Electronic Devices and Circuits (Formula Notes)

Thermal Voltage: V_{T} (Voltage Equivalent of Temperature)

$$V_T = \frac{T}{11600} \text{ volt}$$

Leakage Current (I_a)

- Also called minority carrier current or thermally generated current.
- In silicon it is in nano ampere range and in germanium it is in micro ampere٠ range.
- I_o doubles for every 10°C. For 1°C, I_o increases by 7%.
- I_0 is proportional to the area of the device.
- Advantages of smaller I₀:
- (i) Suitable for high temperature applications
- (ii) Good Thermal stability
- (*iii*) No false triggering

Energy Gap: Difference between the lower energy level of conduction band (CB) E_c and upper energy level of valance band (VB) E_v is called as energy gap.

Metals: VB and CB are overlap to each other.

- This overlapping increases with temperature.
- e^- is both in CB and VB.

Insulators: Conduction band is always empty. Hence no current passes. Band gap: 5 eV - 15 eV.

Semiconductor: Energy gap is small and it is in range of 1 eV.

• At room temperature current can pass through a semi conductor.

Energy Gap	Ge	Si	Ga As
$Eg_{T=0}$	7.85 eV	1.21 eV	XX
$Eg_{T=300 \text{ K}}$	0.72 eV	1.1 eV	1.47 eV

Energy gap at temperature T

 $Eg_{(T)} = 0.785 - 7.2 \times 10^{-4} T$ For Ge

For Si

Temperature Dependence of the energy bandgap (Eg):

 $Eg_{(T)} = 1.21 - 3.6 \times 10^{-4} T$

$$E_{g}(T) = E_{g}(0) - \frac{\alpha T}{T + \beta}$$

Energy gap decreases with temperature.

Electric Field Intensity

$$V = \frac{-dv}{dx} \frac{volt}{meter}$$

Mobility of charge carriers
$$\mu = \frac{\text{drift velocity}}{\text{electric field intensity}} = \frac{v}{\varepsilon} - \frac{m^2}{\sec}$$

So drift velocity: $V_d \propto v = V_d \propto v^{1/2}$ $V_d = \text{constant}$

• Mobility indicates how quick is the e^{-} or hole moving from one place to another.

- Electron mobility > hole mobility
- Mobility of charge carriers decreases with the temperature.

 $\sim \propto T^{-m}$

Mass Action Law: In a semi conductor under thermal equilibrium (at constant temperature) the product of electrons and holes in a semiconductor is always constant and equal to the square of intrinsic concentration.

$$[n_o p_o = n_i^2]$$

 $n_o \rightarrow$ Concentration of e^- in conduction band

 $P_a \rightarrow$ Concentration of holes in valance band

 $n_i \rightarrow$ Intrinsic concentration at given temperature

Majority carrier concentration = $\frac{n_i^2}{\text{Minority carrier concentration}}$

 n_i is a function of temperature and energy gap.

Einstein's Equation: Relation between diffusion constant, mobility and thermal voltage.

 $n_i^2 = A_o T^3 e^{\frac{Eg}{2KT}}$

$$\frac{D_n}{\sum_n = \frac{D_p}{\sum_p} = V_T = KT}$$

$$D_n \to e^- \text{ diffusion constant}$$
Where,
$$D_p \to \text{Hole diffusion const}$$

The unit of $\frac{D}{\mu}$ is volts.

 $D_p \rightarrow$ Hole diffusion constant

Diffusion and Drift Current:

Diffusion Current: It is defined as migration of charge carriers from higher concentration to lower concentration due to concentration gradient.

Drift Current: It is flow of current through the material or device under the influence of voltage or electric field intensity.

Total current density in a semi conductor

$$J = J_{n} + J_{p}$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$
(Total current) (Current carried by e^{-}) (Current carried by holes)
$$J_{n} = J'_{n} + J''_{n}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$
current due to $e^{-} e^{-}$ drift current density e^{-} diffusion current density
For e^{-}

$$J_{n} = nq \sim_{n} \vee + qD_{n} \frac{dn}{dx} A / cm^{2}$$
For holes
$$J_{p} = pq \sim_{p} \vee - qD_{p} \frac{dp}{dx} A / cm^{2}$$

$$e^{-}$$
diffusion length
$$L_{n} = \sqrt{D_{n} \ddagger cm}$$

Hole diffusion length $L_p = \sqrt{D_p \ddagger cm}$

For h

Conductivity

In Metals: Metals are uni-polar, so current is carried only by e^{-1}

 $\dagger = nq \sim_n$

In metal, conductivity decreases with temperature.

In Semi Conductors

 $\dagger = nq_{n} + pq_{p}$

 $n \rightarrow \text{Concentration of } e^- \text{ in CB}$ $e \rightarrow \text{Concentration of holes in VB}$

 $\mu_n, \mu_p \rightarrow \text{Mobility of holes and electrons}$

• Conductivity of pure semi-conductor increases with temperature

In Extrinsic Semi-conductor

For *n* type

For *p* type

In extrinsic semiconductor (SC) below the room temperature, conductivity increases. But above the room temperature their conductivity decreases.

Periodic Table:

III	IV	V	
В	С	Ν	
Al	Si	Р	
Ga	Ge	As	
In	Sn	Sb	

- > $e = 1.602 \times 10^{-19} C$, $m = 9.1 \times 10^{-31} kg$, 'F' force on electron in uniform electric field 'E'
- ▶ F=eE; acceleration $a = \frac{eE}{m}$
- > If electron with velocity 'v' moves in field 'E' making an angle ' θ ' can be resolved to $v \sin \theta, v \cos \theta$.
- > Effect of Magnetic Field 'B' on Electron.

When B & Q are perpendicular path is circular
$$r = \frac{mv}{Be}$$
; Period 't' = $\frac{2\pi m}{Be}$

- > When slant with ' θ ' path is # Helical.
- EQUATIONS OF CRT

> ELECTROSTATIC DEFLECTION SENSITIVITY
$$S_e = \frac{lL}{2dV_a}$$

> MAGNETIC DEFLECTION SENSITIVITY
$$S_m = lL \sqrt{\frac{e}{2mV_a}}$$

> Velocity due to voltage V,
$$v = \sqrt{\frac{2eV}{m}}$$

When E and B are perpendicular and initial velocity of electron is zero, the path is Cycloidal in plane perpendicular to B & E. Diameter of Cycloid=2Q, where $Q = \frac{u}{c_0}$,

$$u = \frac{E}{B}, \ \omega = \frac{Be}{m}$$

 S_i, G_e have 4 electrons in covalent bands. Valency of 4. Doping with trivalent elements makes 'p', Pentavalent elements makes 'n' semiconductor.

Conductivity $\sigma = e(n \mu_n + p \mu_p)$ where n, p are concentrations of Dopants.

- > Diffusion capacitance is $c_d = \frac{dq}{dv}$ of forward biased diode it is $\propto I$
- > Transition capacitance C_T is capacitance of reverse biased diode $\propto V^{-n}$ $n = \frac{1}{2}$ to $\frac{1}{3}$

ZENER REGULATOR

 $\succ \quad r_z = \frac{\Delta V_z}{\Delta I_z}$

TUNNEL DIODE

- > Conducts in $\frac{f}{b}$, $\frac{r}{b}$, Quantum mechanical tunneling in region a-0-b-c.
- > -ve resistance b-c, normal diode c-d.

 I_p = peak current, I_v = valley current; v_p =peak voltage \approx 65 mV, v_v =valley voltage 0.35 V. Heavy Doping, Narrow Junction , Used for switching & HF oscillators.

Used in reverse bias & as tuning variable capacitance.

- $C_T = \frac{K}{\left(V_T + V_R\right)^n}; \quad n = 0.3 \text{ for diffusion, } n = 0.5 \text{ for alloy junction, } C_T = \frac{C_o}{\left(1 + \frac{V_R}{V_T}\right)^n}$
- > $\frac{C_B}{C_{25}}$ is figure of merit, Self resonance $f_o = \frac{1}{2\pi\sqrt{L_sC_T}}$

> PHOTO DIODES

- > Diode used in reverse bias for light detection.
- > Different materials have individual peak response to a range of wave lengths.

- > BJT, Bipolar Junction Transistor has 2 Junctions: BE, BC
- > Components of current are I_{nE} , I_{pE} at *EB* junction where $\gamma = \frac{I_{nE}}{I_{nE} + I_{pE}} = \frac{I_{nE}}{I_{E}}$
- > $\gamma = \text{Emitter efficiency}, \ \beta^* = \frac{I_{nc}}{I_{nE}}$ transportation factor.

$$\blacktriangleright BE = f/b; BC = r/b$$

 $I_e = I_b + I_c$ $\alpha = \frac{I_c}{I_e}; \beta = \frac{I_c}{I_b}$

Doping Emitter Highest Base Lowest $I_e > I_c > I_b$

- > Leakage currents : $I_{CBO}, I_{CEO}, I_{EBO}$
- $\succ I_{CEO} = (1 + \beta) I_{CBO}$

> 3 Configurations are used on BJT, CE, CB & CC

COMPARISON				
	BE	BC		
SATURATION	f/b	f/b		
ACTIVE	f/b	r/b		
CUT OFF	r/b	r/b		

AMPLIFIER COMPARISON				
	СВ	CE	CF	
R _i	LOW	MED	HIGH	
A_{I}	A_{I}	β	β +1	
$A_{_V}$	High	High	<1	
R _o	High	High	low	

> FIELD EFFECT TRANSISTOR, FET is Unipolar Device

- S=Source, G=Gate, D=Drain
- > GS Junction in Reverse Bias Always
- > V_{gs} Controls Gate Width

> MOSFET: Metal Oxide Semiconductor FET, IGFET

 \succ Depletion Type MOSFET can work width $V_{\rm gs}>0$ and $V_{\rm gs}<0$

> Enhancement MOSFET operates with, $V_{gs} > V_t$, $V_t = Threshold Voltage$

Forward Characteristics Transfer Characteristics

$$V_{DS}(sat) = V_{GS} - V_T, \quad I_{ds}(ON) = K (V_{GS} - V_T)^2$$

JFET I_D Table V_{gs} I_D 0 I_{DSS} 0.3 V_P $I_{DSS}/2$ 0.5 V_P $I_{DSS}/4$ V_P 0

COMPARISIONS

FET	
Voltage controlled	
Med gain	
Unipolar	
Little effect of T	
Low GBWP	