4.RELATIVE MOTION

 v_{AB} (velocity of A with respect to B) = $v_A - v_B$

 a_{AB} (acceleration of A with respect to B) = $a_A - a_B$

Relative motion along straight line - $x_{sym} = x_{sym} = x_{sym} = x_{sym}$

CROSSING RIVER

A boat or man in a river always moves in the direction of resultant velocity of velocity of boat (or man) and velocity of river flow.

1. **Shortest Time:**

Velocity along the river, $v_{R} = v_{R}$. Velocity perpendicular to the river, $v_i = v_{mR}$

The net speed is given by $v_{w} = \sqrt{v_{mR}^2 + v_{R}^2}$

velocity along the river, $v_{M} = 0$

and velocity perpendicular to river $v_{\rm g}$ = $\sqrt{v_{\rm mR}^2 - v_{\rm R}^2}$

The net speed is given by $v_{iii} = \sqrt{v_{mR}^2 - v_R^2}$

at an angle of 90° with the river direction. velocity $v_{_{\!M\!\!\!M}}$ is used only to cross the river,

therefore time to cross the river, $t = \frac{d}{v_y} = \frac{d}{\sqrt{v_{mR}^2 - v_R^2}}$

$$v_{R} v_{mR} \sin \theta = 0$$

or
$$v_{R} = v_{R} \sin \theta$$

or
$$\theta = \sin i \frac{v_R}{v_{mR}}$$

RAIN PROBLEMS

$$v_{Rm} = \vec{v}_{R} \quad v_{m}$$

$$v_{Rm} = \vec{v}_R \qquad v_m \qquad \qquad \text{or} \qquad \qquad v_{Rm} = \sqrt{v_R^2 + v_m^2}$$

