

Total No. of Questions - 24

Total No. of Printed Pages - 4

RESPONSE.		-				1000	Marie Com	FRE C
Regd. No.								
			_	_	 -		The state of	

Part - III MATHEMATICS, Paper - II (B) (Coordinate Geometry and Calculus) (English Version)

Time: 3 hours

Max. Marks: 75

Note: This question paper consists of three sections A, B and C.

SECTION A

 $10 \times 2 = 20$

- I. Very short answer type questions.
 - i) Attempt all questions.
 - ii) Each question carries two marks.
 - 1. If the length of the tangent from (5, 4) to the circle $x^2 + y^2 + 2ky = 0$ is 1, then find k.
 - 2. Find the equation of the polar of (1, -2) with respect to circle $x^2 + y^2 10x 10y + 25 = 0$.
 - 3. Find the angle between the circles $x^2 + y^2 12x 6y + 41 = 0$ and $x^2 + y^2 + 4x + 6y - 59 = 0$.
 - 4. Find the equation of parabola whose focus is S(1, -7) and vertex is A(1, -2).
 - 5. If the eccentricity of a hyperbola is $\frac{5}{4}$, then find the eccentricity of its conjugate hyperbola.

- 6. Evaluate $\int \frac{Log(1+x)}{1+x} dx$ on $(-1,\infty)$.
- 7. Evaluate $\int \frac{1}{1 + Cos x} dx$ on $I \subset R \{(2n+1)\pi : n \in z\}$.
- 8. Evaluate $\int_{1}^{5} \frac{dx}{\sqrt{2x-1}}$.
- 9. Find the value of $\int_{0}^{2\pi} Sin^{2}x \cdot Cos^{4}x \ dx$
- 10. Find the order and degree of the differential equation

$$x^{\frac{1}{2}} \left(\frac{d^2 y}{dx^2} \right)^{\frac{1}{3}} + x \cdot \frac{dy}{dx} + y = 0$$

SECTION B

 $5 \times 4 = 20$

- II. Short answer type questions.
 - i). Attempt any five questions.
 - ii) Each question carries four marks.
 - 11. Find the equation of the circle whose center lies on the X-axis and passing through the points (-2, 3) and (4, 5).
 - 12. Show that the circles $S \equiv x^2 + y^2 2x 4y 20 = 0$, $S' \equiv x^2 + y^2 + 6x + 2y 90 = 0$ touch each other internally. Find their point of contact.

- 13. Find the equation of the ellipse in the standard form whose distance between foci is 2 and the length of latus rectum is $\frac{15}{2}$.
- 14. Find the eccentricity and length of latus rectum of the ellipse $9x^2 + 16y^2 36x + 32y 92 = 0$
- 15. Find the equation of the tangents to the hyperbola $x^2 4y^2 = 4$ which are:
 - i) Parallel
- ii) Perpendicular to the line x + 2y = 0.
- 16. Obtain the reduction formula for $\int_{0}^{\pi/2} Sin^{n}x \ dx$ for an integer $n \ge 2$.
- 17. Solve the differential equation $(1+x^2)\frac{dy}{dx} + y = e^{Tan^{-1}x}$

SECTION C

 $5 \times 7 = 36$

- III. Long answer type questions.
 - i) Attempt any five questions.
 - ii) Each question carries seven marks.
 - 18. If (2, 0), (0, 1), (4, 5) and (0, c) are concyclic, then find c.
 - 19. Find the direct common tangents of the circles $x^2 + y^2 + 22x 4y 100 = 0$ and $x^2 + y^2 22x + 4y + 100 = 0$
 - 20. Prove that the area of the triangle formed by the tangents at $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) to the parabola $y^2 = 4ax (a > 0)$ is $\frac{1}{16a} |(y_1 y_2)(y_2 y_3)(y_3 y_1)|$ sq. units.

21. Evaluate
$$\int \frac{1}{1 + \sin x + \cos x} dx$$
.

22. Evaluate
$$\int \frac{2x+5}{\sqrt{x^2-2x+10}} dx$$
.

23. Evaluate
$$\int_{0}^{\pi} \frac{x \sin^{3} x}{1 + \cos^{2} x} dx.$$

24. Solve the differential equation

$$(2x+y+1)dx+(4x+2y-1)dy=0.$$