JEE ADVANCE - 2016 (Paper 2)

1 00
37. LetP={4 1 0] and I be the identity matrix of order 3. If Q = [ql-j] is a matrix such that
16 4 1
P30 — Q =1, then %1;21%2 equals
(A) 52 (B) 103 (C) 201 (D) 205
1 00 0 00 1 00
Sol.:P=(4 1 0|=[|4 0 O0|+|0 1 0
16 4 1 16 4 0 0 0 1
0 0 O 0 00 0 0O
LetA=|4 0 0[.S0,A2=]0 0 O|andA>=|0 0 O
16 4 0 16 0 0 0 0O
. A’ is a zero matrix, Vn = 3.
PI0 = (1 + AP0 = 1+ 50A + 222 A2
1 00 0 0 O 0 0 O
Q+I1=]0 1 0| +50(4 0 O|+25%x49|0 0 O
0 0 1 16 4 0 16 0 0O
q31+q32)_ 16(50 + 25 x 49) + 50 x 4
qd> N 50x 4
= 208 — 102+ 1 = 103 Ans. (B)

38. Area of region {(X, y)eR? | y2lx+31, 5y<x+9< 15} is equal to

(A) + (B) 3 © 3 (D) 2
Sol. :
Y
A
p(1.2)
E(-4.1)

« (-:3.0) S
h — A(-4,0) O] c(1.0) > X
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Solving for points of intersection y2 = | x + 3 | = (

X+9 2
5

x2+ 18x + 81 =25x + 75 or —25x — 75

X2—Tx+6=0 or x> +43x +156=0

x=6orl.So,y=3o0r2

D(1, 2)

or (x +39) (x + 4) = 0

x=-390or—4.So,y=-6o0r1

E(4. 1)

The required area = Area of trapezium DCAE — Area EAB under parabola —

13
39. The value of X
k=1

(A)3 -3

Sol. : T, =2

-3 1

= 2(1+2)5— [Jx-3dx— [Jfx+3 dx
4 -3

—x—-3)2

%4_ 2(-x-3)

_ 15 2 2 = 15 -3
_2_(3)_3(8) 2_6 2

sin(£+ (k- 1)”) sin(ﬂ+%

is equal to
4 6 4 )

(B)2(3 — /3) (©) 2«3 — 1)

Area DBC under parabola

Ans. (C)

(D) 22 + 3)

Ans. (C)




40.

Sol.

41.

Letb;> 1 fori=1,2,..., 101. Suppose log, b, log, b,...., log, b, are in Arithmetic Progression

(A.P.) with the common difference log, 2. Suppose a,, a,,..., a;o; are in A.P. such that a; = b,

and a5, = by, If t = by + by +..+ by, and s = a; + a, +...+ a5, then

(A) s >tand ajy; > by,

21 -1
1= a5 = a5 - 1)

s=3Qa+ (n- Dd) = 2 Qa + 50d)

We know a5, = bs,. So, a + 50d = a(2>%)

50d = a2 — 1). So, s =a- 2250 + 1) = a(51~249 +5—21)

s=a(4-249+47-249+ 5—21):a(251—1+47°249+

s—1=a(47-2% + 3)
s>t

Also, a;y; = a + 100d = a + 2a(2>° - 1) = a(23! - 1)

— 100

big > aj

2
x“cosx , .
dx is equal to

Z
2
The value of J
1+e*
_Z
2

(A) 22 -2 (B) L +2 (C) T2

Ll
I
o ‘—*-NIN

2 2
X" Cosx X" Cos X

l+e* l+e ¥

x% cosx + x*¢* cos x

l+e*

I
o ‘—*-NIN

x- cos x dx

|
o —oN
o

tay=b=a,t=b +by+t ..tbsy,s=a +a,+ .. +as

(G.P. with ratio 2)

N

—e

3

5
2

(B) s >t and a5, < by

s
(D) T2 + e 2

Ans. (B)
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42.

Sol.

43.

Sol.

z
2 2
= [x2 sinx]g/ — [ 2x sinx dx
0
z
2
= WTZ -2 [(x(—cos )c))]g/2 - (_g —cos x dx
= I =0 = 0) + (sinx)] "
4 0
72
=T 2 Ans. (A)

of the plane passing through P and containing the straight line % = % = % is
A)x+y—=3z=0 B)3x+z=0 O x—4+7z2=0 D)2x—y=0
: Mirror image of (3, 1, 7)
QB L7)
L ]

x-3 _ y-1 _ -7 _ 23-1+7-3) _—
1 -1 1 3 :

So, P = (-1, 5, 3)

The equation of the plane passing through the line

and (—1, 5, 3) has normal

- > o
n=(0,21)%(b - a)

=(1,2, )X (-1,53)=(1,-4,7)
*. The equation is (x — 0) —4(y — 0) + 7(z — 0) = 0.
T x—4y+7z=0
Ans. (C)
SECTION 2

Let a, b € R and f: R = R be defined by 7 (x) = a cos(|x> — x[) + b| x | sin(|x> — x|). Then f'is
(A) differentiable at x = 0 ifa =0 and b = 1
(B) differentiable at x =1 ifa=1and b =0
(C) not differentiable at x =0 ifa=1and b =0

(D) not differentiable at x =1 ifa=1and b =1

: f(x) = acos(x® — x) + bx sin (x(x2 — 1)) (cos is even)

It is a differentiable function, Vx € R Ans. (A), (B)
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S =

n(x+n)x+Z). (x+L
4. Letf(x)= lim (eemfx+4)..(x+2) . for all x > 0. Then

2 2
n— oo
n! (x*+n?) [xz +”TJ...(x2 + L

, 3) 2)
) ©r@<o o L5 > L3

w3 zrm @ r@3) <r3

2n (x x_ 1) (x.,1 n
n“rl\=+1)l=+=)A=+=
Sol. : f(x) = li)m - (2n )(n2 2) (n ;)
n—o (7Rl RPN [P IO N [ S
wh (n ' j(n +22j (n2+n2j

Il
=
=
S =
\g!
—
—
o
oQ
—_——
[u—
+
>
=|><
~——
|
—
o
oQ
N\
[u—
+
~
=
N—
—_—

1 1
= x [log(1+xy)dy — x [ log(1+ x2y2)dy
0 0

Letxy =1t
X X o)
log f(x) = [log(1+1t)dt — [ log(1+¢t~)dt
0 0

S l+x
Fo og(1h e

'@ _ 3 '3 2
m—log5 < 0and 70) =log 5§ <0

Also, f'2) <0asf(2)>0

/'3 f'e . f'é

f'@ 3 _ 2
Zoy —log 5 <0and To " log 5 <0. So, T o)

f2)
Also in (0, 1), J;(;)) > 0 and in (1, o0), j;((xx)) <0

fis Tin (0, 1) and 4 in (1, o0).

= f(L) and £(1) < £(2) Ans. (B), (C)

45. Letf:R —(0,0)and g: R — R be twice differentiable functions such that /" and g" are continuous

functions on R. Suppose /'(2) = g(2) = 0. /() # 0 and g(2) # 0. It i LOED

then
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. 0]
Sol. : 5 g =1 (0 form)

46.

Sol. :

(A) f has a local minimum at x = 2

(B) f has a local maximum at x = 2

O '@ >702)

(D) f(x) = f"(x) = 0 for at least one x € R
lim f(X0gx) _

lim _SOgw+g /o _
22 f'xg'+ flx)g"(x)

gofe
8@

S"(2)=7(2). Also, f(2) € (0, =)
Since £(2) > 0, £"(2) > 0

f has a local minimum at x = 2. Ans. (A), (D)

~ ~ A ~ . . 3 ~ 1 A A ~ .
Let # =uyi +u,j + uyk be a unit vector in R’ and W = %(i + j + 2k). Given that there

exists a vector ¥ in R3 such that | X $|=1and W . (& X $) = 1. Which of the following

statement(s) is(are) correct ?
(A) There is exactly one choice for such v (B) There are in infinitely many choices for such v
(C) If & lies in the xy-plane then [u;| = |u,| (D) If @ lies in the xz-plane then 2Ju | = |u,
welia xv)=1

ol 17 X §| cosoL= 1. So. cosoL = 1 where 0= (%, & X $). W] =1.[a X $|=1.

So, w is parallel to & X ¥

>
Il
=
<
X
<
&/
wn
L
=
<
I
Y
<>
Il
S

As it is given there exists a vector v, w must be perpendicular to
Infinitely many such v exists.
If 4 =ui +uj
w-w=0= (u +u)=0
= | u1| = u2|
ifu=ui +u3]€, u-w=20
up+2uy; =0

oLyl = 2] ) Ans. (B), (C)
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47.

Sol. :

48.

Let P be the point on the parabola y* = 4x which is at the shortest distance from the center S of
the circle x2 + y2 — 4x — 16y + 64 = 0. Let Q be the point on the circle dividing the line
segment SP internally. Then

(A) SP =245

B)SQ:QP=(5 +1):2

(C) the x-intercept of the normal to the parabola at P is 6
(D) the slope of the tangent to the circle at Q is %

The point at the shortest distance lies along their common normal.

S (centre of the circle) = (2, 8) P(2, 21)
2t -8
The slope of normal = 2, (for parabola) v
A
=38 S(ONS)
=2 P4, 4) Q
The equation of the normal at P, P
— 3
y+ix=2t+1¢ < > X
y+2x=4+38 0
2x Y _
IERNTIRE
The X-intercept of the normal at P is 6. (C) is true. i)
SP = 4+16 =2+/5. So, (A) is true.
The slope of the normal at Q is — = 2.
The slope of the tangent at Q is %
(D) is true.
SQ =radius = J4+64 —-64 =2
QP=SP-SQ=2+5 -2
SQ 2 5+1 :
P " 2D - 4+ . (B) is not true. Ans. (A), (), (D)

Let @, b € R and ¢ + b% # 0. Suppose S = {zeC| Z:m,teR,t;éO , where i = {/-1.

Ifz=x+iyand z € S, then (x, y) lies on

(A) the circle with radius ﬁ and centre (ﬁ, 0) fora>0,b#0

(B) the circle with radius —ﬁ and centre (—%, 0) fora<0,b#0

(C) the X-axis fora #0, b =0
(D) the Y-axis fora=0,b #0
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1 a—ibt a —bt

Sol. : x +iy= 3375 = pETEE So, x = i T bt
Lo B gy = 22 et q#0. So, x # 0.
X a bx

2.2
a

Thus, a® + b22 = 4 = &2 + b2 2y2 =4

X b x X

a*(x? + )?) = ax

2 2 _ X _
x“+y P 0.

This is a circle with centre (i, 0) and radius L if a > 0. So, (A) is true.

2a’
Ifa=0,x=0,y= [;—; This is Y-axis, if b # 0.  (Infact Y-axis — {(0, 0)})
Ifb=0,theny=0,x=é. a#0
This is X-axis. (Infact X-axis — {(0, 0)}) Ans. (A), (C), (D)

49. Leta, A, L € R. Consider the system of linear equations
ax + 2y =\

3x—2y=U
Which of the following statement(s) is(are) correct ?
(A) If @ = =3, then the system has infinitely many solutions for all values of A and [
(B) If a # =3, then the system has a unique solution for all values of A and [
(C) If A + W = 0, then the system has infinitely many solutions for a = =3

(D) If L + W # 0, then the system has no solution for a = —3

Sol. : System has unique solution for % #* _—22 i.e. a #—3. So, (B) is true.
System has infinitely many solutions for % = _—22 = % ie.a=-3and A+ U =0.
s (C) is true.
and no solution for % = _—22 # % ie.a=-3,A+uU#0.
<. (D) is true. Ans. (B), (C), (D)

50. Let f: [—%, 2} — R and g : [—%, 2} — R be functions defined by f(x) = [x* — 3] and

g(x) = | x| f(x) + |[4x — 7| f(x), where [y] denotes the greatest integer less than or equal to y

for y € R. Then,
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Sol.

(A) fis discontinuous exactly at three po

= (x| +[4x = 7|) [x* = 3]

. . _l
ints in [ > 2}

(B) fis discontinuous exactly at four points in [—%, 2} Y
A
(C) g is not differentiable exactly at four points in (—%, 2) 2
(D) g is not differentiable exactly at five points in (—%, 2) 1
__3 - 1 <x< 1 < PAY » X
2 2 -1 1252 3
2 1<x<42 .
W= =3]1=[1-3=|-1 J2<x<+3
0 B<x<2 = =
1 x=2
L ._?_o
gx) =|x|f(x) + [4x = T7[f(x) v
(-x-4x+T)(-3)  -i<xco
(x—@x-7)-3) 0<x<l1
(x—(4x-7)(-2) 1<x<+2

(x—(@Ax-7)C1) 2<x<3

(x-(4x-7)N0) B<x<l
x + (4x — 7)(0) %s“z
(x +(4x=T)(1) x=2
15x-21 -2<x<0
9x-21 0<x<l
6x-14 1<x<2
3x-17 \/Eﬁx<\/§
0 \/§Sx<2
3 x=2

Clearly f'is not continuous at exactly 4 points in [—%, 2} and g is not differentiable at 4 points in

(—%, 2). Hence, answer is (B), (C).
f is discontinuous at x = 1, \/5, \/5 , 2

g(x) =1 ) [[ x|+ [4x = 7]
£ (x) is non-differentiable at x = 1, /2,

and | x | + | 4x — 7] is non differentiable

But /(x) =0. V € [43.2)

Hence g(x) is non-differentiable x = 0, 1, \/2, /3

NG

= l
atx =0, 7]

Ans. (B), (C)
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SECTION 3

Paragraph 1

1
2° 6

respectively, after two games.

Football terms T and T, have to play two games against each other. It is assumed that the outcomes
of the two games are independent. The probabilities of T, winning, drawing and losing a game against
T, are = Land 4 5 respectively. Each team gets 3 points for a win, 1 point for a draw and 0 point

for a loss in a game. Let X and Y denote the total number of points scored by teams T, and T,,

51. P(X>Y)is

(A) + (B) = © % (D) 75

Sol. : P(X >Y) = P(T, wins both) + P(T, wins either of the matches and other is draw)

=i xT+2xtxt=L1+1=-2 Ans. (B)
52. PX=Y)is
A) 3 ®) 3 © 3% (D) 3
Sol. : P(X =Y) = P(T, and T, win alternately) + P(Both matches are drawn)
=2x i xt+Ixi=1+%=3 Ans. (C)
Paragraph 2
Let Fy(x;, 0) and F,(x,, 0), for x; <0 and x, > 0, be the foci of the ellipse T+ 82 = 1. Suppose

quadrant and at point N in the fourth quadrant.

a parabola having vertex at the origin and focus at F, intersects the ellipse at point M in the first

53. The orthocentre of the triangle F{MN is ....... .

w(E) @G o@E) o3

Y
Sol. : e \’1—— 1—— =% \

= (1. 0)

A
M
Parabola is y> = 4x. & £
For intersection of ellipse and parabola, N
X2 4x _ 2 _
gty 1 v 02 = 4)

(x+6)2x—3)=0
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54.

Sol.

x=% as x #—6 for M
= () v (46)
= J6-0 26

. . _ S5 (., 3 - =
The altitude from M is y — J_ = 2% (x 2) as slope of FN %+1 5

One altitude is y = 0. (MN L X-axis)

The orthocentre is (—%, 0).

(0 ~J6 = %(x - %) gives x= —%) Ans. (A)

If the tangents to the ellipse at M and N meet at R and the normal to the parabola at M meets
the X-axis at Q, then the ratio of area of the triangle MQR to the area of the quadrilateral
MF |NF, is
(A)3:4 B)4:5 (C)5:8 (D)2:3

+ 0o

: The equation of the tangents at M and N are % T — =1

8
They intersect in R(6, 0).

The equation of the normal to the parabola (y — J6 )= —% (x - %) (Slope is —zy—;)
Qis (% 0). 3
M($.46)
AreaofAMQR=% X /6 x% :%
Area of MF NF, = 2.6 J6
;
Ratio = § Q(3.9) R(6.0)
(MF\NF, = 2MF,F, =2 X 1 X /6 =2/6) Ans. (©)
o
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