Reg. No.:	Code No. 9016
Nama	·

Second Year - March 2018

Time: 2 Hours Cool-off time: 15 Minutes

Part - III

CHEMISTRY

Maximum: 60 Scores

General Instructions to Candidates:

- There is a 'Cool-off time' of 15 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതുനിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- 'കൂൾ ഓഫ് ടൈം' ചോദ്യങ്ങൾ പരിചയപ്പെടാനും ഉത്തരങ്ങൾ ആസൂത്രണം ചെയ്യാനും ഉപയോഗിക്കുക.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- നിർദ്ദേശങ്ങൾ മുഴുവനും ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നല്ലിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാക്യങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

1.	What is the co-ordination number of particles present in FCC crystal s	structure?
2.	Identify the order of reaction if the unit of rate constant is mol L^{-1} s ⁻¹ .	
3.	What is the structure of chromate ion $((CrO_4)^{2-})$?	
4.	Name the test used to identify primary amines using $CHCl_3$ and ethan	olic KOH.
5.	Which among the given vitamins is water soluble?	
	(a) A	
	(b) B	
	(c) D	
	(d) E	
6.	What is the crosslinked polymer obtained by the polymerisation formaldehyde?	n of phenol and
7.	is an artificial sweetner which is unstable at cooking tem	perature.
	(Questions 8 to 20): Answer any ten. Each question carries two sco	ores.
		$(Scores: 10 \times 2 = 20)$
8.	(a) Based on the nature of intermolecular forces, classify the follow	ing solids :
	(i) SiO_2	
	(ii) Ice	(Score: 1
	(b) ZnO turns yellow on heating. Why?	(Score: 1
9.	A solution contains 15 g urea (molar mass = 60 g mol ⁻¹) per litre of has the same osmotic pressure as a solution of glucose (molar mass water. Calculate the mass of glucose present in one litre of its solution	$= 180 \text{ g mol}^{-1}) \text{ in}$
10.	Define minimum boiling azeotropes with example.	(Scores : 2

(Questions 1 to 7): Carry one score each. Answer all questions. (Scores: $7 \times 1 = 7$)

- 1 മുതൽ 7 വരെ ചോദ്യങ്ങൾക്ക് ഓരോന്നിനും ഓരോ സ്കോർ വീതം. എല്ലാ ചോദ്യങ്ങൾക്കും ഉത്തരമെഴുതുക. (സ്കോർസ്: $7 \times 1 = 7$)
- 1. FCC ക്രിസ്റ്റലീയ ഘടനയുടെ അടിസ്ഥാന ഘടകങ്ങളുടെ കോ-ഓർഡിനേഷൻ സംഖൃ എത്ര ?
- 2. റേറ്റ് സ്ഥിരാങ്കത്തിന്റെ യൂണിറ്റ് $\mod L^{-1} \ {
 m s}^{-1}$ ആയ ഒരു രാസപ്രവർത്തനത്തിന്റെ ഓർഡർ തിരിച്ചറിയുക.
- 3. ക്രോമേറ്റ് അയോണിന്റെ $((\operatorname{CrO}_4)^{2-})$ ഘടന എന്ത്?
- 4. $\mathrm{CHC}l_3$ യും എത്തനോൾ ചേർത്ത KOH ഉപയോഗിച്ച് പ്രൈമറി അമീനുകളെ തിരിച്ചറിയുന്ന പരീക്ഷണത്തിന്റെ പേര് എഴുതുക.
- 5. തന്നിരിക്കുന്ന വൈറ്റമിനുകളിൽ ജലത്തിൽ ലയിക്കുന്നത് ഏത് ?
 - (a) A
 - (b) B
 - (c) D
 - (d) E
- 6. ഫിനോളും, ഫോർമാൽഡിഹൈഡും പോളിമെറൈസേഷൻ നടത്തിയാൽ ലഭിക്കുന്ന പരസ്പര ബന്ധിത പോളിമർ ഏത്?
- 7. പാചകം ചെയ്യാവുന്ന ഊഷ്മാവിൽ സ്ഥിരതയില്ലാത്ത മധുരം നല്ലുന്ന കൃത്രിമ രാസവസ്തുവാണ് ______.
 - 8 മുതൽ -20 വരെ ചോദ്യങ്ങളിൽ ഓരോന്നിനും രണ്ട് സ്കോർ വീതം. ഏതെങ്കിലും പത്തെണ്ണത്തിനു ഉത്തരമെഴുതുക. (സ്കോർസ്: $10 \times 2 = 20$)
- 8. (a) തന്മാത്രകളുടെ പരസ്പര ബന്ധനത്തിന്റെ സ്വഭാവത്തിന്റെ അടിസ്ഥാനത്തിൽ താഴെ കൊടുത്തിരിക്കുന്ന ഖരവസ്സുക്കൾ തരം തിരിക്കുക. :
 - (i) SiO₂
 - (ii) Ice (cmpod: 1)
 - (b) ചൂടാക്കിയാൽ ZnO മഞ്ഞനിറമാകുന്നു. എന്തുകൊണ്ട് ? (സ്കോർ : 1)
- 9. 15 g യൂറിയ (മോളിക്കുളാർ മാസ് : 60 g mol⁻¹) ഒരു ലിറ്റർ ജലത്തിൽ ലയിപ്പിച്ച ലായനിക്കും, ഗ്ലൂക്കോസ് (മോളിക്കുളാർ, മാസ് : 180 g mol⁻¹) ന്റെ ജലീയ ലായനിക്കും ഒരേ ഓസ്മോട്ടിക് മർദ്ദമാണുള്ളത്. എങ്കിൽ ഗ്ലൂക്കോസിന്റെ ഒരു ലിറ്റർ ജലീയ ലായനിയിൽ അടങ്ങിയിരിക്കുന്ന ഗ്ലൂക്കോസിന്റെ അളവ് കണക്കാക്കുക. (സ്കോർസ് : 2)
- 10. മിനിമം ബോയിലിംഗ് ആസിയോട്രോപ്പുകൾ എന്തെന്ന് ഉദാഹരണ സഹിതം നിർവ്വചിക്കുക. (സ്കോർസ്: 2)

- 11. Write the chemical equation of the following reactions:
 - (a) Preparation of XeO₃ from XeF₆.

(Score: 1)

(b) Mixing PtF₆ and Xe.

- (Score: 1)
- 12. Explain how the complexes of nickel, $[Ni(CN)_4]^{2-}$ and $[Ni(CO)_4]$ have different structures, but do not differ in their magnetic behaviour. (Ni, Atomic No : 28) (Scores : 2)
- 13. Complete the reaction:

(a)
$$CH_3CH_2Br \xrightarrow{AgCN}$$
 (Score:1)

(b)
$$CH_3CH_2Br \xrightarrow{N}$$
 (Score : 1)

- 14. During the β-elimination reaction of 2-bromopentane in an alcoholic solution of KOH results Pent-2-ene as major product and Pent-1-ene as minor product. State the rule to explain the reaction. (Scores: 2)
- 15. Aromatic aldehydes undergo electrophilic substitution reactions. Write the nitration reaction of benzaldehyde with chemical equation. (Scores: 2)
- 16. Briefly describe Gatterman Koch reaction.

(Scores: 2)

17. How can it convert methyl iodide to ethanamine?

(Scores : 2)

18. State two differences between globular and fibrous proteins.

(Scores: 2)

19. Match the following:

(a)	Polyacrylonitrile	(i)	Terylene
(b)	1, 3-Butadien-Acrylonitrile	(ii)	Natural Rubber
(c)	Ethylene glycol-Terephthalic acid	(iii)	Buna-N
(d)	cis-1, 4-polyisoprene	(iv)	Acrilan

(Scores: 2)

20. (a) What are drugs?

(Score : 1)

(b) Write an example for a drug classified based on its chemical structure.

(Score: 1)

11.	. താഴെ കൊടുത്തിരിക്കുന്ന രാസ പ്രവർത്തനങ്ങളുടെ രാസ സമവാക്യം എഴുതുക. $ \hbox{ (a)} XeF_6 \ {\it cm} \ n \ {\it cm} $							
12.	ഘടന	ലിന്റെ സംയുക്തങ്ങളായ [Ni(o റകളാണെങ്കിലും കാന്തിക സ്വഭാവത്തി റൽ, ആറ്റോമിക് നമ്പർ : 28)		•	(0)			
13.	(a)	പ്രവർത്തനം പൂർത്തീകരിക്കുക : $\mathrm{CH_3CH_2Br} \xrightarrow{\mathrm{AgCN}} \underline{\hspace{1cm}}$ $\mathrm{CH_3CH_2Br} \xrightarrow{\mathrm{N}} \underline{\hspace{1cm}}$ $\mathrm{Dry\ ether}$			(സ്കോർ : 1) (സ്കോർ : 1)			
14.	β-എ£ പ്രധാ	mopentane, KOH-ന്റെ ആൽക്കഹോ ലിമിനേഷൻ പ്രവർത്തനം മൂലം Pen ന ഉല്പന്നമായും ലഭിക്കുന്നു. ഈ റവിക്കുക.	t-2-ene	പ്രധാന ഉല്പന്നമാര	ນຽວ, Pent-1-ene			
15.	പ്രവർ	ാമാറ്റിക് ആൽഡിഹൈഡുകൾ ത്തനങ്ങൾ കാണിക്കുന്നു. ഒ പവർത്തനം രാസ സമവാകൃമായി എ	വൻസാ	ാൽഡിഹൈഡിന്റെ	സബ്സ്റ്റിറ്റ്യൂഷൻ നൈട്രേഷൻ (സ്കോർസ് : 2)			
16.	ഗട്ടർമ	റാൻ-കോച്ച് രാസപ്രവർത്തനം ചുരുക്ക്	ി വിശദീ	lകരിക്കുക.	(സ്കോർസ്: 2)			
17.	മീരൈ	തൻ അയോഡൈഡ് എത്തനാമൈൻ ര	ആക്കി മ	മാറ്റുന്നതെങ്ങനെ ?	(സ്കോർസ്: 2)			
18.	. ഗ്ലോബുലാർ പ്രോട്ടീനുകളും ഫൈബ്രസ് പ്രോട്ടീനുകളും തമ്മിലുള്ള രണ്ട് വൃതൃാസങ്ങൾ എഴുതുക. (സ്കോർസ്: 2)							
19.	ചേരു	പടി ചേർക്കുക :						
	(a)	Polyacrylonitrile	(i)	Terylene				
	(b)	1, 3-Butadien-Acrylonitrile	(ii)	Natural Rubber]			
	(c)	Ethylene glycol-Terephthalic acid	(iii)	Buna-N]			
	(d)	cis-1, 4-polyisoprene	(iv)	Acrilan				

(സ്കോർസ്: 2)

20. (a) മരുന്നുകൾ എന്നാൽ എന്ത് ? (സ്കോർ : 1)

(b) രാസഘടനയുടെ അടിസ്ഥാനത്തിൽ തരം തിരിച്ച മരുന്നുകൾക്ക് ഒരു ഉദാഹരണം എഴുതുക. (സ്കോർ : 1)

(Questions 21 to 29): Answer any seven. Each question carries three scores.

(Scores: $7 \times 3 = 21$)

21. An element crystallises as FCC with density 2.8 g cm $^{-3}$. Its unit cell having edge length 4×10^{-8} cm. Calculate the molar mass of the element. (Given $N_A = 6.022 \times 10^{23}$ mol $^{-1}$)

(Scores: 3)

- 22. Write the anode and cathode reactions occur in the operation of a lead storage battery.

 Mention the electrolyte used in the battery.

 (Scores: 3)
- For hydrolysis of methyl acetate in aqueous solution, the following results were observed.

t/s	0	30	60
CH ₃ COOCH ₃	0.60	0.30	0.15
C/mol L ⁻¹			

Show that it follows pseudo first order reaction as the concentration of water remains constant. (Scores: 3)

24. (a) State Hardy-Schulze rule with the help of example.

(Scores: 2)

(b) Why lyophilic colloids are used as protective colloids?

(Score: 1)

25. Gibbs energy of formation ($\Delta_f G$) of $MgO_{(s)}$ and $CO_{(g)}$ at 1273 K and 2273 K are given below :

$$\Delta_{\rm f} G \, [{
m MgO}_{(s)}] : -941 \; {
m kJ \; mol^{-1}} \; {
m at \; 1273 \; K}$$

$$\Delta_{\rm f} G \left[{\rm CO}_{(g)} \right] : -439 \ {\rm kJ \ mol^{-1}} \ {\rm at} \ 1273 \ {\rm K}$$

$$\Delta_{\rm f} G \ [{
m MgO}_{({
m s})}] : -314 \ {
m kJ \ mol}^{-1}$$
 at 2273 K

$$\Delta_{\rm f} G \ [{\rm CO_{(g)}}] : -628 \ {\rm kJ \ mol^{-1}} \ {\rm at} \ 2273 \ {\rm K}$$

On the basis of the above data, predict the temperature at which carbon can be used as a reducing agent for $MgO_{(s)}$. (Scores: 3)

- 21 മുതൽ 29 വരെ ചോദ്യങ്ങളിൽ ഏഴെണ്ണത്തിന് ഉത്തരമെഴുതുക. ഓരോന്നിനും മൂന്ന് സ്കോർ. (സ്കോർസ് : $7 \times 3 = 21$)
- 21. ഒരു മൂലകം FCC-യായി ക്രിസ്റ്റലീകരിക്കപ്പെട്ടപ്പോൾ അതിന്റെ സാന്ദ്രത $2.8~{
 m g~cm^{-3}}$ ആയി. ക്രിസ്റ്റലിൽ യൂണിറ്റ് സെല്ലിന്റെ അഗ്രനീളം $4\times 10^{-8}~{
 m cm}$. എങ്കിൽ മൂലകത്തിന്റെ മോളാർ മാസ് കണക്കാക്കുക. ($N_A=6.022\times 10^{23}~{
 m mol^{-1}}$) (സ്കോർസ്: 3)
- 22. ലെഡ് സ്റ്റോറേജ് ബാറ്ററിയിലെ ആനോഡിലെയും കാഥോഡിലെയും രാസ പ്രവർത്തനങ്ങൾ എഴുതുക. ബാറ്ററിയിൽ ഉപയോഗിക്കുന്ന ഇലക്ട്രോലൈറ്റ് ഏതെന്ന് എഴുതുക. (സ്കോർസ്: 3)
- 23. മീതെൽ അസിറ്റേറ്റിന്റെ ജലീയ ലായനിയെ ഹൈഡ്രോളിസിസ് നടത്തിയപ്പോൾ ലഭിച്ച നിരീക്ഷണങ്ങൾ ചുവടെ ചേർത്തിരിക്കുന്നു.

t/s	0	30	60
CH ₃ COOCH ₃	0.60	0.30	0.15
C/mol L ⁻¹			

ജലത്തിന്റെ ഗാഢത സ്ഥിര സംഖ്യയായി തുടരുന്നുവെങ്കൽ ഈ പ്രവർത്തനം ഒരു സ്യൂഡോ ഫസ്റ്റ് ഓർഡർ പ്രവർത്തനമാണെന്ന് തെളിയിക്കുക. (സ്കോർസ്: 3)

- 24. (a) ഹാർഡി-ഷ്യൂൽസ് നിയമം ഉദാഹരണ സഹിതം പ്രസ്താവിക്കുക. (സ്കോർസ്: 2)
 - (b) ലയോഫിലിക് കൊളോയിഡുകൾ എന്തുകൊണ്ടാണ് പ്രൊട്ടെക്ലീവ് കൊളോയിഡു-കളായി ഉപയോഗപ്പെടുത്തുന്നത് ? (സ്കോർ : 1)
- 25. 1273 K ഊഷ്ഗാവിലും 2273 K ഊഷ്ഗാവിലും, ${
 m MgO}_{({
 m s})}$ ന്റെയും ${
 m CO}_{({
 m g})}$ ന്റെയും ഗിബ്സ് ഫ്രീ എനർജി ഓഫ് ഫോർമേഷൻ ($\Delta_{
 m f} G$) താഴെ കൊടുക്കുന്നു :

 $\Delta_{\rm f} G \ [{\rm MgO}_{(s)}] : -941 \ kJ \ mol^{-1}$ at 1273 K

 $\Delta_f G \; [CO_{(g)}] : -439 \; kJ \; mol^{-1}$ at 1273 K

 $\Delta_f G [MgO_{(s)}] : -314 \text{ kJ mol}^{-1} \text{ at } 2273 \text{ K}$

 $\Delta_f G [CO_{(g)}] : -628 \text{ kJ mol}^{-1} \text{ at } 2273 \text{ K}$

മുകളിൽ സൂചിപ്പിച്ച വിലകളുടെ അടിസ്ഥാനത്തിൽ ഏത് ഊഷ്മാവിലാണ് ${
m MgO}_{({
m s})}$ ന്റെ നിരോക്സീകാരിയായി കാർബൺ ഉപയോഗിക്കപ്പെടുന്നത്. (സ്കോർസ് : 3)

	(b)	How phosphine is prepared in laboratory?	(Scores: 2)
27.	Assi	gn the possible reason for the following:	
	(a)	Stability of +5 oxidation state decreases and that of +3 oxidation state	increases
		down to 15 th group elements.	(Score : 1)
	(b)	H ₂ O is less acidic than H ₂ S.	(Score: 1)
	(c)	H ₃ PO ₂ act as a good reducing agent while H ₃ PO ₄ does not.	(Score : 1)
28.	Give	e reasons for the following:	
	(a)	Transition metals and many of their compounds act as catalyst.	(Score: 1)
	(b)	Scandium ($Z = 21$) does not exhibit variable oxidation state and yet it is	regarded
		as a transition element.	(Score: 1)
	(c)	Write the step involved in the preparation of Na ₂ CrO ₄ from chromite ore.	(Score : 1)
29.	Hov	would you account for the following:	
	(a)	Aldehydes are more reactive than ketones towards nucleophilic	addition
		reaction.	(Score: 1)
	(b)	Boiling point of aldehydes are lower than alcohols.	(Score: 1)
	(c)	Addition reaction of sodium hydrogen sulphite is useful for separa	tion and
		purification of aldehydes.	(Score : 1)
	(Qu	estions 30 to 33): Answer any three. Each question carries four scores	
		(Scores	$: 3 \times 4 = 12)$
30.	(a)	What are primary batteries?	(Score: 1)
	(b)	The cell potential of a mercury cell is 1.35 V, and remain constant durin	g its life.
		Give reason.	(Score : 1)
	(c)	Write the equations of the reactions involved at each electrode in a H_2	- O ₂ fuel
		cell.	(Scores: 2)
9016	6	8	

(Score: 1)

26. (a) What is the formula of phosphine?

- 26. (a) ഫോസ്ഫൈന്റെ രാസവാക്യം എന്ത് ? (സ്കോർ: 1) (b) പരീക്ഷണശാലയിൽ ഫോസ്ഫൈൻ നിർമ്മിക്കുന്നതെങ്ങനെ ? (സ്കോർസ്: 2) താഴെ കൊടുത്തിരിക്കുന്നവയുടെ കാരണം സൂചിപ്പിക്കുക : 15-ാം ഗ്രൂപ്പു മൂലകങ്ങളിൽ ഗ്രൂപ്പിനു മുകളിൽ നിന്നും താഴേക്കു വരുന്തോറും, +5 ഓക്സീകരണാവസ്ഥയുടെ സ്ഥിരത കുറയുകയും +3 യുടെ സ്ഥിരത കൂടുകയും ചെയ്യുന്നു. (സ്കോർ : 1) $\mathrm{H_2S}$ നെക്കാളും അമ്ല സ്വഭാവം കുറഞ്ഞ സംയുക്തമാണ് $\mathrm{H_2O}$. (സ്കോർ : 1) (b) H_3PO_2 ഒരു നല്ല നിരോക്സീകാരിയാണ്. എന്നാൽ H_3PO_4 നിരോക്സീകാരി അല്ല. (c) (സ്കോർ : 1) 28. കാരണം കാണിക്കുക : (a) സംക്രമണ ലോഹങ്ങളും അവയുടെ ചില സംയുക്തങ്ങളും ഉൽപ്രേരകങ്ങളാണ്. (സ്കോർ : 1) (b) സ്കാന്റിയം (Z = 21) വ്യത്യസ്ത ഓക്സീകരണാവസ്ഥ കാണിക്കാതിരുന്നിട്ടും ഒരു സംക്രമണ മൂലകമായി കണക്കാക്കുന്നു. (സ്കോർ : 1) (c) ക്രോമൈറ്റ് അയിരിൽ നിന്നും $\mathrm{Na_2CrO_4}$ നിർമ്മിക്കുന്ന വിധം എഴുതുക. (സോർ: 1) 29. താഴെ കൊടുത്തിരിക്കുന്നവയെ എങ്ങനെ വിലയിരുത്താം : ന്യൂക്ലിയോഫിലിക് അഡിഷൻ ആൽഡിഹൈഡുകൾ, പ്രവർത്തനങ്ങളിൽ, കീറ്റോണുകളെക്കാൾ പ്രവർത്തന മികവു കാണിക്കുന്നു. (സ്കോർ : 1) (b) ആൽക്കഹോളുകളെക്കാളും തിളനില കുറവാണ് ആൽഡിഹൈഡുകൾക്ക്. (സ്കോർ : 1) (c) സോഡിയം ഹൈഡ്രജൻ സൾഫൈറ്റുമായുള്ള അഡീഷൻ പ്രവർത്തനം ആൽഡി-ഹൈഡുകളുടെ വേർതിരിക്കലിനും ശുദ്ധീകരണത്തിനും ഉപയോഗിക്കുന്നു. (സ്കോർ : 1)
- 30 മുതൽ 33 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും മുന്നെണ്ണത്തിന് ഉത്തരമെഴുതുക. (സ്കോർസ്: $3 \times 4 = 12$) ഓരോന്നിനും നാലു സ്കോർ. 30. പ്രൈമറി ബാറ്ററികൾ എന്നാൽ എന്ത് ? (സ്കോർ: 1)

(a)

- ഒരു മെർക്കുറി സെല്ലിന്റെ സെൽ പൊട്ടൻഷ്യൽ 1.35 V അതിന്റെ അവസാനം (b) വരെ തുടർച്ചയായി ലഭിക്കുന്നു. കാരണം വിശദീകരിക്കുക. (സോർ : 1)
- $\mathrm{H_2}-\mathrm{O_2}$ ഫ്യൂവൽ സെല്ലിലെ ഓരോ ഇലക്ട്രോഡുകളിലുമുള്ള രാസ സമവാക്യം (സ്കോർസ്: 2) എഴുതുക.

- 31. (a) Draw the structures of geometrical isomers of $[Fe(NH_3)_2(CN)_4]^-$ (Scores : 2)
 - (b) Write the formula of pentaamminecarbonatocobalt (III) chloride. (Score: 1)
 - (c) Write any two limitations of valance bond theory. (Score: 1)
- 32. (a) Grignard reagents are important class of organometallic compounds used to prepare alcohols. Identify the compounds A and B and write the formula.

(i) HCHO + CH₃MgBr
$$\xrightarrow{\text{(1) Dry ether}}$$
 A + Mg(OH)Br

(ii)
$$B + CH_3MgBr \xrightarrow{(1) Dry \text{ ether}} CH_3 - CH - OH + Mg(OH)Br$$
 (Scores : 2) CH_3

- (b) Write the name of products formed when salicylic acid is treated with acetic anhydride in acid medium. (Scores: 2)
- 33. Lucas test is used to identify primary, secondary and tertiary alcohols.
 - (a) Explain the process.
 - (b) Name the reagents used in the test. (Scores: 4)

- 31. (a) $[{\rm Fe}({\rm NH_3})_2({\rm CN})_4]^-$ തരുന്ന ജിയോമെട്രിക്കൽ ഐസോമെറുകളുടെ ഘടന വരയ്ക്കുക. (സ്കോർസ്: 2)
 - (b) രാസവാക്യം എഴുതുക.Pentaamminecarbonatocobalt (III) chloride. (സ്കോർ : 1)
 - (c) വാലൻസ് ബോണ്ട് സിദ്ധാന്തത്തിന്റെ രണ്ട് പോരായ്തകൾ എഴുതുക. (സ്കോർ : 1)
- 32. (a) ആൽക്കഹോളുകളുടെ നിർമ്മാണത്തിൽ ഉപയോഗിക്കുന്ന പ്രധാന രാസവസ്തു-ക്കളാണ് ഗ്രിഗ്നാർഡ് റിയേജന്റുകൾ. A, B എന്നിവ തിരിച്ചറിഞ്ഞ് രാസവാക്യം എഴുതുക.
 - (i) HCHO + CH₃MgBr $\xrightarrow{\text{(1) Dry ether}}$ A + Mg(OH)Br

(ii)
$$B + CH_3MgBr \xrightarrow{(1) Dry \ ether} CH_3 - CH - OH + Mg(OH)Br$$
 (cm) (cm)
$$CH_3$$

- (b) സാലിസിലിക് ആസിഡ്, അസറ്റിക് അൺഹൈഡ്രൈഡിന്റെ അമ്ലലായനിയുമായി ചേർന്നാൽ ലഭിക്കുന്ന ഉല്പന്നത്തിന്റെ പേരെഴുതുക. (സ്കോർസ്: 2)
- 33. പ്രൈമറി, സെക്കന്ററി, ടേർഷൃറി ആൽക്കഹോളുകളെ തിരിച്ചറിയുന്നതിനുപയോഗി-ക്കുന്ന ഒരു പരീക്ഷണമാണ് ലൂക്കാസ് പരീക്ഷണം.
 - (a) പരീക്ഷണം വിവരിക്കുക.
 - (b) പരീക്ഷണത്തിൽ ഉപയോഗിക്കുന്ന രാസവസ്തുക്കളുടെ പേരെഴുതുക. (സ്കോർസ്: 4)

SECOND YEAR HIGHER SECONDARY EXAMINATION MARCH 2018

SUBJECT: CHEMISTRY-II

CODE. NO: 9016

Qn No	Sub Qns	Answer Key/Value Points	Score	Total
1.		12	•	1
2,		Zero order	i	1
3.	I	Tetrahedral structure figure	1	; 1
н.	1	Carbylamine Test isocyamide test	1	1
5.		(b) B	ſ	1
6.	!	Bakelile Phenol formalde hyde vesin	1	: ! ! ;
	İ	Novalac		
7.		Aspartame	f	1
 		Answer any lin from questions 8 lè 20 (each Carries livo Scores)		
8	a	(i) Covalent Network	1	
İ		(ii) Molecular Hydrogen bendect	1	2
' !	Ь.	Metal excess excess of Zn2+ presence of electron in intersticial Sile / Liber-	1	
i		ation of exygen Zno -> zn+10,† 2ë		
9.		TV = DRT	t	
		$\overline{\Pi}_1 = \overline{\Pi}_2$ $15 = \omega_2$	2	2
	: İ	$\frac{15}{60} = \frac{\omega_2}{180}$	•	
	,	w ₂ =45 only	i	
10		Definition of minimum boiling axeotrope! Constant boiling mixture eg; of the deviation Graph of the deviation	2	2

	•				
	Qn No	Sub Qns	Answer Key/Value Points	Score	Total
	11	a.	Xe F6+ 340 -> XeO3+64F	2	
			Hydrolysů of XeF6 Reaction of XeF6 with water	2	;
			Xe + Pt F6 -> Xe Pt F6	2_	2
			Fluorination of Xenon	2	
	12.		In [Ni(co)4] Ni having Lero Oxidation number with Sp3 Hybrichi Sathen	,	
	:	•	In [Ni(CN) ₄] ² - N; having +2 exidation number (Ni ^{2†}) with		
		· ©	18p2 hybridisation		
			[Ni(ca)4] _ Sp3 Hybridisation Tetrahedral	j	
		!	[Ni (en)4]2- dSP2 hybrichisation square	l	2
	;	B	both are diamagnétic all és are paired	ı	
	ı	لم و	both are diamognétic all és are paired b sence of un paired és correct explanation	9	
13	3.	Q .	CH3CH_NC ethyl isocyamide ethyl	2	
		<u>C</u> a	estyl amme		2
		Í	Butane CH3CH2CH3 wurtz reaction	2	
14	-	S	aytzeff's rule Explanation	2 2	2
					<u> </u>

	-3 -		
_ •	Sub Answer Key/Value Points Qns	Score	Total
15	CHO Nitration CHO NO2	2	2
!	or Name Structure of m-Nitro benzalde hyde	2	
16.	COLHOI AICIS/CUCI	2	
	Explanation	2_	2
	Preparation of Benzaldehyde	2	! !
17	CH3I NacN KeN CH3CN CH3CN reductions CH3CH2NH2	1	2
1	Explanation other correct conversion	2	
18.	One différence between tibrons and globular proteins or one example for each	2	2
19.	a. Poly acry lo nitrile b. 1, 3- Butachiene-Acrylonitik (iii) Buna-N e. Ethylene glycol-Tereph thabic and (i) Terylene d. Cis-I () Doly isoprene	1	2
20.	d. Cis-1,4-poly isoprene (ii) Material Rober a. Definition of Drug b. Example o	2 2	2

		-4 -		
Qn No	Sub Qns	Answer Key/Value Points	Score	Total
		Answer any Seven from quistions 21-29 (each Cavries 3 score)		
21		d = ZM No a3	1	
:		Z = 4	1	7
		Correct Substitution $M = \frac{2.8 \times (4 \times 10^8)^3 \times 6.022 \times 10^3}{10^{10}}$	3	_5
:		4 M = 26.97	l	
22.		Amode pb 4504 Pb504+22	2	
		Callode PbQ+504+4H+22->Pb304+2HO	2	3
		Overall Pb+Pbg+2A2SQ -> 2PbSQ+270	2	
		Flectsolyli - 4504 Sulphusicains	2	
23.		K = 2.303 log [A.]	2	:
		$k_1 = \frac{2 \cdot 303}{30} \log \left[\frac{0.60}{0.30} \right]$	2.	3
		$k_2 = \frac{2.303}{60} \log \frac{0.60}{0.15}$	2	
	i	K, = K2 Defrition of pseudo first order swam egn. of hydrolysis of methys occet ale	2	

Qn No	Sub Qns	Answer Key/Value Points	Score	Total
24.	Ь.	Stali ment of Hardy-Schulze rule POy 7 304 > CI Aist > Bat > Not any Suitable exemple Lyophilic Colloids are more Stable them yophobic It forms a protectine layer around lyo. Phobic Colloid lyophilic Colloids are more solvalid	2	3
25		Mgo (s) + C (s) —) Hg(s) + CO (g) at 2273 k 250 = -628 - (-341) = -314 kJ mol ⁻¹ ov at 2273 k ov Reducing agent Selected based ov Reducing agent Selected based	N N	3
26	а. Ь	for spentaneous reaction Mg8 + C -> Mg + CO PH3 P4 + 3 NaOH + 3 Hz0 -> PHz + 2 Na Hz PQ er Any method of preparation ef PH3	2 . 2	3

Qn. No	Sub Qns	Answer Key/Value Points	Score	Total
27	G.	Due la m'est pair effect	. 1	
	b ·	Decrease in Bonel dissociation enthalpy down the group] decrease in stability from lip to bottom related Correct answer	1	3
		H3 PO4 does not contain any P-H bond H3 PO2 her viey P-H bonds Stancture of H3 PO4 1	l	
28	·G.	Stou. of H3PO2 Correct explanation Variable oxidation Stali un complete d-orbital large Surface area relabel Correct answer.		
		In completly felled d'osbitals] electronic Configuration of Scandium	1	3
	C .	4 feczo4+8 NgcO3+70-> 8 Ng CrO4+ 2 fec3+8co2	1	
		or Explanation		
			n i districti	,

Qn. No	Sub Qns	Answer Key/Value Points	Score	Total
29	a.	Inductive effect sterric effect electronic effect	1	
	Ь.	Presence of He bond in alcotul absence of hydrogen bend in	1	3
	С.	formation of bisulphile, addition product [velalic] expla- nation equation	1	
	,	Answer any 3 from question 30 6 33 (each carries 4 Score)		
	Ь	Defnition or eg: of Primary all Overall reaction does not	2	•
	Ċ,	Anode 242+40H -> 4H20+4E	2	4
		Calhodo 02 + 2420 +4ê -> 40H	2	
		over all Reaction 2 H2 - 2 H20	2	

Qn. No	Sub Qns	Answer Key/Value Points	Score	Total
31.	٩.	Ten NH3 NC Te NH3 NC TeN NC TeN NC TeN NC TeN NC NC TeN NC NC NH3	2	
	b.	[Co (NH3)5-CO3] C1 One limitation Two limitation	2 1 2	4
32,	a	(i) A — CH3CH2OH ethanol ethyl alcohol (ii) B — CH3CH0 ethanal	2	
	Ь.	Aspirin acetyl Salicylic and acetory benzoic acid Structure	2	4
			To a Topping	

Qn. No	Sub Qns	Answer Key/Value Points	Score	Total
33	<i>«</i>	Correct Explanation of Lucas list	4	4
	b.	Lucas Reagent Znc] + Con. Hel	2	
		Á		
	•			
·		,		
				e e

Rajeon Boman, SNDP HSS, Kilizur Radiones 1. Abooseli. T.K PMSAPZS VHSS Kaikotti kada. Kasagod Dt 2. Anchumel Augustine STHSS Exatlagas Church P. Zahira Humeed, Rahmany MIIss for Cabrent - 8 Skinithic, HCHMKMVHSS, Valakkadavy Surely Kumas, 4 Purous palian Vidhu. K. Edamer VIAR Edam. Die Budu . N NUT m chemistry Crimons Turmalations Paladisad Ment. 8. Sajeor.m. NNMHSI Cholembra Malappuran Jam 9. Aboobacher. Th. Kall Dilts Kunevampellin Palakkad Alka JOHN Chaldran Syran 1855, THRISSUR Phy AEPM Hes Jumpanagadu I 11. Beena Thomas 12. Carolin Lazer J, Leo XIII HB, Pullurila (solutably 13. Santha Walsalan, SNHSS, Poochakkal, Alappugha 14. Binder C, DBKSS, TVLA, PTA While 15- Dr-Sukumaran Nani A CIHSS
Chermad, Kasavagodi Es 16. Shibn.KK SNHSS, Footbadi, Wayanad 1) Beena George M. F. H-SS Kertlappooley transkalam Beaul 18. Dr. George T. Advolen Many havens HSS

Question No: 13 (b) - moorrect question reagent-required Na (sodium) geven as N (introgen)

... Mark of the above questien is carried over to 13 (a) questien