

Fluid Mechanics

Hydrostatic Force on Surface

Match Column-I with Column-II and select the correct answer using the codes given below: Column-I (Surface)

Column-II (Centre of Pressure)

Codes:

CD (c) 2 4 1 3

(d) 2 1 4 3

Q.2 In which of the following arrangements will the vertical force in the cylinder due to water be maximum?

- Q.3 A vertical rectangular plane surface is submerged in water such that its top and bottom surfaces are 1.5 m and 6.0 m respectively below the free surface. The position of centre of pressure below the free surface will be at a distance of
 - (a) 3.75 m
- (b) 4,0 m
- (c) 4.2 m
- (d) 4.5 m
- Q.4 A body weighs 30 N and 15 N when weighed under submerged conditions in liquids of relative densities 0.8 and 1.2 respectively. What is the valume of the body in liters?
 - (a) 12.55
- (b) 3.83
- (c) 18.78
- (d) 75.53
- Q.5 The total pressure on a plane surface inclined at an angle 8 with the horizontal is equal to

- (a) pA
- (b) pA sin0
- (c) pA cos0
- (d) pA tan0

where p is pressure intensity at centroid of area with A is area of plane surface.

- Q.6 Which of the following statements related to buoyancy in fluid statics is/are correct?
 - (a) Principle of buoyancy is applicable to both floating bodies and submerged bodies
 - (b) Archimedes formulated the first theory of buoyancy
 - (c) In a free body diagram of a floating body, summation of all horizontal forces is taken as zero
 - (d) All of these
- Q.7 A vertical sluice gate, 5 m wide and weighing 2000 kg is held in position due to horizontal force of water on one side and associated friction force. When the water level drops down to 4 m above the bottom of the gate, the gate just starts sliding down. The coefficient of friction between the gate and the supporting structure is
 - (a) 0.20
- (b) 0.10
- (c) 0.05
- (d) 0.02
- Q.8 Assertion (A): For a plane surface immersed vertically, the centre of pressure lies below that centroid of the surface area.

Reason (R): The pressure intensity increases with the increase in the depth of liquid.

- (a) both A and R are true and R is the correct explanation of A
- (b) both A and R are true but R is not a correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true
- Q.9 Find the depth of water at which the plate will toppie.

- (a) 6 m
- (b) 3 m
- (c) 2 m
- (d) 1.5 m
- Q.10 One end of a two dimensional water tank has the shape of a quadrant of a circle of radius 2 m, When the tank is full, the vertical component of the force per unit length on the curved surface will be
 - (a) 250 πkgf
- (b) 1000 rkg!
- (c) 4000 kgf
- (d) 3000 rkg!
- Q,11 An inclined plate 2 m long and 1 m wide lies with its length inclined at 45° to the surface of water and the nearest edge 1 m below it. If the specific weight of water is 1000 kg/m3, then the total pressure on the plate (in kg) is approximately
 - (a) 2000
- (b) 25000
- (c) 3000
- (d) 3420
- Q.12 A triangular laminar is immersed in water with its apex downwards and base 1 meter below water surface, If its base width and height are 1.5 m. and 1.8 m respectively, the total pressure on the triangle will be
 - (a) 21.189 kN
- (b) 42.30 kN
- (c) 10.32 kN
- (d) 5.16 kN
- Q.13 What is the vertical distance of the centre of pressure below the centroid of the plane area?
- (b) $\frac{I_0 \sin 0}{4 h}$
- (c) $\frac{I_G \sin^2 0}{A \bar{h}}$ (d) $\frac{I_G \sin^2 0}{A \bar{h}^2}$
- Q.14 For a vertical semicircular plate submerged in a homogeneous liquid with its diameter 'd' at the free surface, the depth of centre of pressure from the free surface is

Answers Hydrostatic Force on Surface

- 1. (c) 2. (c)
- 3. (c) 4. (b)
- 11. (d) 12. (a) 13. (c) 14. (a)

Explanations Hydrostatic Force on Surface

2. (c)

Vertical force will be maximum when the cylinder is completely submerged in water.

3.

$$\bar{h} = 1.5 + \frac{(6-1.5)}{2} = 3.75 \text{ m}$$

$$h' = 3.75 + \frac{b \times (4.5)^3}{12 \times (b \times 4.5) \times 3.75} = 4.2 \text{ m}$$

$$W - V \rho_1 g = 30$$

5. (a)

$$W - V\rho_2 g = 15$$

 $W - V(800)(9.8)$

$$\Rightarrow \frac{W - V(800)(9.8)}{W - V(1200)(9.8)} = 2$$

Putting the value of W in eq. (i)

- 15680 V V(800)(9.8) = 30
- \Rightarrow V = 3.83 × 10⁻³ m³ = 3.83 litres
- 7. (c)

Elevation End view

- Normal force (or) reaction force offered by rollers
- = Hydrostatic force $R_N = \rho g \bar{h} A$

$$= 1000 \times g \times \frac{4}{2} \times (4 \times 5)$$

= 40000 g (Newton) The vertical force provided externally is equal to Inctional force offered by roller.

At equilibrium Gate sell weight = Frictional force

200 ×
$$g = \mu$$
 × 40000 g

$$\mu = \frac{2000}{40000} = 0.05$$

9. (b)

6. (d)

7. (c)

8. (a)

10. (b)

9. (b)

$$L = 6 \text{ m}$$

 $D = L \sin 30^\circ = 6 \times \frac{1}{2} = 3 \text{ m}$

Toppling will just begin when the resultant force passes through the hinge.

10.

Vertical component of force per unit length on the curved surface.

$$F_y$$
 = Weight of water supported by AB
= $pg \times$ Area of AOB × 1
= $1000 \times 9.81 \times \pi/4 \times (2)^2 \times 1N$

 $= 9.81 \times 1000 \times \pi N = 1000 \pi \text{ kg/s}$

12. (a) Total pressure= yAn

= 9810×
$$\left(\frac{1}{2} \times 1.5 \times 1.8\right)$$
× $\left(\frac{1}{3} \times 1.8 + 1\right)$
= 21189,6 N = 21,189 kN