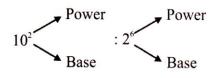
Exponents and Power

MATHEMATIC

NOTES

POWER

$$\frac{a^m}{a^n} = a^m - n$$
$$5^3 \div 5^2 = 5^3 - 2$$


FUNDAMENTALS

Exponential form is nothing but repeated multiplication.

There are two part of an exponent.

Exponent \rightarrow base, Power/ Index

Example:

Base denotes the number to be multiplied and the power denotes the number of times the base is to be multiplied.

 $a \times a \times a = a^3$ (read as 'a' cubed or 'a' raised to the power 3)

 $a \times a \times a \times a \times a = a^{6}$ (read as 'a raised to the power 6 or 6th power of a)

.....

 $a \times a \times a$(n factors) = a^n (read as 'a' raise to the power n or nth power of a)

(a) When a negative number is raised to an even power the value is always positive.

e.g.,
$$(-5)^6 = (-5) \times (-5) \times (-5) \times (-5) \times (-5) \times (-5) = 15625$$

(b) When a negative number is raised to an odd power, the value is always negative.

e.g.,
$$(-3)^5 = (-3) \times (-3) \times (-3) \times (-3) \times (-3) = (-243)$$

Note: (a)
$$(-1)^{odd \ number} = -1$$

(b) $(-1)^{even \ number} = +1$

Elementary Question 2:

•

Write 32 in exponent form

Ans. $32 = 2 \times 2 \times 2 \times 2 \times 2 = 2^5$ where base = 2 power / Index = 5

Laws of Exponents:

For any non-zero integers 'a' and 'b' and whole numbers 'm' and 'n',

(a)
$$a \times a \times a \times \dots \times a$$
 (m factors) = a^m
(b) $a^m \times a^n = a^{m+n}$
(c) $\frac{a^m}{a^n} = a^{m-n}$, if $m > n; = 1$, if $m = n; = \frac{1}{a^{n-m}}$ if $m < n$
(d) $(a^m)^n = a^{mn}$
(e) $(ab)^m = a^m b^m$
(f) $(\frac{a}{b})^m = \frac{a^m}{b^m}$
(g) $a^\circ = 1$

Most of the questions under this chapter are applications of the above formula (a) to (g). Therefore commit them to memory (not ROT memory but learn by applying).

Evaluate: (i)
$$5 \times 5 \times 5$$
 (ii) $5^2 \times 5^3$ (iii) $\frac{5^3}{5^2}$ (iv) $(5^2)^3$
(v) $(2 \times 5)^3$ (vi) $(\frac{5}{2})^1$; (vii) $5^\circ \times 2^\circ \times 3^\circ$

Answer: (i) $5 \times 5 \times 5$ (three times) $= 5^3 = 125$

(ii)
$$5^2 \times 5^3 = 5^{2+3} = 5^5 = 3125$$

(iii) $\frac{5^3}{5^2} = 5^{3-2} = 5^1 = 5$
(iv) $(5^2)^3 = 5^{2\times3} = 5^6 = 15625$
(v) $(\frac{5}{2})^2 = \frac{5^2}{2^2} = \frac{25}{4};$
(vi) $(2\times5)^3 = 2^3 \times 5^3 = 8 \times 125 = 1000$

(vii)
$$5^0 \times 2^0 \times 3^0 = 1 \times 1 \times 1 = 1$$

•

Any number can be expressed as a decimal number between 1.0 and 10.0 including 1.0 multiplied by a power of 10. Such a form of a number is called its standard form.

For example, standard form of $63.2 = 6.32 \times 10 = 6.32 \times 10^1$