Class – XII MATHEMATICS- 041 SAMPLE QUESTION PAPER 2019-20

Time: 3 Hrs. Maximum Marks: 80

General Instructions:

- (i) All the questions are compulsory.
- (ii) The question paper consists of 36 questions divided into 4 sections A, B, C, and D.
- (iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 6 questions of 4 marks each. Section D comprises of 4 questions of 6 marks each.
- (iv) There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each, and two questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is not permitted.

	SECTION A			
Q1 -	Q1 - Q10 are multiple choice type questions. Select the correct option			
1	If A is any square matrix of order 3×3 such that $ A = 3$, then the value of $ adjA $ is ? (a) 3 (b) $\frac{1}{3}$ (c) 9 (d) 27	1		
2	Suppose P and Q are two different matrices of order $3\times n$ and $n\times p$, then the order of the matrix P \times Q is? (a) $3\times p$ (b) $p\times 3$ (c) $n\times n$ (d) 3×3	1		
3	If $(2\hat{i} + 6\hat{j} + 27\hat{k}) \times (\hat{i} + p\hat{j} + q\hat{k}) = \vec{0}$, then the values of p and q are? (a) p= 6,q=27(b)p=3,q= $\frac{27}{2}$ (c) p=6,q= $\frac{27}{2}$ (d) p=3,q=27	1		
4	If A and B are two events such that P(A)=0.2 , P(B)=0.4 and P(A ∪ B)=0.5 , then value of P(A/B) is ? (a)0.1 (b)0.25 (c)0.5 (d) 0.08	1		
5	The point which does not lie in the half plane $2x + 3y - 12 \le 0$ is (a) $(1,2)$ (b) $(2,1)$ (c) $(2,3)$ (d) $(-3,2)$	1		
6	(a) (1,2) (b) (2,1) (c) (2,3) (d)(-3,2) If $\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$, then the value of $\cos^{-1} x + \cos^{-1} y$ is (a) $\frac{2\pi}{3}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{2}$ (d) π	1		

	7	An urn contains 6 balls of which two are red and four are black. Two balls are drawn at random. Probability that they are of the different colours is	1
$ \begin{array}{c} \text{(a) } \sin^{-1}\left(\frac{5x}{3}\right) + c\left(\text{(b)}\frac{1}{5}\sin^{-1}\left(\frac{5x}{3}\right) + c\right) \\ \text{(c) } \frac{1}{6}\log\left(\frac{3+5x}{3-5x}\right) + c\left(\text{(d)}\frac{1}{30}\log\left(\frac{3+5x}{3-5x}\right) + c\right) \\ \text{(d) } \frac{1}{6}\log\left(\frac{3+5x}{3-5x}\right) + c \\ \text{(a) } \text{(b) } 3\left(\text{(c) } \frac{6}{5}\frac{3}{6}\text{(d) } 6\right) \\ \text{(a) } \text{(b) } 3\left(\text{(c) } \frac{6}{5}\frac{3}{6}\text{(d) } 6\right) \\ \text{(a) } \text{(0b) } 3\left(\text{(c) } \frac{6}{5}\frac{3}{6}\text{(d) } 6\right) \\ \text{(a) } \text{(b) } 3\left(\text{(c) } \frac{6}{5}\frac{3}{6}\text{(d) } 6\right) \\ \text{(a) } \text{(b) } 3\left(\text{(c) } \frac{6}{5}\frac{3}{6}\text{(d) } 6\right) \\ \text{(b) } \text{(c) } \frac{6}{5}\frac{3}{5}\text{(d) } 6 \\ \text{(d) } \frac{7}{6} = \left(-\frac{7}{4} \cdot 3\right)^{2} + 5\hat{k}\right) + \lambda\left(2^{2} + 3\right)^{2} + \hat{k}\right), \\ \text{(b) } \text{(c) } \frac{7}{6} = \left(-\frac{7}{4} \cdot 3\right)^{2} + 5\hat{k}\right) + \lambda\left(2^{2} + 3\right)^{2} + \hat{k}\right), \\ \text{(b) } \text{(c) } \frac{7}{6} = \left(2^{2} + 3\right)^{2} - 2\hat{k}\right) + \lambda\left(-^{2} + 3\right)^{2} + 5\hat{k}\right), \\ \text{(d) } \frac{7}{6} = \left(2^{2} + 3\right)^{2} - 2\hat{k}\right) + \lambda\left(-^{2} + 3\right)^{2} + 5\hat{k}\right), \\ \text{(d) } \frac{7}{6} = \left(2^{2} + 3\right)^{2} + \lambda\left(-^{2} + 3\right)^{2} + 5\hat{k}\right), \\ \text{(d) } \frac{7}{6} = \left(2^{2} + 3\right)^{2} + \lambda\left(-^{2} + 3\right)^{2} + 5\hat{k}\right), \\ \text{(d) } \frac{7}{6} = \left(2^{2} + 3\right)^{2} + \lambda\left(-^{2} + 3\right)^{2} + 5\hat{k}\right), \\ \text{(d) } \frac{7}{6} = \left(2^{2} + 3\right)^{2} + \lambda\left(-^{2} + 3\right)^{2} + 5\hat{k}\right), \\ \text{(d) } \frac{7}{6} = \left(2^{2} + 3\right)^{2} + \lambda\left(-^{2} + 3\right)^{2} + 5\hat{k}\right), \\ \text{(d) } \frac{7}{6} = \left(2^{2} + 3\right)^{2} + \lambda\left(-^{2} + 3\right)^{2} + 5\hat{k}\right), \\ \text{(d) } \frac{7}{6} = \left(2^{2} + 3\right)^{2} + \lambda\left(-^{2} + 3\right)^{2} + 5\hat{k}\right), \\ \text{(d) } \frac{7}{6} = \left(2^{2} + 3\right)^{2} + \lambda\left(-^{2} + 3\right)^{2} + 5\hat{k}\right), \\ \text{(d) } \frac{7}{6} = \left(2^{2} + 3\right)^{2} + \lambda\left(-^{2} + 3\right)^{2} + 5\hat{k}\right), \\ \text{(d) } \frac{7}{6} = \left(2^{2} + 3\right)^{2} + \lambda\left(-^{2} + 3\right)^{2} + 3\hat{k}\right), \\ \text{(d) } \frac{7}{6} = \left(2^{2} + 3\right)^{2} + \lambda\left(-^{2} + 3\right)^{2} + 3\hat{k}\right), \\ \text{(d) } \frac{7}{6} = \left(2^{2} + 3\right)^{2} + 3\hat{k}\right), \\ \text{(d) } \frac{7}{6} = \left(2^{2} + 3\right)^{2} + 3\hat{k}\right), \\ \text{(d) } \frac{7}{6} = \left(2^{2} + 3\right)^{2} + 3\hat{k}\right), \\ \text{(d) } \frac{7}{6} = \left(2^{2} + 3\right)^{2} + 3\hat{k}\right), \\ \text{(d) } \frac{7}{6} = \left(2^{2} + 3\right)^{2} + 3\hat{k}\right), \\ \text{(d) } \frac{7}{6} = \left(2^{2} + 3\right)^{2} + 3\hat{k}\right), \\ \text{(d) } \frac{7}{6} = \left(2^{2} + 3\right)^{2} + 3\hat{k}\right), \\ \text{(d) } \frac{7}{6} = \left(2^{2} + 3\right)^{2} + 3\hat{k}\right), \\ \text{(d) } \frac{7}{6} = \left(2^{2} $		(a) $\frac{2}{5}$ (b) $\frac{1}{15}$ (c) $\frac{8}{15}$ (d) $\frac{4}{15}$	
$3x + 5y + 7z = 3 \text{ and } 9x + 15y + 21z = 9?$ $(a) 0(b) 3(c) \frac{6}{\sqrt{83}}(d) = 6 10 The equation of the line in vector form passing through the point(-1,3,5) and parallel to line \frac{x-2}{2} = \frac{y-4}{3}, z = 2. is (a) i' = (-i + 3j + 5k) + \lambda(2i + 3j + k). (b) i' = (-i + 3j + 5k) + \lambda(2i + 3j) (c) i' = (2i + 3j - 2k) + \lambda(-i + 3j + 5k) (d) i' = (2i + 3j) + \lambda(-i + 3j + 5k) (d) i' = (2i + 3j) + \lambda(-i + 3j + 5k) (d) i' = (2i + 3j) + \lambda(-i + 3j + 5k) (e) i' = (2i + 3j) + \lambda(-i + 3j + 5k) (e) i' = (2i + 3j) + \lambda(-i + 3j + 5k) (f) i' = (2i + 3j) + \lambda(-i + 3j + 5k) (f) i' = (2i + 3j) + \lambda(-i + 3j + 5k) (g) i' = (2i + 3j) + \lambda(-i + 3j + 5k) (g) i' = (2i + 3j) + \lambda(-i + 3j + 5k) (g) i' = (2i + 3j) + \lambda(-i + 3j + 5k) (g) i' = (2i + 3j + 2k) + \lambda(2i + 3j + 2k) (g) i' = (2i + 3j + 2k) + \lambda(2i + 3j + 2k) (g) i' = (2i + 3j + 2k) + \lambda(2i + 3j + 2k) (g) i' = (2i + 3j + 2k) + \lambda(2i + 3j + 2k) (g) i' = (2i + 3j + 2k) + \lambda(2i + 3j + 2$	8	(a) $\sin^{-1}\left(\frac{5x}{3}\right) + c(b)\frac{1}{5}\sin^{-1}\left(\frac{5x}{3}\right) + c$	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	3x + 5y + 7z = 3 and $9x + 15y + 21z = 9$? (a) $0(b) \ 3(c) = \frac{6}{\sqrt{83}}(d) = 6$	1
If f be the greatest integer function defined asf(x) = [x] and g be the modulus function defined as $g(x) = x $, then the value of g of $\left(-\frac{5}{4}\right)$ is		parallel to line $\frac{x-3}{2} = \frac{y-4}{3}$, $z = 2$. is (a) $\vec{r} = (-\hat{i} + 3\hat{j} + 5\hat{k}) + \lambda(2\hat{i} + 3\hat{j} + \hat{k})$. (b) $\vec{r} = (-\hat{i} + 3\hat{j} + 5\hat{k}) + \lambda(2\hat{i} + 3\hat{j})$ (c) $\vec{r} = (2\hat{i} + 3\hat{j} - 2\hat{k}) + \lambda(-\hat{i} + 3\hat{j} + 5\hat{k})$ (d) $\vec{r} = (2\hat{i} + 3\hat{j}) + \lambda(-\hat{i} + 3\hat{j} + 5\hat{k})$	1
function defined as $g(x) = x $, then the value of g of $\left(-\frac{5}{4}\right)$ is	_ •		
$x = 1, \text{ then the value of } k \text{ is } \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	11	I	1
If tangent to the curve $y^2 + 3x - 7 = 0$ at the point (h,k) is parallel to line $x - y = 4$, then value of k is? OR For the curve $y = 5x - 2x^3$, if x increases at the rate of 2units/sec, then at $x = 3$ the slope of the curve is changing at The magnitude of projection of $(2\hat{i} - \hat{j} + \hat{k})$ on $(\hat{i} - 2\hat{j} + 2\hat{k})$ is Vector of magnitude 5 units and in the direction opposite to $2\hat{i} + 3\hat{j} - 6\hat{k}$ is (Q16 - Q20) Answer the following questions 16 Check whether $(I + m + n)$ is a factor of the determinant $\begin{vmatrix} I + m & m + n & n + I \\ n & I & m \\ 2 & 2 & 2 \end{vmatrix}$ or not. Give reason.	12	If the function $f(x) = \begin{cases} \frac{x^2-1}{x-1} & \text{when } x \neq 1 \\ k & \text{when } x = 1 \end{cases}$ is given to be continuous at $x = 1$, then the value of k is	1
For the curve $y = 5x - 2x^3$, if x increases at the rate of 2units/sec, then at $x = 3$ the slope of the curve is changing at	13	If $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$, then value of y is	1
Vector of magnitude 5 units and in the direction opposite to $2\hat{i} + 3\hat{j} - 6\hat{k}$ is (Q16 - Q20) Answer the following questions 16 Check whether $(I + m + n)$ is a factor of the determinant $\begin{vmatrix} I + m & m + n & n + I \\ n & I & m \\ 2 & 2 & 2 \end{vmatrix}$ or not. Give reason. 17 Evaluate $\int_{-2}^{2} (x^3 + 1) dx.$ 18 Find $\int_{-2}^{3+3\cos x} \cos x \\ x+\sin x dx.$	14	$x - y = 4$, then value of k is? OR For the curve $y = 5x - 2x^3$, if x increases at the rate of 2units/sec, then at	1
(Q16 - Q20) Answer the following questions16Check whether $(I + m + n)$ is a factor of the determinant $\begin{vmatrix} I + m & m + n & n + I \\ n & I & m \\ 2 & 2 & 2 \end{vmatrix}$ or not. Give reason.17Evaluate $\int_{-2}^{2} (x^3 + 1) dx.$ 118Find $\int_{-x+\sin x}^{3+3\cos x} dx.$ 1	15	OR	1
16 Check whether $(I+m+n)$ is a factor of the determinant $\begin{vmatrix} I+m & m+n & n+1 \\ n & I & m \\ 2 & 2 & 2 \end{vmatrix}$ or not. Give reason. 17 Evaluate $\int_{-2}^{2} (x^3+1) dx.$ 18 Find $\int_{x+\sin x}^{3+3\cos x} dx$.		Vector of magnitude 5 units and in the direction opposite to 2î + 3ĵ – 6k is	
$\int_{-2}^{2} (x^{3} + 1) dx.$ 18 Find $\int_{-x+\sin x}^{3+3\cos x} dx.$ 1	16	determinant n n + n n + l or not. Give reason.	1
	17		1
<u> </u>	18	Find $\int \frac{3+3\cos x}{x+\sin x} dx.$	1

	OR	
	Find $\int (\cos^2 2x - \sin^2 2x) dx$	
19	Find $\int xe^{(1+x^2)}dx$.	1
20	Write the general solution of differential equation $\frac{dy}{dx} = e^{x+y}$	1
	SECTION – B	
21	Express $\sin^{-1}\left(\frac{\sin x + \cos x}{\sqrt{2}}\right)$; where $-\frac{\pi}{4} < x < \frac{\pi}{4}$, in the simplest form.	2
	OR	
	Let R be the relation in the set Z of integers given by R = {(a, b) : 2 divides a – b}. Show that the relation R transitive? Write the equivalence class [0].	
22	If = ae^{2x} + be^{-x} , then show that $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0$.	2
23	A particle moves along the curve $x^2 = 2y$. At what point, ordinate increases at the same rate as abscissa increases?	2
24	For three non-zero vectors \vec{a} , \vec{b} and \vec{c} , prove that $[\vec{a} - \vec{b} \ \vec{b} - \vec{c} \ \vec{c} - \vec{a}] = 0$.	2
	OR	
	If $\vec{a}+\vec{b}+\vec{c}=0$ and $ \vec{a} =3$, $ \vec{b} =5$, $ \vec{c} =7$, then find the value of $\vec{a}\cdot\vec{b}+\vec{b}\cdot\vec{c}+\vec{c}\cdot\vec{a}$.	
25	Find the acute angle between the lines $\frac{x-4}{3} = \frac{y+3}{4} = \frac{z+1}{5}$ and $\frac{x-1}{4} = \frac{y+1}{-3} = \frac{z+10}{5}$	2
26		
	A speaks truth in 80% cases and B speaks truth in 90%cases. In what percentage of cases are they likely to agree with each other in stating the same fact?	2
	percentage of cases are they likely to agree with each other in stating the	2
27	percentage of cases are they likely to agree with each other in stating the same fact?	2
	percentage of cases are they likely to agree with each other in stating the same fact? SECTION - C	
	percentage of cases are they likely to agree with each other in stating the same fact?	
27	percentage of cases are they likely to agree with each other in stating the same fact?	4
27	percentage of cases are they likely to agree with each other in stating the same fact?	4
27	percentage of cases are they likely to agree with each other in stating the same fact?	4
27	percentage of cases are they likely to agree with each other in stating the same fact?	4

30	Evaluate $\int_1^3 x^2 - 2x dx$.	4				
31	natural numbers. If X denotes the smaller of the two numbers obtained, find the probability distribution of X. Also, find mean of the distribution. OR					
	There are three coins, one is a two headed coin (having head on both the faces), another is a biased coin that comes up heads 75% of the time and the third is an unbiased coin. One of the three coins is chosen at random and tossed. If It shows head. What is probability that it was the two headed coin?					
32	Two tailors A and B earn ₹150 and ₹200 per day respectively. A can stitch 6 shirts and 4 pants per day, while B can stitch 10 shirts and 4 pants per day. Form a L.P.P to minimize the labour cost to produce (stitch) at least 60 shirts and 32 pants and solve it graphically.	4				
	SECTION D					
33	Using the properties of determinants, prove that $\begin{vmatrix} (y+z)^2 & x^2 & x^2 \\ y^2 & (z+x)^2 & y^2 \\ z^2 & z^2 & (x+y)^2 \end{vmatrix} = 2xyz(x+y+z)^3.$	6				
	OR					
	If $A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & -1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$, find A^{-1} . Hence, solve the system of equations $x - y = 3$; $2x + 3y + 4z = 17$; $y + 2z = 7$					
34	Using integration, find the area of the region $\{(x,y): x^2 + y^2 \le 1, x + y \ge 1, x \ge 0, y \ge 0 \}$	6				
35	A given quantity of metal is to be cast into a solid half circular cylinder with a rectangular base and semi-circular ends. Show that in order that total surface area is minimum, the ratio of length of cylinder to the diameter of semi-circular ends is $\pi:\pi+2$. OR Show that the triangle of maximum area that can be inscribed in a given	6				
	circle is an equilateral triangle.					
36	Find the equation of a plane passing through the points $A(2,1,2)$ and $B(4,-2,1)$ and perpendicular to planer. $(\hat{1}-2\hat{k})=5$. Also, find the coordinates of the point, where the line passing through the points $(3,4,1)$ and $(5,1,6)$ crosses the plane thus obtained.	6				

Class – XII MATHEMATICS (041) SQP Marking Scheme (2019-20)

TIME: 3 Hrs. Maximum Marks: 80

	SECTION A	
1	(c) 9	1
2	(a) 3 × p	1
3	(b)p=3,q= $\frac{27}{2}$	1
4	(b)0.25	1
5	(c) (2,3)	1
6	$(b)\frac{\pi}{3}$	1
7	(c) $\frac{8}{15}$	1
8	$(b) \frac{1}{5} \sin^{-1} \left(\frac{5x}{3} \right) + c$	1
9	(a) 0	1
10	(b) $\vec{r} = \left(-\hat{\imath} + 3\hat{\jmath} + 5\hat{k}\right) + \lambda(2\hat{\imath} + 3\hat{\jmath})$	1
11	$g\left(\left[-\frac{5}{4}\right]\right) = g(-2) = 2$	1
12	2	1
13	y = 2 -3	1
14	$\left \frac{-3}{2} \right $	1
	OR	
	decreasing at rate of 72 units/sec.	
15	2 units	1
	OR	
	$\left \frac{5}{7} (-2\hat{\imath} - 3\hat{\jmath} + 6\hat{k}) \right $	
16	$\frac{5}{7}(-2\hat{i} - 3\hat{j} + 6\hat{k})$ Apply $R_1 \to R_1 + R_2$ $= 2(I + m + n)\begin{vmatrix} 1 & 1 & 1 \\ n & I & m \\ 2 & 2 & 2 \end{vmatrix}$ $= 2(I + m + n)\begin{vmatrix} 1 & 1 & 1 \\ n & I & m \\ 1 & 1 & 1 \end{vmatrix}$; yes $(I + m + n)$ is a factor	
	$= 2(I + m + n) \begin{vmatrix} i & i & i \\ n & I & m \\ 1 & 1 & 1 \end{vmatrix}$; yes (I + m + n) is a factor	1
17	$\frac{ 1 1 1 }{\int_{-2}^{2} (x^3 + 1) dx = \int_{-2}^{2} (x^3) dx + \int_{-2}^{2} 1 dx = I_1 + I_2}$	
	$= 0 + [x]_{-2}^2 \qquad \text{(As } I_1 \text{ is odd function)}$	
	=2+2 = 4	1

18	Let $x + \sin x = t$	
	So $(1 + \cos x)dx = dt$	1
`	$I = 3 \int \frac{dt}{t} = 3 \log t + c = 3 \log (x + \sin x) + c$	
	or directly by writing formula	
	$\int \frac{f'(x)}{f(x)} dx = \log f(x) + c$	
	$\int f(x) dx = \log f(x) + c$	
	OR	
	$\int \cos 4x dx = \sin 4x$	
19	$\int \cos 4x dx = \frac{\sin 4x}{4} + c$ $ et (1 + x^2) = t$	
19	so $2xdx = dt$	
	$\Rightarrow I = \frac{1}{2} \int e^{t} dt = \frac{1}{2} e^{t} + C = \frac{1}{2} e^{(1+x^{2})} + C$	1
!	2 2 2	
20	$\frac{dy}{dx} = e^x e^y$	
	$\Rightarrow \frac{dy}{e^y} = e^x dx$	
	integrating both sides	
	$\Rightarrow -e^{-y} + c = e^{x}$	1
	$\Rightarrow \mathbf{e}^{\mathbf{x}} + \mathbf{e}^{-\mathbf{y}} = \mathbf{c}$	
	SECTION B	
	SECTION B	
21		
21	SECTION B $= \sin^{-1} \left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}} \right) \text{if} -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1} \left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4} \right) \text{if} -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$	1
21	$= \sin^{-1} \left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}} \right) \text{if} -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1} \left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4} \right) \text{if} -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$	1
21	$= \sin^{-1} \left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}} \right) \text{if} -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1} \left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4} \right) \text{if} -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1} \left(\sin \left(x + \frac{\pi}{4} \right) \right) \text{if} 0 < \left(x + \frac{\pi}{4} \right) < \frac{\pi}{2} \text{ i.e. principal values}$	1
21	$= \sin^{-1} \left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}} \right) \text{if} -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1} \left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4} \right) \text{if} -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1} \left(\sin \left(x + \frac{\pi}{4} \right) \right) \text{if} 0 < \left(x + \frac{\pi}{4} \right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4} \right)$	
21	$= \sin^{-1} \left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}} \right) \text{if} -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1} \left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4} \right) \text{if} -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1} \left(\sin \left(x + \frac{\pi}{4} \right) \right) \text{if} 0 < \left(x + \frac{\pi}{4} \right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4} \right)$ OR	
21	$= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right) \text{if} -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right) \text{if} -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if} 0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right)$ OR Let 2 divides $(a - b)$ and 2 divides $(b - c)$: where $a, b, c \in Z$	
21	$= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right) \text{if} -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right) \text{if} -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if} 0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right)$ OR $\text{Let 2 divides}\left(a - b\right) \text{and 2 divides}\left(b - c\right) : \text{ where } a, b, c \in \mathbb{Z}$ So 2 divides\[(a - b) + (b - c)\]	1
21	$= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right) \text{if} -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right) \text{if} -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if} 0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right)$ OR Let 2 divides $(a - b)$ and 2 divides $(b - c)$: where $a, b, c \in Z$ So 2 divides $[(a - b) + (b - c)]$ 2 divides $(a - c)$: Yes relation R is transitive	1
	$= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right) \text{if} -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right) \text{if} -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if} 0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right)$ OR Let 2 divides $(a - b)$ and 2 divides $(b - c)$: where $a, b, c \in Z$ So 2 divides $[(a - b) + (b - c)]$ 2 divides $(a - c)$: Yes relation R is transitive	1
21	$= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right) \text{if} -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right) \text{if} -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if} 0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right)$ OR Let 2 divides $(a - b)$ and 2 divides $(b - c)$: where $a, b, c \in Z$ So 2 divides $[(a - b) + (b - c)]$ 2 divides $(a - c)$: Yes relation R is transitive $[0] = \{0, \pm 2, \pm 4, \pm 6, \ldots\}$ $y = ae^{2x} + be^{-x} \ldots (1)$	1
	$= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right) \text{if} -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right) \text{if} -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if} 0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right)$ OR Let 2 divides $(a - b)$ and 2 divides $(b - c)$: where $a, b, c \in Z$ So 2 divides $[(a - b) + (b - c)]$ 2 divides $(a - c)$: Yes relation R is transitive $[0] = \{0, \pm 2, \pm 4, \pm 6, \ldots\}$ $y = ae^{2x} + be^{-x} \ldots (1)$ $\frac{dy}{dx} = 2ae^{2x} - be^{-x} \ldots (2)$	1 1 1
	$= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right) \text{if} -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right) \text{if} -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if} 0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right)$ OR Let 2 divides $(a - b)$ and 2 divides $(b - c)$: where $a, b, c \in Z$ So 2 divides $(a - b) + (b - c)$ 2 divides $(a - c)$: Yes relation R is transitive $[0] = \{0, \pm 2, \pm 4, \pm 6,\}$ $y = ae^{2x} + be^{-x}$	1
	$= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right) \text{if} -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right) \text{if} -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if} 0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right)$ OR Let 2 divides $(a - b)$ and 2 divides $(b - c)$: where $a, b, c \in Z$ So 2 divides $[(a - b) + (b - c)]$ 2 divides $(a - c)$: Yes relation R is transitive $[0] = \{0, \pm 2, \pm 4, \pm 6, \ldots\}$ $y = ae^{2x} + be^{-x} \ldots (1)$ $\frac{dy}{dx} = 2ae^{2x} - be^{-x} \ldots (2)$ $\frac{d^2y}{dx^2} = 4ae^{2x} + be^{-x} \ldots (3)$ putting values on LHS	1 1 1
	$= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right) \text{if} -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right) \text{if} -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if} 0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right)$ OR Let 2 divides $(a - b)$ and 2 divides $(b - c)$: where $a, b, c \in Z$ So 2 divides $[(a - b) + (b - c)]$ 2 divides $(a - c)$: Yes relation R is transitive $[0] = \{0, \pm 2, \pm 4, \pm 6,\}$ $y = ae^{2x} + be^{-x}$	1 1 1
	$= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right) \text{if} -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right) \text{if} -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if} 0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right)$ OR Let 2 divides $(a - b)$ and 2 divides $(b - c)$: where $a, b, c \in \mathbb{Z}$ So 2 divides $[(a - b) + (b - c)]$ 2 divides $(a - c)$: Yes relation R is transitive $[0] = \{0, \pm 2, \pm 4, \pm 6,\}$ $y = ae^{2x} + be^{-x}$	1 1 1
	$= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right) \text{if} -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right) \text{if} -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if} 0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right) \qquad \qquad \mathbf{OR}$ Let 2 divides $(a - b)$ and 2 divides $(b - c)$: where $a, b, c \in \mathbb{Z}$ So 2 divides $[(a - b) + (b - c)]$ 2 divides $(a - c)$: Yes relation R is transitive $[0] = \{0, \pm 2, \pm 4, \pm 6, \ldots\}$ $y = ae^{2x} + be^{-x} \qquad (2)$ $\frac{d^{2}y}{dx^{2}} = 4ae^{2x} + be^{-x} \qquad (3)$ putting values on LHS $= \frac{d^{2}y}{dx^{2}} - \frac{dy}{dx} - 2y$ $= (4ae^{2x} + be^{-x}) - (2ae^{2x} - be^{-x}) - 2(ae^{2x} + be^{-x})$ $= 4ae^{2x} + be^{-x} - 2ae^{2x} + be^{-x} - 2ae^{2x} - 2be^{-x}$	1 1 1
	$= \sin^{-1}\left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right) \text{if} -\frac{\pi}{4} < x < \frac{\pi}{4}$ $= \sin^{-1}\left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right) \text{if} -\frac{\pi}{4} + \frac{\pi}{4} < x + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$ $= \sin^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \text{if} 0 < \left(x + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{ i.e. principal values}$ $= \left(x + \frac{\pi}{4}\right)$ OR Let 2 divides $(a - b)$ and 2 divides $(b - c)$: where $a, b, c \in \mathbb{Z}$ So 2 divides $[(a - b) + (b - c)]$ 2 divides $(a - c)$: Yes relation R is transitive $[0] = \{0, \pm 2, \pm 4, \pm 6,\}$ $y = ae^{2x} + be^{-x}$	1 1 1

		1
23	$x^2 = 2y \dots (1)$	
	$\Rightarrow 2x \frac{dx}{dt} = 2 \frac{dy}{dt}$ (given $\frac{dy}{dt} = \frac{dx}{dt}$)	1
	$\Rightarrow 2x \frac{dx}{dt} = 2 \frac{dx}{dt}$	
	$\begin{array}{ll} & \text{dt} & \text{dt} \\ \Rightarrow x = 1 \end{array}$	
	from (1) $y = \frac{1}{2}$	
	so point is $\left(1, \frac{1}{2}\right)$	1
24	$= (\vec{a} - \vec{b}) \cdot \{ (\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}) \}$	
24		
	$= (\vec{a} - \vec{b}) \cdot \{\vec{b} \times \vec{c} - \vec{b} \times \vec{a} - \vec{c} \times \vec{c} + \vec{c} \times \vec{a}\}$	
	$= (\vec{a} - \vec{b}) \cdot \{\vec{b} \times \vec{c} - \vec{b} \times \vec{a} + \vec{c} \times \vec{a}\} \qquad \dots (\vec{c} \times \vec{c} = 0)$	1
	$= (\vec{a} - \vec{b}) \cdot \{\vec{b} \times \vec{c} + \vec{a} \times \vec{b} + \vec{c} \times \vec{a}\}$	
	$= \vec{a}. (\vec{b} \times \vec{c}) + \vec{a}. (\vec{a} \times \vec{b}) + \vec{a}. (\vec{c} \times \vec{a}) - \vec{b}. (\vec{b} \times \vec{c}) - \vec{b}. (\vec{a} \times \vec{b}) - \vec{b}. (\vec{c} \times \vec{a})$	
	$= \vec{a} \cdot (\vec{b} \times \vec{c}) + 0 + 0 - 0 - 0 - \vec{b} \cdot (\vec{c} \times \vec{a})$	
	$= \vec{a} \cdot (\vec{b} \times \vec{c}) - \vec{b} \cdot (\vec{c} \times \vec{a})$	1
	=0	
	(STP remains same if vectors ਕੋ, b , c are changed in cyclic order)	
	OR	
	$\langle \cdot, \cdot \rangle \rightarrow \langle \cdot, \cdot \rangle \rightarrow \langle \cdot, \cdot \rangle$	
	$(\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) = 0$	1
	$\Rightarrow \vec{a}.\vec{a} + \vec{a}.\vec{b} + \vec{a}.\vec{c} + \vec{b}.\vec{a} + \vec{b}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a} + \vec{c}.\vec{b} + \vec{c}.\vec{c} = 0.$	
	$ \Rightarrow \vec{a} ^2 + \vec{b} ^2 + \vec{c} ^2 + 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) = 0$	
	$\Rightarrow 3^2 + 5^2 + 7^2 + 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) = 0$	$\left \frac{1}{2} \right $
	$\Rightarrow 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) = -(9 + 25 + 49)$	2
	$\Rightarrow (\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) = -\frac{83}{3}$	1
		$\frac{1}{2}$
25	Vector in the direction of first line $\vec{b} = (\widehat{3}_1 + \widehat{4}_1 + 5\widehat{k})$	
	Vector in the direction of second line $\vec{d} = (4\hat{\imath} - 3\hat{\jmath} + 5\hat{k})$	
	Angle θ between two lines is given by $\cos \theta = \frac{\vec{b} \cdot \vec{d}}{ \vec{b} \vec{d} }$	
	$\cos \theta = \frac{(\widehat{3}_1 + \widehat{4}_1 + 5\widehat{k}).(4\widehat{1} - 3\widehat{1} + 5\widehat{k})}{ (\widehat{3}_1 + \widehat{4}_1 + 5\widehat{k}) (4\widehat{1} - 3\widehat{1} + 5\widehat{k}) }$	1
	$\Rightarrow \cos \theta = \frac{12 - 12 + 25}{\sqrt{9 + 16 + 25}\sqrt{9 + 16 + 25}}$	
	$\sqrt{9+16+25}\sqrt{9+16+25}$	
	$\Rightarrow \cos \theta = \frac{25}{\sqrt{50}\sqrt{50}}$	1
	$-\sqrt{50}\sqrt{50}$	$\frac{1}{2}$
	$\Rightarrow \cos \theta = \frac{1}{2}$	
	_	1
	$\Rightarrow \theta = \frac{\pi}{3}$	$\frac{1}{2}$
	3	-
	D(A) 80 4 D(D) 90 9	
26	$P(A) = \frac{80}{100} = \frac{4}{5}, \qquad P(B) = \frac{90}{100} = \frac{9}{10}$	
	P(Agree)=P(Both speaking truth or both telling lie) = $P(AB \ or \ \overline{AB})$	1
	-r (AD UI AD)	

	$p(A)p(B) = p(\overline{A})p(\overline{B})$	
	$= P(A)P(B)orP(\bar{A})P(\bar{B})$	
	$= \left(\frac{4}{5}\right) \left(\frac{9}{10}\right) + \left(\frac{1}{5}\right) \left(\frac{1}{10}\right)$	
	$=\frac{36+1}{50} = \frac{37}{50}$ $=\frac{74}{100} = 74\%$	
	50 50 74 7400	1
	$=\frac{100}{100} = 74\%$	'
	SECTION C	
1 07	2v±2	
27	Let $y = f(x) = \frac{2x+3}{x-3}$ (1)	1
	Let $x_1, x_2 \in A = R - \{3\}$	$\frac{1}{2}$
	$\operatorname{Let} f(x_1) = f(x_2)$	2
	$\Rightarrow \frac{2x_1 + 3}{x_1 - 3} = \frac{2x_2 + 3}{x_2 - 3}$	
	$\vec{x}_1 - \vec{3} - \vec{x}_2 - \vec{3}$	
	$\Rightarrow (2x_1 + 3)(x_2 - 3) = (2x_2 + 3)(x_1 - 3)$	
	$\Rightarrow (2x_1x_2 - 6x_1 + 3x_2 - 9) = (2x_1x_2 - 6x_2 + 3x_1 - 9)$	
	$\Rightarrow -6x_1 + 3x_2 = -6x_2 + 3x_1$	
	$\Rightarrow 9x_1 = 9x_2$	
	$\Rightarrow x_1 = x_2$ Now $f(x) \to x$	
	Now $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$	1
	so $f(x)$ is one-one For onto	
ı		
	$y = \frac{2x + 3}{x - 3}$	
1	$\Rightarrow xy - 3y = 2x + 3$	
	$\Rightarrow xy - 2x = 3y + 3$	
	$\Rightarrow x(y-2) = 3(y+1)$	
	$\Rightarrow x = \frac{3(y+1)}{(y-2)}$ (2)	
ı	equation (2) is defined for all real values of y except 2 i.e $y \in R - \{2\}$ which is same as given set $B = R - \{2\}$	1
	(co-domain=range)	$1\frac{1}{2}$
1	Also $y = f(x)$	
	$f(x) = f\left(\frac{3(y+1)}{(y-2)}\right)$	
	(y = 27)	
	$2\left[\frac{1}{(y-2)}\right] + 3 \left(\operatorname{sinco} f(x)\right) - 2x + 3$	
	$= \frac{2\left[\frac{3(y+1)}{(y-2)}\right] + 3}{\frac{3(y+1)}{(y-2)} - 3} \left(\text{since } f(x) = \frac{2x+3}{x-3}\right)$	
	(y-2)	
	$\frac{2(3y+3)+3(y-2)}{3y+3-3y+6} = \frac{9y}{9} = y$	
	Thus for every $y \in B$, there exists $x \in A$ such that $f(x) = y$. Thus function is onto.	
ıl	Since $f(x)$ is one-one and onto so $f(x)$ is invertible.	1
'		
	Inverse is given by $x = f^{-1}(y) = \frac{3(y+1)}{(y-2)}$	
28	$\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$	
	Let $x = \sin A$, $y = \sin B$	1
	$\sqrt{1-\sin^2 A} + \sqrt{1-\sin^2 B} = a(\sin A - \sin B)$	$\overline{2}$
	$\cos A + \cos B = a(\sin A - \sin B)$	
		1
	$\Rightarrow 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) = 2a\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$	1
	$\Rightarrow \cos\left(\frac{A-B}{2}\right) = a\sin\left(\frac{A-B}{2}\right)$	
	$\rightarrow \cos\left(\frac{1}{2}\right) = a\sin\left(\frac{1}{2}\right)$	
L	I	

(A D)		
$\Rightarrow \cot\left(\frac{A-B}{2}\right) =$		
	$\Rightarrow \frac{A-B}{2} = \cot^{-1} a$	1
$\Rightarrow A - B = 2 \cot^{-1}$	^{-1}a	'
$\Rightarrow \sin^{-1} x - \sin^{-1} differentiating w.r.$	$y = 2\cot^{-1}a$	1
$\Rightarrow \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-x^2}}$	$\frac{dy}{dy} = 0$	
$\sqrt{1-x^2}$ $\sqrt{1-x^2}$	$\frac{1}{x^2} dx = 0$	
$dv \sqrt{1-v^2}$		$\frac{1}{2}$
$\Rightarrow \frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{\sqrt{1 - x^2}}$		2
	OR	
$x = a(\cos 2\theta + 2\theta)$	sin 2θ)	
$\Rightarrow \frac{dx}{dx} = a($	$-2\sin 2\theta + 2\sin 2\theta + 4\theta\cos 2\theta$	1
$\Rightarrow \frac{dx}{d\theta} = a(4\theta\cos 2\theta)$		
$y = a(\sin 2\theta - 2\theta)$		
1 1 1	$2\cos 2\theta + 4\theta \sin 2\theta - 2\cos 2\theta)$	1
a o		
	θ)(2)	
using (1)and (2) dy a(4θ sin 2θ)	
$\Rightarrow \frac{dy}{dx} = \frac{a(x)}{a(x)}$		$\frac{1}{2}$
$\Rightarrow \frac{dy}{dx} = \frac{\text{Si}}{\text{So}}$	$\frac{n 2\theta}{s 2\theta} = tan 2\theta$	2
	iting again with respect to x, we get	
$\Rightarrow \frac{d^2y}{dx} = 2$	$2 \sec^2 2\theta \cdot \frac{d\theta}{dx}$	4
dx^2	dx . 1	$\frac{1}{2}$
$\Rightarrow \frac{dy}{dx^2} = 2$	$2 \sec^2 2\theta \cdot \frac{1}{a(4\theta \cos 2\theta)}$	_
$\frac{d^2y}{dx^2}$ =	$2 \sec^2 \frac{\pi}{4} \cdot \frac{1}{a \left(4 \frac{\pi}{8} \cos \frac{\pi}{4}\right)}$	
$dx^2\Big]_{\theta=\frac{\pi}{8}}$	$4 a \left(4 \frac{\pi}{8} \cos \frac{\pi}{4}\right)$	
$=\frac{8\sqrt{2}}{\pi a}$		1
$x \frac{3}{dx} - y =$		
$\Rightarrow x \frac{dy}{dy} = y$	$y + \sqrt{x^2 + y^2}$	
dx		
$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}y} = \frac{y + \sqrt{x^2 + y^2}}{y}.$	(1)	
	let y = vx	1
differentiating		1
$\Rightarrow \frac{dy}{dx} = v$	$+ x \frac{dv}{dx}$	
put in (1)		

	$\Rightarrow v + x \frac{dv}{dx} = \frac{vx + \sqrt{x^2 + v^2 x^2}}{x}$	
		1
	$\Rightarrow v + x \frac{dv}{dx} = \frac{x(v + \sqrt{1 + v^2})}{x}$	
	$\Rightarrow x \frac{dv}{dx} = v + \sqrt{1 + v^2} - v$	
	$\Rightarrow x \frac{dv}{dx} = \sqrt{1 + v^2}$	
	$\Rightarrow \frac{dx}{\sqrt{1+v^2}} = \frac{dx}{x}$	
	1	
	integrating both sides $\int dv = \int dx$	1
	$\Rightarrow \int \frac{dv}{\sqrt{1+v^2}} = \int \frac{dx}{x}$	$1\frac{1}{2}$
	$\Rightarrow \log\left(v + \sqrt{1 + v^2}\right) = \log x + \log c$	
	$\Rightarrow \log\left(v + \sqrt{1 + v^2}\right) = \log cx$	
	$\Rightarrow \left(v + \sqrt{1 + v^2}\right) = cx$	
	$\Rightarrow \left(\frac{y}{x} + \sqrt{1 + \left(\frac{y}{x}\right)^2}\right) = cx$	$\frac{1}{2}$
	$\left(\frac{1}{x} + \sqrt{1 + \left(\frac{1}{x}\right)}\right) = Cx$	2
	$\Rightarrow y + \sqrt{x^2 + y^2} = cx^2$	
30	Consider $I=\int_1^3 x^2-2x dx$	1
	$ x^2 - 2x = \begin{cases} -(x^2 - 2x) & \text{when } 1 \le x < 2\\ (x^2 - 2x) & \text{when } 2 \le x \le 3 \end{cases}$	
	$I = \int_{1}^{2} x^{2} - 2x dx + \int_{2}^{3} x^{2} - 2x dx$	
	$ = \int_{1}^{2} -(x^{2} - 2x) dx + \int_{2}^{3} (x^{2} - 2x) dx $	1
	$I = -\left[\frac{x^3}{3} - x^2\right]_1^2 + \left[\frac{x^3}{3} - x^2\right]_2^3$	1
	$I = -\left(-\frac{4}{2} + \frac{2}{2}\right) + \left(\frac{4}{2}\right)$	
	$I = \frac{6}{2} = 2$	1
31	Let X denotes the smaller of the two numbers obtained	
	So X can take values 1,2,3,4,5,6 P(X=1 is smaller number)	$\left \frac{1}{2} \right $
	$P(X=1) = \frac{6}{7C_2} = \frac{6}{21} = \frac{2}{7}$	
	(Total cases when two numbers can be selected from first 7 numbers	
	$\operatorname{are} 7_{C_2})$	
	$P(X=2) = \frac{5}{7c_2} = \frac{5}{21}$	
	$P(X=3) = \frac{4}{7_{C_2}} = \frac{4}{21}$	
	$P(X=4) = \frac{3}{7c_2} = \frac{3}{21} = \frac{1}{7}$	
	$P(X=5) = \frac{2}{7C_2} = \frac{2}{21}$	
	$P(X=6) = \frac{1}{7c_2} = \frac{1}{21}$	2
	$\begin{bmatrix} x_i & 1 & 2 & 3 & 4 & 5 & 6 \end{bmatrix}$	

p	i 6 21	5 21	4 21	3 21	2 21	1 21	1	
p_i :	,	10 21	12 21	12 21	10 21	6 21	$\frac{1}{2}$	
					21	21	J	
Mean	Mean = $\sum p_i x_i = \frac{6}{21} + \frac{10}{21} + \frac{12}{21} + \frac{12}{21} + \frac{10}{21} + \frac{6}{21} = \frac{56}{21} = \frac{8}{3}$							
			OR					
	= event of sevent of seven	_			ws 75%	times He	ad	
$E_3 = ev$	ent of selection	ng a unbia	ased coin		W3 7 3 70	111103 110		
A = ev	ent that tosse				1		1	
- (A				$P(E_3) = \frac{1}{2}$	J		$\frac{1}{2}$	
P(A)	$(E_1) = P(\text{coin})$	showing h	ead given = 1	that it is t	wo heade	ed coin)	2	
P	$(A/E_2) = P(c$	oin showi	•	iven that i	t is a biase	ed coin)		
	(/L ₂)		$=\frac{75}{100}=$	_				
P	$\left(\frac{A}{E_3}\right) = P(cc)$		100	-	is unhias	ed coin)	1	
	$(/E_3)$	JII 1 31 10 VVII	1	von that it	is diffilas	cu com,		
Bv Bay	es theorem		$=\frac{1}{2}$					
'	(gettingtwo he	adedcoin	when it is	known th	at it show	/s Head)		
	(E)		$P(E_1)$	$P(A/_{E})$				
P	$\binom{E_1}{A} = \frac{1}{P(E_1)}$	$r_1)P(A/E_1)$	$+P(E_2)$	$P(A/E_2)$	$+ P(E_1)P$	$\overline{(A/E_3)}$		
	14	11	1	_		-	1	1_
=	$\frac{\frac{1}{3} \times 1}{\frac{1}{3} \times 1 + \frac{1}{3} \times \frac{3}{4} + \frac{1}{3} \times \frac{1}{2}} =$	$= \frac{\frac{3}{3} \times 1}{\frac{1}{3} \left(1 + \frac{3}{4} + \frac{1}{2}\right)} = \frac{1}{3}$	$\frac{\frac{3}{3}}{\frac{1}{3} \times \frac{9}{4}} = \frac{4}{9}$					2
Requir	ed probability	$t=\frac{4}{1}$						
32 Let tail	or A works fo	7	ınd tailor	B works fo	or <i>y</i> days			1_
	ive function : nimize labour	cost Z =	= 150 <i>x</i> + 3	200v (in	₹)			2
Subjec	To minimize labour cost $Z = 150x + 200y$ (in \mathfrak{T}) Subject to constraints							
	$6x + 10y \ge 60$ i.e. $3x + 5y \ge 30$ $4x + 4y \ge 32$ i.e. $x + y \ge 8$. 1
	$x \ge 0$, $y \ge 0$	•						$1\frac{1}{2}$
	er equations t e region	o araw th	e graph a	ana then w	ve will sha	ade		
			3x + 5	-				
			x + y	/ = o				

Apply $C_2 \to y C_2$ and $C_3 \to z C_3$ $= \frac{(x+y+z)^2}{yz} \begin{vmatrix} 2yz & -2yz & -2yz \\ y^2 & (yz+yx-y^2) & 0 \\ z^2 & 0 & (zx+zy-z^2) \end{vmatrix}$	1
$\begin{vmatrix} yz & y & y & y \\ z^2 & 0 & (zx + zy - z^2) \end{vmatrix}$ Apply $C_2 \to C_2 + C_1$ and $C_3 \to C_3 + C_1$ $= \frac{(x+y+z)^2}{yz} \begin{vmatrix} 2yz & 0 & 0 \\ y^2 & (yz+yx) & y^2 \\ z^2 & z^2 & (zx+zy) \end{vmatrix}$ expanding along R_1	1
$= \left(\frac{(x+y+z)^2}{yz}\right) 2yz[(yz+yx)(zx+zy)-y^2z^2]$ $= 2(x+y+z)^2[xyz^2+x^2yz+xy^2z+y^2z^2-y^2z^2]$ $= 2xyz(x+y+z)^2(x+y+z)$ $= 2xyz(x+y+z)^3$ OR	1
** A = $\begin{bmatrix} 2 & 3 & 4 \\ 1 & -1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$ A = 2(-2) - 3(2 - 0) + 4(1 - 0) = -6 \neq 0 \therefore A ⁻¹ exists	1
Cofactors $A_{11} = -2 \qquad A_{12} = -2 \qquad A_{13} = 1$ $A_{21} - 2 \qquad A_{22} = 4 \qquad A_{23} = -2$	
$A_{31} = 4 A_{32} = 4 A_{33} = -5$	2
$Adj A = \begin{bmatrix} -2 & -2 & 1 \\ -2 & 4 & -2 \\ 4 & 4 & -5 \end{bmatrix}'$	
$Adj A = \begin{bmatrix} -2 & -2 & 4 \\ -2 & 4 & 4 \\ 1 & -2 & -5 \end{bmatrix}$ $A^{-1} = \frac{Adj A}{ A } = \frac{1}{-6} \begin{bmatrix} -2 & -2 & 4 \\ -2 & 4 & 4 \\ 1 & -2 & -5 \end{bmatrix}$ System of equations can be written as $AX = B$ $Where A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & -1 & 0 \\ 0 & 1 & 2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, B = \begin{bmatrix} 17 \\ 3 \\ 7 \end{bmatrix}$ $Now AX = B$ $\Rightarrow X = A^{-1}B$ $\Rightarrow X = \frac{1}{-6} \begin{bmatrix} -2 & -2 & 4 \\ -2 & 4 & 4 \\ 1 & -2 & -5 \end{bmatrix} \begin{bmatrix} 17 \\ 3 \\ 7 \end{bmatrix}$	1

	$\Rightarrow X = \frac{1}{-6} \begin{bmatrix} -34 - 6 + 28 \\ -34 + 12 + 28 \\ 17 - 6 - 35 \end{bmatrix}$ $\Rightarrow X = \frac{1}{-6} \begin{bmatrix} -12 \\ 6 \\ -24 \end{bmatrix}$ $\Rightarrow X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$ $\Rightarrow x = 2, y = -1, z = 4$	1 1 2
34	$x^2 + y^2 = 1$ (1) x + y = 1(2) solving (1) and(2) $x^2 + (1 - x)^2 = 1$ $x^2 + x^2 - 2x + 1 = 1$ $2x^2 - 2x = 0$ 2x(x - 1) = 0 x = 0 or x = 1	1
	B C X	1
	Required area = shaded area ACBDA =area(OACBO) - area(OADBO) = $\int_0^1 (y_{circle} - y_{line}) dx$ $\int_0^1 \sqrt{1 - x^2} dx - \int_0^1 (1 - x) dx$	$1 \frac{1}{2}$
	$= \left[\frac{x\sqrt{1-x^2}}{2} + \frac{1}{2}\sin^{-1}x \right]_0^1 - \left[x - \frac{x^2}{2} \right]_0^1$ $\left[\left(0 + \frac{1}{2} \cdot \frac{\pi}{2} \right) - 0 \right] - \left[\left(1 - \frac{1}{2} \right) \right]$ $\left(\frac{\pi}{4} - \frac{1}{2} \right) \text{ square units}$	$1\frac{1}{2}$
35	Let r be the radius and h be the height of half cylinder Volume = $\frac{1}{2}\pi r^2 h = V$ (constant)(1)	$\frac{1}{2}(fig)$

maximum or minimum.	
$Z = A^2 = r^2 h^2$ (2)	
Now In triangle OLB $BL^2 = OB^2 - OL^2$	
In ΔOBD	
$Z = A^2 = r^2 h^2$ $r^2 = R^2 - (h - R)^2 \Rightarrow r^2 = 2hR - h^2$	
put in (2)	
$Z = h^2(2hR - h^2)$ $\Rightarrow Z = (2h^3R - h^4)$	
$\Rightarrow Z = (2h \cdot R - h)$ $\Rightarrow \frac{dZ}{dh} = 6h^2 R - 4h^3 \dots (3)$	
un	1
For maxima/minima $\frac{dZ}{dh} = 0$	2
$\Rightarrow 6h^2R - 4h^3 = 0$	
$\Rightarrow 6R = 4h(h \neq 0)$	1
38	·
$\Rightarrow h = \frac{3R}{2}$	
differentiating (3) w.r.t. h	
$\Rightarrow \frac{d^2Z}{dh^2} = 12hR - 12h^2$	1
$\Rightarrow \frac{d^2 Z}{dh^2}\Big _{h=\frac{3R}{2}} = 12\left(\frac{3R}{2}\right)R - 12\left(\frac{3R}{2}\right)^2$	
$= 18R^2 - 27R^2 = -ve$	
so Z= A^2 is maximum when $h = \frac{3R}{2}$	
\Rightarrow A is maximum when $h = \frac{3R}{2}$	1
when $h = \frac{3R}{2}$, $r^2 = 2hR - h^2 = 2R \cdot \frac{3R}{2} - \left(\frac{3R}{2}\right)^2$	
$r^2 = \frac{3R^2}{\Lambda}$	
$r = \frac{\sqrt{3}R}{2}$	
20	
$\tan \theta = \frac{h}{r} = \frac{\frac{3R}{2}}{\frac{\sqrt{3}R}} = \sqrt{3}\theta = \frac{\pi}{3}$	1
	1
Triangle ABC is equilateral triangle	
Let $P(x, y, z)$ be any point on the plane in which $A(2,1,2)$ and $B(4, 1,2)$	-2,1)lie.
$\therefore \overrightarrow{AP}$ and \overrightarrow{AB} lie on required plane.	
Also required plane is perpendicular to given plane $\vec{r} \cdot (\hat{\imath} - 2\hat{k}) = 5$	1
∴normal to given plane $\overrightarrow{n_1} = (\hat{1} - 2\hat{k})$ lie on required plane.	
$\Rightarrow \overrightarrow{AP}, \overrightarrow{AB}$ and $\overrightarrow{n_1}$ are coplanar.	
Where $\overrightarrow{AP} = (x-2)\hat{i} + (y-1)\hat{j} + (z-2)\hat{k}$	1
$\overrightarrow{AB} = 2\hat{i} - 3\hat{j} - \hat{k}$	•
⇒Scaler triple product $[\overrightarrow{AP} \ \overrightarrow{AB} \ \overrightarrow{n_1}] = 0$	
	1

$$\Rightarrow \begin{vmatrix} x-2 & y-1 & z-2 \\ 2 & -3 & -1 \\ 1 & 0 & -2 \end{vmatrix} = 0$$

$$\Rightarrow (x-2)(6-0) - (y-1)(-4+1) + (z-2)(0+3) = 0$$

$$\Rightarrow 6x - 12 + 3y - 3 + 3z - 6 = 0$$

$$\Rightarrow 2x + y + z = 7.............(1)$$
Line passing through points $L(3,4,1)$ and $M(5,1,6)$ is
$$\Rightarrow \frac{x-3}{2} = \frac{y-4}{-3} = \frac{z-1}{5} = \lambda...........(2)$$

$$\Rightarrow \text{General point on the line is } Q(2\lambda + 3, -3\lambda + 4,5\lambda + 1)$$
As line (2) crosses plane (1) so point Q should satisfy equation(1)
$$\therefore 2(2\lambda + 3) + (-3\lambda + 4) + (5\lambda + 1) = 7$$

$$4\lambda + 6 - 3\lambda + 4 + 5\lambda + 1 = 7$$

$$6\lambda = -4$$

$$\lambda = -\frac{2}{3}$$

$$Q(-\frac{4}{3} + 3,2 + 4, -\frac{10}{3} + 1) = Q(\frac{5}{3}, 6, -\frac{7}{3})$$