic. We shall make use
of this in §3.55.

When we meet these formulae again in chapter 3, the number of molecules
N; will be replaced by the amount of substance n;=N,/L and correspond-
ingly the Boltzmann constant k will be replaced by the gas constant R=Lk.



