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Nuclear Phenomenology

In this chapter we start to examine some of the things that can be learned from

experiments, beginning with basic facts about nuclei, including what can be deduced

about their shapes and sizes. Then we discuss the important topic of nuclear stability

and the phenomenology of the various ways that unstable nuclei decay to stable

states. Finally, we briefly review the classification of reactions in nuclear physics.

Before that we need to introduce some notation.

2.1 Mass Spectroscopy and Binding Energies

Nuclei are specified by:

Z – atomic number ¼ the number of protons,

N – neutron number ¼ the number of neutrons,

A – mass number ¼ the number of nucleons, so that A ¼ Z þ N.

We will also refer to A as the nucleon number. The charge on the nucleus is

þZe, where e is the absolute value of the electric charge on the electron. Nuclei

with combinations of these three numbers are also called nuclides and are written
AY or A

ZY, where Y is the chemical symbol for the element. Some other common

nomenclature is:

nuclides with the same mass number are called isobars,

nuclides with the same atomic number are called isotopes,

nuclides with the same neutron number are called isotones.
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The concept of isotopes was introduced in Chapter 1. For example, stable isotopes

of carbon are 12C and 13C, and the unstable isotope used in dating ancient objects

(see later in this chapter) is 14C; all three have Z ¼ 6.

Just as in the case of electrons in atoms, the forces that bind the nucleons in

nuclei contribute to the total mass of an atom M(Z, A) and in terms of the masses of

the proton Mp and neutron Mn

MðZ;AÞ < Z ðMp þ meÞ þ N Mn: ð2:1Þ

The mass deficit is defined as

�MðZ;AÞ � MðZ;AÞ � Z ðMp þ meÞ � N Mn ð2:2Þ

and ��Mc2 is called the binding energy B. Binding energies may be calculated if

masses are measured accurately. One way of doing this is by using the techniques

of mass spectroscopy. The principle of the method is shown in Figure 2.1.

A source of ions of charge q, containing various isotopes passes through a region

where there are uniform electric (E) and magnetic (B1) fields at right angles. The

electric field will exert a force qE in one direction and the magnetic field will exert

a force qvB1 in the opposite direction, where v is the speed of the ions. By

balancing these forces, ions of a specific speed v ¼ E=B1 can be selected and

allowed to pass through a collimating slit. Ions with other velocities (shown as

dashed lines) are deflected. The beam is then allowed to continue through a second

Figure 2.1 Schematic diagram of a mass spectrometer (adapted from Kr88 Copyright John
Wiley & Sons, Inc.)
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uniform magnetic field B2 where it will be bent into a circular path of radius �,

given by

mv ¼ qB2� ð2:3Þ

and since q, B2 and v are fixed, particles with a fixed ratio q=m will bend in a path

with a unique radius. Hence isotopes may be separated and focused onto a detector

(e.g. a photographic plate). In the common case where B1 ¼ B2 ¼ B,

q

m
¼ E

B2�
: ð2:4Þ

In practice, to achieve high accuracy, the device is used to measure mass

differences rather than absolute values of mass.1

Conventional mass spectroscopy cannot be used to find the masses of very short-

lived nuclei and in these cases the masses are determined from kinematic analysis

of nuclear reactions as follows. Consider the inelastic reaction Aða; aÞA�, where A�

is the short-lived nucleus whose mass is to be determined. The kinematics of this

are:

aðEi; piÞ þ AðmAc2; 0Þ ! aðEf ;pf Þ þ A�ð~EE;p~Þ; ð2:5Þ

where we use tilded quantities to denote the energy, mass, etc. of A�. Equating the

total energy before the collision

EtotðinitialÞ ¼ Ei þ mac2 þ mAc2 ð2:6aÞ

to the total energy after the collision

EtotðfinalÞ ¼ Ef þ ~EE þ mac2 þ ~mm c2 ð2:6bÞ

gives the following expression for the change in energy of the nucleus:

�E � ð~mm � mAÞc2 ¼ Ei � Ef � ~EE ¼ p2
i

2ma

�
p2

f

2ma

� ~pp2

2~mm
; ð2:7Þ

where we have assumed non-relativistic kinematics. If the initial momentum of the

projectile is along the x-direction and the scattering angle is �, then from

momentum conservation,

ð~ppÞx ¼ pi � pf cos � ; ð~ppÞy ¼ pf sin � ð2:8Þ

1Practical details of mass spectroscopy may be found in, for example, Chapter 3 of Kr88.
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and using these in Equation (2.7) gives

�E ¼ Ei 1 � ma

~mm

� �
� Ef 1 þ ma

~mm

� �
þ 2ma

~mm
EiEf

� �1=2
cos �: ð2:9Þ

This formula can be used iteratively to deduce�E and hence the mass of the excited

nucleus A�, from measurements of the initial and final energy of the projectile by

initially setting ~mm ¼ mA on the right-hand side because �E is small in comparison

with mA. One final point is that the energies in Equation (2.9) are measured in the

laboratory system, whereas the final energies (masses) will be needed in the centre-of-

mass system.2 The necessary transformation is easily found to be

ECM ¼ Elab 1 þ ma=mAð Þ�1: ð2:10Þ

A similar formula to Equation (2.9) may be derived for the general reaction

A(a,b)B:

�E ¼ Ei 1 � ma

mB

� �
� Ef 1 þ mb

mB

� �
þ 2

mB

mambEiEf

� �1=2
cos �þ Q; ð2:11Þ

where Q is the kinetic energy released in the reaction.

A commonly used quantity of interest is the binding energy per nucleon B=A.

This is shown schematically in Figure 2.2 for nuclei that are stable or long-lived.

2A discussion of these two systems is given in Appendix C.

Figure 2.2 Binding energy per nucleon as a function of mass number A for stable and long-
lived nuclei
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This shows that B=A peaks at a value of 8.7 MeV for a mass number of about 56

(close to iron) and thereafter falls very slowly. Excluding very light nuclei, the

binding energy per nucleon is between 7 and 9 MeV over a wide range of the

periodic table. In Section 2.5 we will discuss a model that provides an explanation

for the shape of this curve.

2.2 Nuclear Shapes and Sizes

The shape and size of a nucleus may be found from scattering experiments; i.e. a

projectile is scattered from the nucleus and the angular distribution of the scattered

particles examined, as was done by Rutherford and his collaborators when they

deduced the existence of the nucleus. The interpretation is simplest in those cases

where the projectile itself has no internal structure, i.e. it is an elementary particle,

and electrons are often used. In this case the relevant force is electromagnetic and we

learn about the charge distribution in the nucleus. The first experiments of this type

were performed by Hofstader and his collaborators in the late 1950s.3 If instead of an

electron a hadron is used as the projectile, the force is dominantly the nuclear strong

interaction and we find information about the matter density. Neutrons are com-

monly used so that Coulomb effects are absent. We discuss these two cases in turn.

2.2.1 Charge distribution

To find the amplitude for electron–nucleus scattering, we should in principle solve

the Schrödinger (or Dirac) equation using a Hamiltonian that includes the full

electromagnetic interaction and use nuclear wavefunctions. This can only be done

numerically. However, in Appendix C we derive a simple formula that describes the

electromagnetic scattering of a charged particle in the so-called Born approxima-

tion, which assumes Z�	 1 and uses plane waves for the initial and final states.

This leads to the Rutherford cross-section, which in its relativistic form may be

written

d�

dO

� �
Rutherford

¼ Z2�2ð�hcÞ2

4E2 sin4ð�=2Þ
; ð2:12Þ

where E is the total initial energy of the projectile and � is the angle through which

it is scattered. Note that Equation (2.12) is of order �2 because it corresponds to

the exchange of a single photon. Although Equation (2.12) has a limited range of

applicability, it is useful to discuss the general features of electron scattering.

Equation (2.12) actually describes the scattering of a spin-0 point-like projectile of

unit charge from a fixed point-like target with electric charge Ze, i.e. the charge

3Robert Hofstader shared the 1961 Nobel Prize in Physics for his pioneering electron scattering experiments.
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distribution of the target is neglected. It therefore needs to be modified in a number of

ways before it can be used in practice. We will state the modifications without proof.

Firstly, taking account of the electron spin leads to the so-called Mott cross-

section

d�

dO

� �
Mott

¼ d�

dO

� �
Rutherford

1 � 	2 sin2ð�=2Þ
� �

; ð2:13Þ

where 	 ¼ v=c and v is the velocity of the initial electron. At higher energies, the

recoil of the target needs to be taken into account and this introduces a factor E0=E

on the right-hand side of Equation (2.13), where E0 is the final energy of the

electron. At higher energies we also need to take account of the interaction with

the magnetic moment of the target in addition to its charge. The final form for the

differential cross-section is

d�

dO

� �
spin 1

2

¼ d�

dO

� �
Mott

E0

E
1 þ 2
 tan2 �

2

	 

; ð2:14Þ

where


 ¼ �q2

4M2c2
ð2:15Þ

and M is the target mass. Because the energy loss of the electron to the recoiling

nucleus is no longer negligible, q, the previous momentum transfer, has been

replaced by the four-momentum transfer q, whose square is

q2 ¼ ðp � p0Þ2 ¼ 2m2
ec2 � 2ðEE0�c2 � pj j p0j j cos �Þ � � 4EE0

c2
sin2ð�=2Þ; ð2:16Þ

where pð p0Þ is the four-momentum of the initial (final) electron. (Because q2 
 0, it

is common practice to replace it with Q2 ¼ �q2, so as to work with positive

quantities.4) For the rest of this discussion it will be sufficient to ignore the magnetic

interaction, although we will use a variant of the full form (2.16) in Chapter 6.

The final modification is due to the spatial extension of the nucleus. If the spatial

charge distribution within the nucleus is written f (x) then we define the form factor

F(q2) by

Fðq2Þ � 1

Ze

ð
eiq�x=�hf ðxÞ d3x with Ze ¼

ð
f ðxÞ d3x; ð2:17Þ

4To remove any confusion, in the non-relativistic case, which we use in the rest of this chapter, q is
interpreted to be q ¼ jqj � 0 where q � p � p0, as was used in Section 1.6.1. We will need the four-
momentum definition of q in Chapter 6.
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i.e. the Fourier transform of the charge distribution.5 In the case of a spherically

symmetric charge distribution, the angular integrations in Equations (2.17) may be

done using spherical polar coordinates to give

Fðq2Þ ¼ 4��h

Zeq

ð1

0

r�ðrÞsin
qr

�h

� �
dr; ð2:18Þ

where q ¼ jqj and �ðrÞ is the radial charge distribution. The final form of the

experimental cross-section in this approximation is given by6

d�

dO

� �
expt

¼ d�

dO

� �
Mott

Fðq2Þ


 

2: ð2:19Þ

Two examples of measured cross-sections are shown in Figure 2.3. Striking

features are the presence of a number of well-defined minima superimposed on a

Figure 2.3 Elastic differential cross-sections as a function of the scattering angle for 450 MeV
electrons from 58Ni and 758 MeV electrons from 48Ca; the solid lines are fits as described in the
text (adapted from Si75 (58Ni data) and Be67 (48Ca data), Copyright American Physical Society)

5Strictly this formula assumes that the recoil of the target nucleus is negligible and the interaction is
relatively weak, so that perturbation theory may be used.
6If the magnetic interaction were included, another form factor would be necessary, as is the case in high-
energy electron scattering discussed in Chapter 6.
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rapid decrease in the cross-section with angle. These features are common to all

elastic data, although not all nuclei show so many minima as those shown.

The minima are due to the form factor and we can make this plausible by taking

the simple case where the nuclear charge distribution is represented by a hard

sphere such that

�ðrÞ ¼ constant; r 
 a

¼ 0 r > a
ð2:20Þ

where a is a constant. In this case, evaluation of Equation (2.18) gives

Fðq2Þ ¼ 3 sinðbÞ � bcosðbÞ½ �b�3; ð2:21Þ

where b � qa=�h. Thus Fðq2Þ will be zero at values of b for which b ¼ tanðbÞ. In

practice, as we will see below, �ðrÞ is not a hard sphere, and although it is

approximately constant for much of the nuclear volume, it falls smoothly to zero at

the surface. Smoothing the edges of the radial charge distribution (2.20) modifies

the positions of the zeros, but does not alter the argument that the minima in the

cross-sections are due to the spatial distribution of the nucleus. Their actual

positions and depths result from a combination of the form factor and the form of

the point-like amplitude. We shall see below that the minima can tell us about the

size of the nucleus.

If one measures the cross-section for a fixed energy at various angles (and hence

various q2), the form factor can in principle be extracted using Equation (2.19) and

one might attempt to find the charge distribution from the inverse Fourier

transform

f ðxÞ ¼ Ze

ð2�Þ3

ð
Fðq2Þ e�iq�x=�h d3q: ð2:22Þ

However, q2 only has a finite range for a fixed initial electron energy and even within

this range the rapid fall in the cross-section means that in practice measurements

cannot be made over a sufficiently wide range of angles for the integral in Equation

(2.22) to be evaluated accurately. Thus, even within the approximations used,

reliable charge distributions cannot be found from Equation (2.22). Therefore

different strategies must be used to deduce the charge distribution. In one approach,

plausible – but very general – parameterized forms (for example a sum of Gaussians)

are chosen for the charge distribution and are used to modify the point-like

electromagnetic interaction. The resulting Schrödinger (or Dirac) equation is solved

numerically to produce an amplitude, and hence a cross-section, for electron–

nucleus scattering. The parameters of the charge distribution are then varied to give

a good fit of the experimental data. The solid curves in Figure 2.3 are obtained in

this way.
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Some radial charge distributions for various nuclei obtained by these methods

are shown in Figure 2.4. They are well represented by the form

�chðrÞ ¼
�0

ch

1 þ eðr�aÞ=b
; ð2:23Þ

where a and b for medium and heavy nuclei are found to be

a � 1:07A1=3 fm and b � 0:54 fm: ð2:24Þ

From this we can deduce that the charge density is approximately constant in the

nuclear interior and falls fairly rapidly to zero at the nuclear surface, as anticipated

above. The value of �0
ch is in the range 0.06–0.08 for medium to heavy nuclei and

decreases slowly with increasing mass number.

Figure 2.4 Radial charge distributions �ch of various nuclei, in units of e fm�3; the thickness
of the curves near r ¼ 0 is a measure of the uncertaintity in �ch (adapted from Fr83)
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A useful quantity is the mean square charge radius,

r2
� �

�
ð1

0

r2�chðrÞ dr: ð2:25Þ

This can be found from the form factor as follows. Expanding Equation (2.17) for

Fðq2Þ gives

Fðq2Þ ¼ 1

Ze

ð
f ðxÞ

X1
n¼0

1

n!

ijqjrcos�

�h

� �n

d3x ð2:26Þ

and after carrying out the angular integrations this becomes

Fðq2Þ ¼ 4�

Ze

ð1

0

f ðrÞ r2dr � 4�q2

6Ze�h2

ð1

0

f ðrÞ r4dr þ � � � : ð2:27Þ

From the normalization of f ðxÞ, we finally have

Fðq2Þ ¼ 1 � q2

6�h2
r2
� �

þ � � � ð2:28Þ

and thus the mean square charge radius can be found from

r2
� �

¼ �6�h2dFðq2Þ
dq2






q2¼0

; ð2:29Þ

provided the form factor can be measured at very small values of q2. For medium

and heavy nuclei r2
� �1=2

is given approximately by7

r2
� �1=2¼ 0:94A1=3 fm: ð2:30Þ

The nucleus is often approximated by a homogeneous charged sphere. The radius

R of this sphere is then quoted as the nuclear radius. The relation of this to the

mean square radius is R2 ¼ 5
3

r2
� �

, so that

Rcharge ¼ 1:21 A1=3 fm: ð2:31Þ

2.2.2 Matter distribution

Electrons cannot be used to obtain the distributions of neutrons in the nucleus. We

could, however, take the presence of neutrons into account by multiplying �chðrÞ

7The constant comes from a fit to a range of data, e.g. the compilation for 55 
 A 
 209 given in Ba77.
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by A=Z. Then we find an almost identical nuclear density in the nuclear interior for

all nuclei, i.e. the decrease in �0
ch with increasing A is compensated by the increase

in A=Z with increasing A. The interior nuclear density is given by

�nucl � 0:17 nucleons=fm
3: ð2:32Þ

Likewise, the effective nuclear matter radius for medium and heavy nuclei is

Rnuclear � 1:2 A1=3 fm: ð2:33Þ

These are important results that will be used extensively later in this chapter and

elsewhere in this book.

To probe the nuclear (i.e. matter) density of nuclei experimentally, a strongly

interacting particle, i.e. a hadron, has to be used as the projectile. At high energies,

where elastic scattering is only a small part of the total interaction, the nucleus

behaves more like an absorbing sphere. In this case, the incident particle of

momentum p will have an associated quantum mechanical wave of wavelength


 ¼ h=p and will suffer diffraction-like effects, as in optics. To the extent that we are

dealing at high energies purely with the nuclear strong interaction (i.e. neglecting the

Coulomb interaction), the nucleus can be represented by a black disk of radius R and

the differential cross-section will have a Fraunhofer-like diffraction form, i.e.

d�

dO
/ J1ðqRÞ

qR

	 
2

; ð2:34Þ

where qR � pR� for small � and J1 is a first-order Bessel function. For large qR,

J1ðqRÞ½ �2 � 2

�qR

� �
sin2 qR � �

4

� �
; ð2:35Þ

which has zeros at intervals �� ¼ �=pR. The plausibility of this interpretation is

borne out by experiment, an example of which is shown in Figure 2.5. The data show

a succession of roughly equally spaced minima as suggested by Equation (2.35).

To go further requires solving the equations of motion, but this is far more

problematical than in the electron case because the hadrons are more likely to be

absorbed as they pass through the nucleus and the effective potential is far less

well known. However, the analogy with optics can be pursued further in the so-

called optical model. The essential idea in this model is that a hadron incident on a

nucleus may be elastically scattered, or it may cause a variety of different

reactions. As in the discussion above, if the incident particle is represented by a

wave, then in classical language it may be scattered or it may be absorbed. In

optics this is analogous to the refraction and absorption of a light wave by a

medium of complex refractive index, and just as the imaginary part of the

refractive index takes account of the absorption of the light wave, so in the
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nuclear case the imaginary part of a complex potential describing the interaction

takes account of all the inelastic reactions. It is an essential feature of the model

that the properties of nuclei are mainly determined by their size, as this implies

that the same potential can account for the interaction of particles of different

energies with different nuclei. Apart from the theoretical basis provided by

analogy with classical optics, the model is essentially phenomenological, in that

the values of the parameters of the optical potentials are found by optimizing the fit

to the experimental data. This type of semi-phenomenological approach is

common in both nuclear and particle physics.

In practice, the Schrödinger equation is solved using a parameterized complex

potential where the real part is a sum of the Coulomb potential (for charged

projectiles), an attractive nuclear potential and a spin-orbit potential, and the

imaginary part is assumed to cause the incoming wave of the projectile to be

attenuated within the nucleus, thereby allowing for inelastic effects. Originally,

mathematical forms like Equation (2.23) were used to parameterize the real and

imaginary parts of the potential, but subsequent work indicated substantial differ-

ences between the form factors of the real and imaginary parts of the potential and so

different forms are now used for the imaginary part. The free parameters of the total

potential are adjusted to fit the data.

The optical model has achieved its greatest success in the scattering of nucleons,

but analyses using data obtained from light nuclei targets are also possible. A wide

range of scattering data can be accounted for to a high degree of precision by

Figure 2.5 Elastic differential cross-sections for 52 MeV deuterons on 54Fe (adapted from Hi68,
copyright Elsevier, with permission)
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the model and examples of this are shown in Figure 2.6. The corresponding

wavefunctions are extensively used to extract information on nuclear structure.

The conclusions are in accord with those above deduced indirectly from electron

data.

2.3 Nuclear Instability

Stable nuclei only occur in a very narrow band in the Z�N plane close to the line

Z ¼ N (see Figure 2.7). All other nuclei are unstable and decay spontaneously in

various ways. Isobars with a large surplus of neutrons gain energy by converting a

Figure 2.6 Differential cross-sections (normalized to the Rutherford cross-section) for the
elastic scattering of 30.3 MeV protons, for a range of nuclei compared with optical model
calculations; the solid and dashed lines represent the results using two different potentials
(adapted from Sa67, copyright Elsevier, with permission)
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neutron into a proton; conversely, a nucleus with a large surplus of protons converts

protons to neutrons. These are examples of 	-decays, already mentioned. A related

process is where an atomic electron is captured by the nucleus and a proton is

thereby converted to a neutron within the nucleus. This is electron capture and like

	-decay is a weak interaction. The electron is usually captured from the innermost

shell and the process competes with 	-decay in heavy nuclei because the radius of

this shell (the K-shell) is close to the nuclei radius. The presence of a third particle in

the decay process, the neutrino (as first suggested by Fermi), means that the emitted

electrons (or positrons) have a continuous energy spectrum. The derivation and

analysis of the electron momentum spectrum will be considered in Chapter 7 when

we discuss the theory of 	-decay.

The maximum of the curve of binding energy per nucleon is at approximately

the position of iron (Fe) and nickel (Ni), which are therefore the most stable

nuclides. In heavier nuclei, the binding energy is smaller because of the larger

Coulomb repulsion. For still heavier nuclear masses, nuclei can decay sponta-

neously into two or more lighter nuclei, provided the mass of the parent nucleus is

larger than the sum of the masses of the daughter nuclei.

Figure 2.7 The distribution of stable nuclei: the squares are the stable and long-lived nuclei
occurring in nature; other known nuclei lie within the jagged lines and are unstable. [adapted
from Ch97.)
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Most such nuclei decay via two-body decays and the commonest case is when

one of the daughter nuclei is a 4He nucleus (i.e. an �-particle: 4He � 2p2n, with

A ¼ 4 ; Z ¼ N ¼ 2). The �-particle is favoured in such decays because it is a very

stable, tightly bound structure. Because this is a two-body decay, the �-particle has

a unique energy and the total energy released, the so-called Q-value, is given by:

Q� ¼ MP � MD � M�ð Þc2 ¼ ED þ E�; ð2:36Þ

where the subscripts refer to parent and daughter nuclei and the �-particle, and E is

a kinetic energy.

The term fission is used to describe the rare cases where the two daughters have

similar masses. If the decay occurs without external action, it is called spontaneous

fission to distinguish it from induced fission, where some external stimulus is required

to initiate the decay. Spontaneous fission only occurs with a probability greater than that

for�-emission for nuclei with Z � 110. The reason for this is discussed in Section 2.7.

Finally, nuclei may decay by the emission of photons, with energies in the �-ray

part of the electromagnetic spectrum (gamma emission). This occurs when an

excited nuclear state decays to a lower state and is a common way whereby excited

states lose energy. The lower energy state is often the ground state. A competing

process is internal conversion, where the nucleus de-excites by ejecting an electron

from a low-lying atomic orbit. Both are electromagnetic processes. Electromag-

netic decays will be discussed in more detail in Chapter 7.

2.4 Radioactive Decay

Before looking in more detail at different classes of instability, we will consider

the general formalism describing the rate of radioactive decay. The probability per

unit time that a given nucleus will decay is called its decay constant 
 and is

related to the activity A by

A ¼ �dN=dt ¼ 
N; ð2:37Þ

where N(t) is the number of radioactive nuclei in the sample at time t. The activity is

measured in becquerels (Bq), which is one decay per second.8 The probability here

refers to the total probability, because 
 could be the sum of decay probabilities for a

number of distinct final states in the same way that the total decay width of an

unstable particle is the sum of its partial widths. Integrating Equation (2.37) gives

AðtÞ ¼ 
N0expð�
tÞ; ð2:38Þ

where N0 is the initial number of nuclei, i.e. the number at t ¼ 0.

8An older unit, the curie (1 Ci ¼ 3:7 � 1010 Bq) is also still in common use. A typical laboratory radioactive
source has an activity of a few tens of kBq, i.e. �Ci.
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The mean lifetime 
 of an unstable state, such as a radioactive nucleus or a

hadron, follows from the general definition of a mean �xx of a distribution f(x):

�xx �
ð

xf ðxÞdx

	 
� ð
f ðxÞdx

	 

: ð2:39Þ

Thus


 �
Ð

t dNðtÞÐ
dNðtÞ ¼

Ð1
0

t exp½�
t� dt

Ð1
0

exp½�
t� dt

¼ 1



: ð2:40Þ

This is the quantity we simply called ‘the lifetime’ in Chapter 1. The mean

lifetime is always used in particle physics, but another measure more commonly

used in nuclear physics is the half-life t1
2
, defined as the time for the number of

nuclei to fall by one half. Thus t1
2
¼ ln2=
 ¼ 
 ln2. In this book, the term lifetime

will be used for the mean lifetime, both for radioactive nuclei and unstable

hadrons, unless explicitly stated otherwise.

A well-known use of the radioactive decay law is in dating ancient specimens

using the known properties of radioactive nuclei. For organic specimens, carbon is

usually used. Carbon-14 is a radioactive isotope of carbon that is produced by the

action of cosmic rays on nitrogen in the atmosphere.9 If the flux of cosmic rays

remains roughly constant over time, then the ratio of 14C to the stable most abundant

isotope 12C reaches an equilibrium value of about 1 :1012. Both isotopes will be

taken up by living organisms in this ratio, but when the organism dies there is no

further interaction with the environment and the ratio slowly changes with time as

the 14C nuclei decay by 	-decay to 14N with a lifetime of 8:27 � 103 years. Thus, if

the ratio of 14C to 12C is measured, the age of the specimen may be estimated.10 The

actual measurements can be made very accurately because modern mass spectro-

meters can directly measure very small differences in the concentrations of 14C and
12C using only milligrams of material. Nevertheless, in practice, corrections are

made to agree with independent calibrations if possible, using, for example, tree-

ring growth data, because cosmic ray activity is not strictly constant with time.

In many cases the products of radioactive decay are themselves radioactive and so

a decay chain results. Consider a decay chain A ! B ! C ! � � �, with decay

constants 
A; 
B; 
C etc.. The variation of species Awith time is given by Equation

(2.38), i.e.

NAðtÞ ¼ NAð0Þexpð�
AtÞ; ð2:41Þ

9Cosmic rays are high-energy particles, mainly protons, that impinge on the Earth’s atmosphere from space.
The products of the secondary reactions they produce may be detected at the Earth’s surface. Victor Hess
shared the 1936 Nobel Prize in Physics for the discovery of cosmic radiation.
10This method of using radioactive carbon to date ancient objects was devised by Willard Libby, for which he
received the 1960 Nobel Prize in Chemistry.
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but the differential equation for NBðtÞ will have an extra term in it to take account

of the production of species B from the decay of species A:

dNBðtÞ=dt ¼ �
BNB þ 
ANA: ð2:42Þ

The solution of this equation may be verified by substitution to be

NBðtÞ ¼

A


B � 
A

NAð0Þ expð�
AtÞ � expð�
BtÞ½ �: ð2:43Þ

Similar equations may be found for decay sequences with more than two stages.

Thus, for a three-stage sequence

NCðtÞ ¼ 
A
BNAð0Þ
expð�
AtÞ

ð
B � 
AÞð
C � 
AÞ

	

þ expð�
BtÞ
ð
A � 
BÞð
C � 
BÞ

þ expð�
CtÞ
ð
A � 
CÞð
B � 
CÞ



ð2:44Þ

As an example, the variation of the components as a function of time is shown in

Figure 2.8 for the specific case:

79
38Sr ! 79

37Rb þ eþ þ �e ð2:25 minÞ
j! 79

36Kr þ eþ þ �e ð22:9 minÞ
j! 79

35Br þ eþ þ �e ð35:04 hoursÞ
ð2:45Þ

where the final nucleus is stable.

Figure 2.8 Time variation of the relative numbers of nuclei in the decay chain (2.45)
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This illustrates the general features that whereas NAðtÞ for the initial species falls

monotonically with time and NCðtÞ for the final stable species rises monotonically,

NBðtÞ for an intermediate species rises to a maximum before falling. Note that at

any time the sum of the components is a constant, as expected.

In the following sections we consider the phenomenology of the various types of

radioactivity in more detail and in Chapter 7 we will return to discuss various

models and theories that provide an understanding of these phenomena.

2.5 Semi-Empirical Mass Formula: The Liquid Drop Model

Apart from the lightest elements and a few special isolated very stable nuclei, the

binding energy data of Figure 2.2 can be fitted by a simple formula containing just a

few free parameters. This is the semi-empirical mass formula (SEMF), first written

down in 1935 by Weizsäcker. It is a semi-empirical formula, because although it

contains a number of constants that have to be found by fitting experimental data, the

formula does have a theoretical basis. This arises from the two properties common to

all nuclei (except those with very small A values) that we have seen earlier: (1) the

interior mass densities are approximately equal, and (2) their total binding energies

are approximately proportional to their masses. There is an analogy here with a

classical model of a liquid drop, where for drops of various sizes: (1) interior densities

are the same, and (2) latent heats of vaporization are proportional to their masses.11

However, the analogy of a nucleus as an incompressible liquid droplet, with the

nucleons playing the role of individual molecules within the droplet, cannot be taken

too far because nucleons of course obey the laws of quantum, not classical, physics.

The semi-empirical mass formula will be taken to apply to atomic masses, as

these are the masses actually observed in experiment. The atomic mass M(Z, A)

may then be written as the sum of six terms fiðZ;AÞ:

MðZ; AÞ ¼
X5

i¼0

fiðZ; AÞ: ð2:46Þ

The first of these is the mass of the constituent nucleons and electrons,

f0ðZ; AÞ ¼ Z ðMp þ meÞ þ ðA � ZÞMn: ð2:47Þ

The remaining terms are various corrections, which we will write in the form ai

multiplied by a function of Z and A with ai > 0.

The most important correction is the volume term,

f1ðZ; AÞ ¼ �a1A: ð2:48Þ

11Latent heat is the average energy required to disperse the liquid drop into a gas and so is analogous to the
binding energy per nucleon.
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This arises from the fact that the strong nuclear force is short-range and each

nucleon therefore feels the effect of only the nucleons immediately surrounding it

(the force is said to be saturated), independent of the size of the nucleus. Recalling

the important result deduced in Section 2.2 that the nuclear radius is proportional

to A
1
3, this leads immediately to the binding energy being proportional to the

volume, or nuclear mass. The coefficient is negative, i.e. it increases the binding

energy, as expected.

The volume term overestimates the effect of the nuclear force because nucleons

at the surface are not surrounded by other nucleons. Thus the volume term has to

be corrected. This is done by the surface term

f2ðZ; AÞ ¼ þa2A
2
3; ð2:49Þ

which is proportional to the surface area and decreases the binding energy. In the

classical model of a real liquid drop, this term would correspond to the surface

tension energy.

The Coulomb term accounts for the Coulomb energy of the charged nucleus, i.e.

the fact that the protons repel each other. If we have a uniform charge distribution

of radius proportional to A
1
3, then this term is

f3ðZ; AÞ ¼ þa3

ZðZ � 1Þ
A

1
3

� þa3

Z2

A
1
3

; ð2:50Þ

where the approximation is sufficiently accurate for the large values of Z we will

be considering. A similar effect would be present for a charged drop of a classical

liquid.

The next term is the asymmetry term.

f4ðZ; AÞ ¼ þa4

ðZ � A=2Þ2

A
: ð2:51Þ

This accounts for the observed tendency for nuclei to have Z ¼ N. (There are no

stable nuclei with very large neutron or proton excesses – c.f. Figure 2.7.) This

term is purely quantum mechanical in origin and is due to the Pauli principle.

Part of the reason for the form (2.51) can be seen from the diagram of Figure 2.9,

which shows the energy levels of a nucleus near the highest filled level in the

approximation where all the energy levels are separated by the same energy �.

Keeping A fixed and removing a proton from level 3 and adding a neutron to level

4, gives ðN � ZÞ ¼ 2 and leads to an energy increase of �. Repeating this for more

protons, we find that the transfer of ðN � ZÞ=2 nucleons decreases the binding

energy by an amount ��ðN � ZÞ2=4. Although we have assumed � is a constant,

in practice it decreases like A�1; hence the final form of the asymmetry term.

If we start with an even number of nucleons and progressively fill states, then the

lowest energy will be when both Z and N are even. If, on the other hand, we have a

SEMI-EMPIRICAL MASS FORMULA: THE LIQUID DROP MODEL 51



system where both Z and N are odd and the highest filled proton state is above the

highest filled neutron state, we can increase the binding energy by removing one

proton from the nucleus and adding one neutron. If the highest filled proton state is

below the highest filled neutron state, then we can produce the same effect by

removing a neutron and adding a proton. These observations are summarized in the

empirical pairing term, which maximizes the binding when both Z and N are even:

f5ðZ; AÞ ¼ �f ðAÞ; if Z even;A � Z ¼ N even

f5ðZ; AÞ ¼ 0; if Z even;A � Z ¼ N odd; or;Z odd;A � Z ¼ N even

f5ðZ; AÞ ¼ þf ðAÞ; if Z odd; A � Z ¼ N odd

ð2:52Þ

The exact form of the function f ðAÞ is found by fitting the data; f ðAÞ ¼ a5A�1
2 is

often used.

To help remember these terms, the notation VSCAP is frequently used, with

a1 ¼ av; a2 ¼ as; a3 ¼ ac; a4 ¼ aa; a5 ¼ ap: ð2:53Þ

Precise values of the coefficients depend on the range of A fitted. One commonly

used set is, in units of MeV
�

c2:12

av ¼ 15:56; as ¼ 17:23; ac ¼ 0:697; aa ¼ 93:14; ap ¼ 12: ð2:54Þ

The fit to the binding energy data for A > 20 using these coefficients in the SEMF

is shown in Figure 2.10. Overall the fit to the data is remarkably good for such a

simple formula, but is not exact of course. For example, there are a small number of

regions where the binding energy curves show enhancements that are not repro-

duced. (These enhancements are due to the existence of a ‘shell structure’ of

nucleons within the nucleus and will be discussed in Chapter 7.) Nevertheless, the

SEMF gives accurate values for the binding energies for some 200 stable and many

Figure 2.9 Schematic diagram of nuclear energy levels near the highest filled levels

12Note that some authors write the asymmetry term proportional to ðZ � NÞ2
, which is equivalent to the form

used here, but their value for the coefficient aa will differ by a factor of four from the one in Equations (2.54).
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Figure 2.10 Fit to binding energy data (shown as solid circles) for odd-A and even-A nuclei
using the SEMF with the coefficients given in the text; the predictions are shown as open circles
and do not lie on smooth curves because A is not a function of Z
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more unstable nuclei. We will use it to analyse the stability of nuclei with respect to

	-decay and fission. The discussion of �-decay is deferred until Chapter 7.

Using the numerical values of Equation (2.54), the relative sizes of each of

the terms in the SEMF may be calculated and for the case of odd-A are shown in

Figure 2.11. In this diagram, the volume term is shown as positive and the other terms

are subtracted from it to give the final SEMF curve.

Finally, from its definition, one might expect the binding energy per nucleon to

be equivalent to the energy needed to remove a nucleon from the nucleus.

However, to remove a neutron from a nucleus corresponds to the process

A
ZY ! A�1

ZY þ n ð2:55aÞ

and requires an energy change

En ¼ MðZ;A � 1Þ þ Mn � MðZ;AÞ½ �c2 ¼ BðZ;AÞ � BðZ;A � 1Þ; ð2:55bÞ

whereas the removal of a proton corresponds to the process

A
ZY ! A�1

Z�1X þ p; ð2:56aÞ

Figure 2.11 Contributions to the binding energy per nucleon as a function of mass number
for odd-A from each term in the SEMF; the surface, asymmetry and Coulomb terms have been
plotted so that they subtract from the volume term to give the total SEMF result in the lowest
curve
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where X is a different chemical species to Y, and requires an energy change

Ep ¼ MðZ �1;A�1ÞþMp þme �MðZ;AÞ
� �

c2 ¼BðZ;AÞ�BðZ �1;A�1Þþmec2:

ð2:56bÞ

Thus, Ep and En are only equal to the binding energy per nucleon in an average

sense. In practice, measurements show that Ep and En can differ substantially from

this average and from each other at certain values of (Z, A). We will see in

Chapter 7 that one reason for this is the existence of a shell structure for nucleons

within nuclei, similar to the shell structure of electrons in atoms, which is ignored

in the liquid drop model.

2.6 b-Decay Phenomenology

By rearranging terms, the SEMF (2.46) may be written

MðZ; AÞ ¼ �A � 	 Z þ � Z2 þ �

A
1
2

; ð2:57Þ

where

� ¼ Mn � av þ
as

A
1
3

þ aa

4

	 ¼ aa þ ðMn � Mp � meÞ

� ¼ aa

A
þ ac

A
1
3

� ¼ ap

ð2:58Þ

MðZ;AÞ is thus a quadratic in Z at fixed A and has a minimum at Z ¼ 	=2�. For a

fixed value of A, a stable nucleus will have an integer value of Z closest to the

solution of this equation. For odd A, the SEMF is a single parabola, but for even A

the even–even and odd–odd nuclei lie on two distinct vertically shifted parabolas,

because of the pairing term. The nucleus with the smallest mass in an isobaric

spectrum is stable with respect to 	-decay. We will consider the two cases of odd

and even A separately, using specific values of A to illustrate the main features.

2.6.1 Odd-mass nuclei

Odd-mass nuclei can arise from even-N, odd-Z, or even-Z, odd-N configurations

and in practice the number of nuclei that are stable against 	-decay are roughly

equally distributed between these two types. The example we take is the case of
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the A ¼ 111 isobars, which are shown in Figure 2.12. The circles show the

experimental data as mass excess values in atomic mass units, where

mass excess � MðZ;AÞ ðin atomic mass unitsÞ � A ð2:59Þ

and the atomic mass unit (u) is defined as one twelfth of the mass of the neutral

atom 12
6C.

The curve is the theoretical prediction from the SEMF using the numerical

values of the coefficients (2.54). The exact form of the curve depends on the

precise values of these coefficients. The minimum of the parabola corresponds to

the isobar 111
48Cd with Z ¼ 48.

Isobars with more neutrons, such as 111
45Rh, 111

46Pd and 111
47Ag, decay by converting

a neutron to a proton, i.e.

n ! p þ e� þ ���e; ð2:60Þ

so that

111
45Rh ! 111

46Pd þ e� þ ���e ð11 sÞ; ð2:61aÞ

111
46Pd ! 111

47Ag þ e� þ ���e ð22:3 minÞ ð2:61bÞ

and

111
47Ag ! 111

48Cd þ e� þ ���e ð7:45 daysÞ ð2:61cÞ

Figure 2.12 Mass parabola of the A ¼ 111 isobars: the circles are experimental data and the
curve is the prediction of the SEMF -- possible 	-decays are indicated by arrows
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This decay sequence is shown in Figure 2.12. Electron emission is energetically

possible whenever the mass of the daughter atom MðZ þ 1;AÞ is smaller than its

isobaric neighbour, i.e.

MðZ;AÞ > MðZ þ 1;AÞ: ð2:62Þ

Recall that we are referring here to atoms, so that the rest mass of the created

electron is automatically taken into account.

Isobars with proton excess decay via

p ! n þ eþ þ �e; ð2:63Þ

i.e. positron emission, which although not possible for a free proton, is possible in a

nucleus because of the binding energy. So for example, the nuclei
111

51Sb; 111
50Sn and 111

49In could, in principle, decay by positron emission, which is

energetically possible if

MðZ;AÞ > MðZ � 1;AÞ þ 2me; ð2:64Þ

this takes account of the creation of a positron and the existence of an excess of

electrons in the parent atom.

It is also theoretically possible for this sequence of transitions to occur by

electron capture. This mainly occurs in heavy nuclei, where the electron orbits are

more compact. It is usually the electron in the innermost shell (i.e. the K-shell) that

is captured. Capture of such an electron gives rise to a ‘hole’ and causes electrons

from higher levels to cascade downwards and in so doing emit characteristic

X-rays. Electron capture is energetically allowed if

MðZ;AÞ > MðZ � 1;AÞ þ "; ð2:65Þ

where " is the excitation energy of the atomic shell of the daughter nucleus. The

process competes with positron emission and in practice for the nuclei above this is

what happens. Thus, we have

e� þ 111
51Sb ! 111

50Sn þ �e ð75 sÞ; ð2:66aÞ

e� þ 111
50Sn ! 111

49In þ �e ð35:3 minÞ ð2:66bÞ

and

e� þ 111
49In ! 111

48Cd þ �e ð2:8 daysÞ; ð2:66cÞ

which are manifestations of the primary reaction

e� þ p ! n þ �e: ð2:67Þ

So once again we arrive at the stable isobar.
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2.6.2 Even-mass nuclei

Even-mass nuclei can arise from even-N, even-Z, or odd-Z, odd-N configurations,

but for reasons that are explained below, nearly all even-mass nuclei that are stable

against 	-decay are of the even–even type, with only a handful of odd–odd types

known. Consider as an example the case of A ¼ 102 shown in Figure 2.13. (Recall

that the plot is of mass excess, which is a very small fraction of the total mass.)

The lowest isobar is 102
44Ru and is 	-stable. The isobar 102

46Pd is also stable since

its two odd–odd neighbours both lie above it. In principle, the two nuclei could be

connected by the reaction

102
46Pd þ 2e� ! 102

44Ru þ 2�e; ð2:68Þ

but this would involve a ‘double electron capture’ and would be heavily suppressed.

The reaction has never been observed. Thus there are two 	-stable isobars. This is a

common situation for A-even, although no two neighbouring isobars are known to be

stable. Odd–odd nuclei always have at least one more strongly bound even–even

neighbour nucleus in the isobaric spectrum. They are therefore unstable. The only

exceptions to this rule are a few very light nuclei.

The lifetime of a free neutron is about 887 s. The free proton is believed to be

stable and can only ‘decay’ within a nucleus by utilizing the binding energy.

Lifetimes of 	 emitters vary enormously from milliseconds to 1016 years. They

Figure 2.13 Mass parabolas of the A ¼ 102 isobars: the circles are experimental data (open
circles are even--even nuclei and closed circles are odd--odd nuclei); the curves are the
prediction of the SEMF (upper curve is for odd--odd nuclei and lower curve for even--even nuclei)
and possible 	-decays are indicated by arrows
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depend very sensitively on the Q-value for the decay and on the properties of the

nuclei involved, e.g. their spins.

2.7 Fission

Spontaneous fission has been defined as the process whereby a parent nucleus breaks

into two daughter nuclei of approximately equal masses without external action.

Precisely equal masses are very unlikely and in the most probable cases the daughter

nuclei have mass numbers that differ by about 45, with peaks around mass numbers

95 and 140. The reason for this is unknown. The binding energy curve shows that

spontaneous fission is energetically possible for nuclei with A > 100.13 An example is

238
92U ! 145

57La þ 90
35Br þ 3n; ð2:69Þ

with a release of about 154 MeVof energy, which is carried off as kinetic energy of

the fission products. Heavy nuclei are neutron-rich and so necessarily produce

neutron-rich decay products, including free neutrons. The fission products are

themselves usually some way from the line of 	-stability and will decay by a series

of steps. For example, 145
57La decays to the 	-stable 145

60Nd by three stages, releasing a

further 8.5 MeV of energy, which in this case is carried off by the electrons and

neutrinos emitted in 	-decay. Although the probability of fission increases with

increasing A, it is still a very rare process. For example, in 238
92U, the transition rate for

spontaneous fission is about 3 � 10�24 s�1 compared with about 5 � 10�18 s�1 for

�-decay, a branching fraction of 6 � 10�7. Spontaneous emission only becomes

dominant in very heavy elements with A � 270, as we shall now show.

To understand spontaneous fission we can again use the liquid drop model. In the

SEMF we have assumed that the drop (i.e. the nucleus) is spherical, because this

minimizes the surface area. However, if the surface is perturbed for some reason from

spherical to prolate, the surface term in the SEMF will increase and the Coulomb term

will decrease (assuming the volume remains the same) and the relative sizes of these

two changes will determine whether the nucleus is stable against spontaneous fission.

For a fixed volume we can parametrize the deformation by the semi-major and

semi-minor axes of the ellipsoid a and b, respectively as shown in Figure 2.14. One

possible parametrization that preserves the volume is

a ¼ R ð1 þ "Þ; b ¼ R=ð1 þ "Þ
1
2; ð2:70Þ

where " is a small parameter, so that

V ¼ 4

3
�R3 ¼ 4

3
� ab2: ð2:71Þ

13Fission in heavy nuclei was discovered by Otto Hahn, for which he received the 1944 Nobel Prize in
Chemistry.
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To find the new surface and Coulomb terms one has to find the expression for the

surface of the ellipsoid in terms of a and b and expand it in a power series in ". The

algebra is unimportant and the results are:

Es ¼ asA
2
3 1 þ 2

5
"2 þ . . .

� �
ð2:72aÞ

and

Ec ¼ acZ2A�1
3 1 � 1

5
"2 þ . . .

� �
: ð2:72bÞ

Hence the change in the total energy is

�E ¼ ðEs þ EcÞ � ðEs þ EcÞSEMF ¼ "2

5
2asA

2
3 � acZ2A�1

3

� �
: ð2:73Þ

If �E < 0, then the deformation is energetically favourable and fission can occur.

From Equation (2.73), this happens if

Z2

A
� 2as

ac

� 49; ð2:74Þ

where we have used experimental values for the coefficients as and ac given in

Equations (2.54). The inequality is satisfied for nuclei with Z > 116 and A � 270.

Spontaneous fission is a potential barrier problem and this is shown in Figure 2.15.

The solid line corresponds to the shape of the potential in the parent nucleus. The

activation energy shown in Figure 2.15 determines the probability of spontaneous

fission. To fission, the nucleus could in principle tunnel through the barrier, but the

fragments are large and the probability for this to happen is extremely small.14 For

heavy nuclei the activation energy is about 6 MeV, but disappears for very heavy

nuclei. For such nuclei, the shape of the potential corresponds closer to the dashed

line and the slightest deformation will induce fission.

R

b

a

Figure 2.14 Deformation of a heavy nucleus

14The special case of �-decay will be discussed in Chapter 7. There we will show that the lifetime for such
decays is expected to have an exponential dependence on the height of the fission barrier and this is observed
qualitatively in fission data.
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Another possibility for fission is to supply the energy needed to overcome the

barrier by a flow of neutrons. Because of the absence of a Coulomb force, a neutron

can get very close to the nucleus and be captured by the strong nuclear attraction.

The parent nucleus may then be excited to a state above the fission barrier and

therefore split up. This process is an example of induced fission. Neutron capture by

a nucleus with an odd neutron number releases not just some binding energy, but also

a pairing energy. This small extra contribution makes a crucial difference to nuclear

fission properties. For example, very low-energy (‘thermal’) neutrons can induce

fission in 235U, whereas only higher energy (‘fast’) neutrons induce fission in 238U.

This is because 235U is an even–odd nucleus and 238U is even–even. Therefore, the

ground state of 235U will lie higher (less tightly bound) in the potential well of its

fragments than that of 238U. Hence to induce fission, a smaller energy will be needed

for 235U than for 238U. In principle, fission may be induced in 235U using even zero-

energy neutrons.15

We consider this quantitatively as follows. The capture of a neutron by 235U

changes an even–odd nucleus to a more tightly bound even–even (compound)

nucleus of 236U and releases the binding energy of the last neutron. In 235U this is

6.5 MeV. As the activation energy (the energy needed to induce fission) is about

5 MeV for 236U, neutron capture releases sufficient energy to fission the nucleus. The

kinetic energy of the incident neutron is irrelevant and even zero-energy neutrons

can induce fission in 235U. In contrast, neutron capture in 238U changes it from an

even–even nucleus to an even–odd nucleus, i.e. changes a tightly bound nucleus to a

less tightly bound one. The energy released (the binding energy of the last neutron) is

about 4.8 MeV in 239U and is less than the 6.5 MeV required for fission. For this

reason, fast neutrons with energy of at least the difference between these two

energies are required to fission 238U.

Figure 2.15 Potential energy during different stages of a fission reaction

15Enrico Fermi was a pioneer in the field of induced fission and received the 1938 Nobel Prize in Physics for
‘demonstrations of the existence of new radioactive elements produced by neutron irradiation, and for his
related discovery of nuclear reactions brought about by slow neutrons’. Fermi’s citation could equally have
been about his experimental discoveries and theoretical work in a wide range of areas from nuclear and
particle physics to solid-state physics and astrophysics. He was probably the last ‘universal physicist’.
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2.8 c-Decays

When a heavy nucleus disintegrates by either�- or	-decay, or by fission, the daughter

nucleus is often left in an excited state. If this state is below the excitation energy for

fission, it will de-excite, usually by emitting a high-energy photon. The energy of these

photons is determined by the average energy level spacings in nuclei and ranges from a

few to several MeV. They are in the gamma ray (�) part of the electromagnetic

spectrum. Because �-decay is an electromagnetic process, we would expect the

typical lifetime of an excited state to be �10�16 s. In practice, lifetimes are very

sensitive to the amount of energy released in the decay and in the nuclear case other

factors are also very important, particularly the quantity of angular momentum carried

off by the photon. Typical lifetimes of nuclear levels are about �10�12 s.

The role of angular momentum in �-decays is crucial. If the initial (excited)

state has a total spin Si and the final nucleus has a total spin Sf , then the total

angular momentum J of the emitted photon is given by

J ¼ Si � Sf ; ð2:75Þ

with

Si þ Sf � J � jSi � Sf j; ð2:76Þ

where S ¼ jSj; J ¼ jJj. In addition,

mi ¼ M þ mf ; ð2:77Þ

where m are the corresponding magnetic quantum numbers. Both total angular

momentum and its magnetic quantum number are conserved in �-decays.

�-decays are further complicated because parity is conserved in these electro-

magnetic processes. Both the initial and final nuclear level will have an intrinsic

parity, as does the photon, and in addition there is a parity associated with the angular

momentum carried off by the photon, which is of the form ð�1ÞJ
, reflecting the

symmetry of the angular part of the wavefunction (see Equation (1.14)). We will not

pursue this further here, but defer a more detailed discussion until Chapter 7.

2.9 Nuclear Reactions

In Chapter 1 and earlier sections of the present chapter we discussed various aspects

of reactions. In particle physics, because the projectiles and targets have relatively

simple structures, this is all that is required in classifying reactions. In nuclear

physics, however, because the target has a rich structure it is useful to classify

reactions in more detail. In this section we do this, drawing together our previous

work and also anticipating some reactions that will be encountered in later chapters.
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Elastic scattering reactions were defined in Chapter 1 as those interactions where

the initial and final particles are identical, i.e. a þ A ! a þ A. We also defined

inelastic scattering as the situation where the final particles are the same chemical

species, but one or more is in an excited state, e.g. a þ A ! a þ A� and in Section 2.1

we showed how the kinematics of such reactions could be used to determine the mass

of the excited state. Elastic and inelastic scattering are examples of so-called direct

reactions. These are defined as ones where the incident particle interacts in a time

comparable to the time taken to transit the nucleus. They are more likely when the

incident particle has an energy corresponding to a de Broglie wavelength closer to

the size of a nucleon rather than that of the nucleus. The collisions are largely

peripheral, with only a relatively small fraction of the available energy transferred to

the target. Another direct reaction is 16Oðp; dÞ15O, i.e.

p þ 16O ! d þ 15O; ð2:78Þ

where we have used the notation Aða; bÞB for the general nuclear reaction

a þ A ! b þ B. This is an example of a pick-up reaction, because one or more

nucleons (in this case a neutron) is stripped off the target nucleus and carried away

by the projectile. The ‘inverse’ of this reaction is 16Oðd; pÞ17O. This is an example of

a stripping reaction, because one or more nucleons (in this case again a neutron) is

stripped off the projectile and transferred to the target nucleus.

The theoretical interpretation of direct reactions is based on the assumption that

the projectile experiences the average potential of the target nucleus. For example,

we have seen in the optical model of Section 2.2.2 how this approach can be used to

analyse differential cross sections for elastic scattering and be used to extract

information about nuclear shapes and sizes. It also leads to the prediction of

resonances of width typically of order 1 MeV separated by a few MeV, as observed

in cross-section as functions of centre-of-mass energy for nucleon scattering from

light nuclei. One way of viewing this is as a consequence of the reaction time for a

direct reaction, typically 10�22 s , making use of the uncertainty relation between

energy and time, �E�t � �h.

A second important class of interactions is where the projectile becomes loosely

bound in the nucleus and shares its energy with all the nuclear constituents. This is

called a compound nucleus reaction. The time for the system to reach statistical

equilibrium depends on the nuclear species, the type of projectile and its energy, but

will always be much longer than the transit time and is typically several orders of

magnitude longer. An important feature of these reactions is that the properties of the

compound nucleus determine its subsequent behaviour and not the mechanism by

which it was formed. The compound nucleus is in an excited state and is inherently

unstable. Eventually, by a statistical fluctuation, one or more nucleons will acquire

sufficient energy to escape and the nucleus either emits particles or de-excites by

radiating gamma rays.

If the compound nucleus is created in a region of excitation where its energy

levels are well separated, the cross-section will exhibit well-defined resonances
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described by the Breit–Wigner formula of Section 1.6.3. These processes are

depicted schematically in the energy-level diagram of Figure 2.16, which corre-

spond to a þ A ! C� ! b þ B, where C� is the compound nucleus and

a þ A ! C� ! C þ �, where C is the ground state corresponding to the excited

state C�. In practice, there could be many final states to which C� could decay.

Because the time for a compound nucleus to reach statistical equilibrium is much

longer than the transit time for a direct reaction, the cross-sections for a compound

nucleus process can show variations on much smaller energy scales than those for

direct reactions. The density of levels in the compound nucleus is high, and so a very

small change in the incident energy suffices to alter completely the intermediate

states, and hence the cross section. An example is shown in Figure 2.17, which gives

the total cross-section for neutron scattering from 12C at neutron laboratory energies

of a few MeV. Peaks corresponding to resonance formation in 13C are clearly

identified. Their widths vary from a few tens to a few hundreds of keV, consistent

with the characteristic times for compound nucleus formation and decay.

Figure 2.16 Energy-level diagram showing the excitation of a compound nucleus C�and its
subsequent decay

Figure 2.17 Total cross-section for n12C interactions (adapted from Fo61. Copyright American
Physical Society.)
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The mean widths of compound nucleus excitations depend on the incident

energy and the target nucleus, decreasing both with energy and rapidly with

nuclear mass. Neutrons, because they are neutral, have a high probability of being

captured by nuclei and their cross-sections are rich in compound nucleus effects,

particularly at very low energies. This is discussed further below.

The division of reactions into direct and compound nucleus is not exhaustive

and situations can occur where particles are ejected from the nucleus before full

statistical equilibrium has been reached. Also, in the collisions of complex heavy

ions, there is an appreciable probability for an additional reaction mechanism

called deep inelastic scattering that is intermediate between direct and compound

nucleus reactions. In this case, the probability for complete fusion of the colliding

ions is small, but there can be substantial transfer of the incident kinetic energy to

internal excitations of the ions. We will not discuss this or other mechanisms further,

but we will encounter the concept of deep inelastic scattering again in Chapter 5 in

the context of exploring the internal structure of nucleons. In practice, the various

mechanisms feed the same final states as direct reactions. This is illustrated

schematically in Figure 2.18 for reactions initiated using protons as the projectile.

The general form of the yield NðEÞ of secondary particles at a fixed angle as a

function of the outgoing energy E, i.e. the number of particles with energy E

between E and E þ dE, is shown schematically in Figure 2.19 for the case of an

incident nucleon. At the upper end of the plot (which corresponds to low-incident

nucleon energies) there are a number of distinct peaks due to elastic, inelastic and

transfer reactions. Then as the excitation energy is reduced, the more closely-

spaced energy levels in the final nucleus are not fully resolved because of the

spread in energy of the incident beam and the uncertainty in the experimental

measurements of energy. At the lowest energies there is a broad continuum mainly

due to the decays of compound nuclei formed by the absorption of the projectile

nucleon by the target nucleus. The differential cross-sections for the two processes

will be very different. Direct reactions lead to a cross-section peaked in the

forward direction, falling rapidly with angle and with oscillations, as we have seen

Figure 2.18 Direct and compound nucleus reactions in nuclear reactions initiated by protons
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in the case of elastic scattering in Section 2.2 (Figure 2.3). On the other hand, the

contribution from the compound nucleus at low energies where an isolated

compound nucleus is formed is fairly isotropic and symmetric about 90�.

Many medium- and large-A nuclei can capture low-energy (�ð10�100Þ eV)

neutrons very readily. The neutron separation energy for the final nucleus is

� 6 MeV and thus capture leads to a compound nucleus with an excitation energy

above the ground state by this separation energy. Such excitation often occurs in a

region of high density of narrow states that show up as a rich resonance structure in

the corresponding neutron total cross-section. An example is shown in Figure 2.20.

The value of the cross-section at the resonance peaks can be many orders of

Figure 2.19 Typical spectrum of energies of the nucleons emitted at a fixed angle in inelastic
nucleon--nucleus reactions

Figure 2.20 Total cross-section for neutron interactions with 238U, showing many very narrow
resonances (with intrinsic widths of order 10�2 eV) corresponding to excited states of 239U (from
Ga76, courtesy of Brookhaven National Laboratory)
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magnitude greater than the geometrical cross-section based on the size of the

nucleus. This is because the cross-section is determined dominantly by the area

associated with the wavelength 
 of the projectile, i.e. �
2, which is very large

because 
 is large.

Once formed, the compound nucleus can decay to any final state consistent with

the relevant conservation laws. If this includes neutron emission, it will be the

preferred decay. However, for production by very slow (thermal) neutrons with

energies of the order of 0.02 eV, the available decay kinetic energy will reflect the

initial energy of the projectile, which is very small. Therefore, in these cases,

photon emission is often preferred. We shall see in Chapter 8 that the fact that

radiative decay is the dominant mode of decay of compound nuclei formed by

thermal neutrons is important in the use of nuclear fission to produce power in

nuclear reactors.

Problems

2.1 Electrons with momentum 330 MeV/c are elastically scattered through an angle of

10� by a nucleus of 56Fe. If the charge distribution on the nucleus is assumed to be

that of a uniform hard sphere, and assuming the Born approximation is valid, by

what factor would you expect the Mott cross-section to be reduced?

2.2 Show explicitly that Equation (2.28) follows from Equation (2.26).

2.3 A beam of electrons with energies 250 MeV is scattered through an angle of 10� by a

heavy nucleus. It is found that the differential cross-section is 65 per cent of that

expected from scattering from a point nucleus. Estimate the root mean square radius

of the nucleus.

2.4 Find the form factor for a charge distribution �ðrÞ ¼ �0expð�r=aÞ=r, where �0 and a

are constants.

2.5 A sample of 1 g of a radioactive isotope of atomic weight 208 decays via 	-emission

and 75 counts are recorded in a 24 h period. If the detector efficiency is 10 per cent,

estimate the mean life of the isotope.

2.6 A 1 g sample taken from an organic artefact is found to have a 	 count rate of 2.1

counts per min, which are assumed to originate from the decay of 14C with a mean

lifetime of 8270 years. If the abundance of 14C in living matter is currently

1:2 � 10�12, what can you deduce about the approximate age of the artefact?

2.7 Nuclei of 212
86Rn decay by �-emission to 208

84Po with a mean life of 23.9 min. The
208

84Po nuclei in turn decay, also by �-emission, to the stable isotope 204
82Pb with a

mean life of 2.9 years. If initially the source is pure 212
86Rn, how long will it take for

the rate of �-emission in the final decay to reach a maximum?
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2.8 Natural lanthanum has an atomic weight of 138.91 and contains 0.09 per cent of the

isotope 138
57La. This has two decay modes: 138

57La ! 138
58Ce þ e� þ ���e ð	-decayÞ and

138
57La þ e� ! 138

56Ba� þ �e (electron capture), followed by the electromagnetic

decay of the excited state 138
56Ba� ! 138

56Ba þ � (radiative decay). There are

7:8 � 102 	-particles emitted per s per kg of natural lanthanum and there are

50 photons emitted per 100 	-particles. Estimate the mean lifetime of 138
57La.

2.9 Use the SEMF to estimate the energy released in the spontaneous fission reaction

235
92U ! 87

35Br þ 145
57La þ 3n:

2.10 The most stable nucleus with A ¼ 111 is 111
48Cd (see Figure 2.12). By what

percentage would the fine structure constant � have to change if the most stable

nucleus with A ¼ 111 were to be 111
47Ag? Assume that altering � does not change

particle masses.

2.11 The transuranic isotope 269
108Hs decays 100 per cent via �-emission with a lifetime of

27 s, i.e. 269
108Hs ! 265

106Sg þ �, where the kinetic energy of the �-particle is

E� ¼ 9:23 MeV. Calculate the mass of the 269
108Hs nucleus in atomic mass units.

2.12 The isotope 238
94Pu decays via �-emission to the essentially stable isotope 234

92U with a

lifetime of 126.7 years and a release of 5.49 MeV of kinetic energy. This energy is

converted to electrical power in a space probe designed to reach planet X in a

journey planned to last 4 years. If the efficiency of power conversion is 5 per cent

and on reaching planet X the probe requires at least 200 W of power to perform its

landing tasks, how much 238
94Pu would be needed at launch?

2.13 On planet X it is found that the isotopes 205Pbð
 ¼ 1:53 � 107yÞ and 204Pb (stable)

are present with abundances n205 and n204, with n205=n204 ¼ 2 � 10�7. If at the time

of the formation of planet X both isotopes were present in equal amounts, how old is

the planet?

2.14 The reaction 45
21Scðd; pÞ46

21Sc has a Q-value of 6.54 MeV and a resonance when the

incident deuteron laboratory kinetic energy is 2.76 MeV. Would you expect the same

resonance to be excited in the reaction 43
20Cað�; nÞ46

22Ti and if so at what value of the

laboratory kinetic energy of the alpha particle? You may use the fact that the 	-

decay 46
21Sc ! 46

22Ti þ e� þ ���e has a Q-value of 2.37 MeV and the mass difference

between the neutron and a hydrogen atom is 0.78 MeV=c2.

2.15 A radioisotope with decay constant 
 is produced at a constant rate P. Show that the

number of atoms at time t is NðtÞ ¼ P½1 � expð�
tÞ�=
.

2.16 Radioactive 36Cl (half-life 3 � 105 years) is produced by irradiating 1 g of natural

nickel chloride (NiCl2, molecular weight 129.6) in a neutron beam of flux

F ¼ 1014cm�2s�1. If the neutron absorption cross-section 35Clðn; �Þ36Cl is

� ¼ 43:6 b and 75.8 per cent of natural chlorine is 35Cl, use the result of Problem

2.15 to estimate the time it would take to produce a 3 � 105 Bq source of 36Cl.
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2.17 Consider the total cross-section data for the n238U interaction shown in Figure 2.20.

There is a resonance R at the centre-of-mass neutron kinetic energy En ¼ 10 eV with

width � ¼ 10�2 eV and the total cross-section there is �max ¼ 9 � 103 b. Use this

information to find the partial widths �n;� for the decays R ! n þ 238U and

R ! � þ 238U, if these are the only two significant decay modes. The spin of the

ground state of 238U is zero.
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