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Figure l Wavelength versus parti­
cle energy, for photons, neutrons, 
and electrons. 
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Figure 2 Derivation of the Bragg equation 2d sin 8 = nA; here d is the spacing ofparallel atomic 
planes and 27m is the difference in phase between reflections from successive planes. The 
reflecting planes hav~ nothing to do with the surface planes b:otll1ding the particular ~pecimen . 



The Bragg law 

CHAPTER 2: WAVE DIFFRACTION AND 
THE RECIPROCAL LATTICE 

DIFFRACTION OF WAVES BY CRYSTALS 

We study crystal structure through the diffraction of photons, neutrons, 
and electrons (Fig. 1). The diffraction depends on the crystal structure and on 
the wavelength. At optical wavelengths such as 5000 A, the superposition of 
the waves scattered elastically by the individual atoms of a crystal results in or­
dinary optical refraction. \Vhen the wavelength of the radiation is comparable 
with or smaller than the lattice constant, we may find diffracted beams in 

directions quite different from the incident direction. 
W. L. Bragg presented a simple explanation of the diffracted beams from a 

crystal. The Bragg derivation is simple but is convincing only because it repro­
duces the correct result. Suppose that the incident waves are reflected specu­
larly from parallel planes of atoms in the crystal, with each plane reflecting 
only a very small fraction of the radiation, like a lightly silvered mirror. In 
specular (milTorHke) reflection the angle of incidence is equal to the angle of 
reflection. The diffracted beams are found when the reflections from parallel 
planes of atoms interfere constmctively, as in Fig. 2. We treat elastic scatter­
ing, in which the energy of the x-ray .is not changed on reflection. 

Consider parallel lattice planes spaced d apart. The radiation is incident in 

the plane of the paper. The path difference for rays reflected from adjacent 
planes is 2d sin 8, where 8 is measured from the plane. Constructive interfer­
ence of the radiation from successive planes occurs when the path difference 
is an integral number n of wavelengths A, so that 

(1) 

This is the Bragg law, which can be satisfied only for wavelength A :s; 2d. 
Although the reflection from each plane is specular, for only certain values 

of 8 will the reflections from all periodic parallel planes add up in phase to give 
a strong reflected beam. If each plane were perfectly reflecting, only the first 
plane of a parallel set would see the radiation, and any wavelength would be re­
-flected. But each plane reflects 10-3 to 10-5 of the incident radiation, so that 
103 to 105 planes may contribute to the formation of the Bragg-reflected beam in 

a perfect crystaL Reflection by a single plane of atoms is treated in Chapter 17 
on surface physics. 

The Bragg law is a consequence of the periodicity of the lattice. Notice 
that the law does not refer to the composition of the basis of atoms associated 
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Figure 3 Sketch of a monochrom<'\tor which by Bragg reflection selects a narrow spectrum of 
x-ray or neutron wavelengths from a broad spectrum incident beam. The upper part of the figure 
shows the analysis. (obtained hy reflection from a second crystal) of the purity of a 1.16 A beam of 
neulTons from a oak;ium fluoride crystal monochromator. (After G. Bacon.) 

Figure 4 X-ray diffractometer recordiTJg of powdered silicon, showing a counter recording of the 
diffracted beams. (Courtesy ofW. Parrish.) 

with every lattice point. We shall see, however, that the composition of the 
basis determines the relative intensity of the various orders of diffraction 
(denoted by n above) from a given set of parallel planes. Bragg reflection from 
a single crystal is shown in Fig. 3 and from a powder in Fig. 4. 

SCATIERED WAVE AMPLITUDE 

. The Bragg derivation of the diffraction condition (1) gives a neat state­

. ment of the condition for the constructive interference of waves scattered 
from the lattice points. We need a deeper analysis to determine the scattering 
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intensity from the basis of atoms, which means from the spatial distribution of 
electrons within each cell. 

Fourier Analysis 

We have seen that a crystal is invariant Wlder any translation of the form 
T = u 1a1 + u 2a2 + u:3a3, where ul> u2,, u 3 are integers and al> a2, a3 are the crystal 
axes. Any local physical property of the crystal, such as the charge concentra­
tion, electron number density, or magnetic moment density is invariant under T. 
What is most important to us here is that the electron number density n.(r) is a 
periodic function of r, with periods a 1, a2 , a 3 in the directions of the three crys­
tal axes, respectively. Thus 

n(r + T) = n(r) . (2) 

Such periodicity creates an ideal situation for Fourier analysis. The most inter­
esting properties of crystals are directly related to the Fourier components of 
the electron density. 

We consider first a function n(x.) in one dimension with period a in the 
direction x. We expand n(x) in a Fourier series of sines and cosines: 

n(x) = n0 + 2 [Cp cos(27rpxla) + SP sin(27rpx/a)] , 
p>O 

(3) 

where the p are positive integers and CP, SP are real constants, called the 
Fourier coefficients of the expansion. The factor 2'TT'/a in the arguments en­
sun~s that n(x) has the period a: 

n(x +a)= n0 + 2:-[CP cos(21Tpxla + 21Tp) + SP sin(21Tpxla + 2-rrp)] 
(4) 

= n0 + L[CP cos(2npxla) + SP sin(27rpxla)] = n(x) . 

We say that 211p!a is a point in the reciprocal lattice or Fourier space of the 
crystal. In one dimension these points lie on a line. The reciprocal lattice 
points tell us the allowed terms in the Fomier series (4) or (5). A term is al­
lowed if it is consistent with the periodicity of the crystal, as in Fig. 5; other 

n(x) 

- 47T - 27T 0 27T 4'7T 
a a a a 

Figure 5 
period a. 
may app1 

n(x) == 2:1 
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points in the reciprocal space are not allowed in the Fourier expansion of ape..: 
riodic function. 

It is convenient to write the series ( 4) in the compact form 

n(x) = ~ nP exp(i217pxla) , 
p 

(5) 

where the sum is over all integers p: positive, negative, and zero. The coeffi­
cients nP now are complex numbers. To ensure that n(x) is a real function, we 
require 

(6) 

for then the sum of the terms in p and -p is real. The asterisk on n":.P denotes 
the complex conjugate of n-p· 

With <p 211pxla, the sum of the terms in p and -p in (5) is real if (6) is 

satisfied. The sum is 

which in tum is equal to the real function 

(8) 

if (6) is satisfied. Here Re{np} and Im{np} are real and denote the real 
and imaginary parts of nP. Thus the number density n(x) is a real function, as 
desired. 

The extension of the Fourier analysis to periodic functions n(r) in three 
dimensions is straightforward. We must find a set of vectors G such that 

n(r)= ,Inc exp(iG • r) 
G 

(9) 

is invariant under all crystal translations T that leave the crystal invariant. It 
will be shown below that the set of Fourier coefficients nG determines the 
x-ray scattering amplitude. 

Inversion of Fourier Series. We now show that the Fourier coefficient nP 
in the series (5) is given by 

(10) 

Substitute (5) in (10) to obtain 

np =a-l :L np· ra ax exp[i21T(p'- p)xlaJ 
p' Jo (11) 
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If p' #: p the value of the integral is 

. ~ (e12nr(p'-p) -1) = 0 , 
t2'1T(p - p) 

because p' - p is an integer and exp[i27T(integer)] = 1. For the term p' = p the 
integrand is exp(iO) = 1, and the value of the integral is a, so that n, = a-1npa = 
nP, which is an identity, so that (10) is an identity. 

As in (10), the inversion of (9) gives 

nc = v;L J dV n(r) exp( -iG · r) 
cell 

(12) 

Here Vc is the volume of a cell of the crystal. 

Reciprocal Lattice Vectors 

To proceed further with the Fourier analysis of the electron concentration we 
must find the vectors G of the Fourier sum 2:nc exp(iG · r) as in (9). There is a 
powerful, somewhat abstract procedure for doing this. The procedure formsthe 
theoretical basis for much of solid state physics, where Fourier analysis is the 
order of the day. 

We construct the axis vectors b1, b2, h3 of the reciprocal lattice: 

(13) 

The factors 2'7T are not used by crystallographers but are convenient in solid state 
physics. 

If av a2, a3 are primitive vectors of the crystal lattice, then b1, h2 , b3 are 
primitive vectors of the reciprocal lattice. Each vector defined by (13) is 
orthogonal to two axis vectors of the crystal lattice. Thus b1, b2, h3 have the 
property 

h1• aj = 27Toy, 

where oiJ = 1 if i = j and oij = 0 if i * j. 
Points in the reciprocal lattice are mapped by the set of vectors 

G = v 1h1 + v2h2 + v3h3 , 

(14) 

(15) 

where vi> v2, v3 are integers. A vector G of this form is a reciprocal lattice vector. 
The vectors Gin the Fomier series (9) are just the reciprocal lattice vectors (15), 

for then the Fourier series representation of the electron density has the desired in­

variance under any crystal translation T = u 1a 1 + u2a2 + u 3a3. From (9), 

n(r + T) = 2: nc exp(iG · r) exp(iG · T) 
G 

(16) 
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But exp(iG · T) = 1, because 

exp(iG · T) = exp[i(vlhl + v2b2 + v3b3 ) • (uta1 + u 2a 2 + u3a3)] 

= exp[i27T(VitL:t, + v2u2 + v3u3)] . 
(17) 

The argument of the exponential has the form 27Ti times an integer, because 
v 1u1 + V:J.U 2 + v3u3 is an integer, being the srnn of products 6f integers. Thus by 
(9) we have the desired invarjance, n(r + T) = n(r) = ~ nc e_xp(iG · r). 

Every c1ystal structure has two lattices associated with it, the crystal lattice 
and the reciprocal lattice. A diffraction pattern of a crystal is, as we shall show, 
a map of the reciprocal lattice of the crystal. A microscope image, if it could be 
resolved on a fine enough scale, is a map of the crystal structure in real space. 
The two lattices are related by the definitions (13). Thus when we rotate a crys­
tal in a holder, we rotate both the direct lattice and the reciprocal lattice. 

Vectors in the direct lattice have the djmensions of [length]; vectors in the 
reciprocal lattice have the dilnensions of [lllength]. The reciprocal lattice is a 
lattice in the Fourier space associated with the crystal. The term is motivated 
below. Wavevectors are always drawn in Fourier space, so that every position 
in Fourier space may have a meaning as a description of a wave, but there i_s a 
special significance to the points defined by the set of G's associated with a 
crystal structure. 

Diffraction Conditions 

Theorem. The set of reciprocal lattice vectors. G determines the possible 
x-ray reflections. 

We see in Fig. 6 that the difference in phase factors is exp[i(k- k') · r] 
between beams scattered from volume elements r apart. The wavevectors of 
the incoming and outgoing beams are k and k'. We suppose that the amplitude 

Crystal specimen 

Fjgure 6 The difference in path length of the incident wave kat the points 0, r is r sin <p , and the 
difference in phase angle is (27Tr sin <p)/A., which is equal to k · r. For' the diffracted wave the dif­
ference in phase angle is - k' · r. The totaJ difference in phase angle· is (k - k') · r, and the wave 
scattered from dV at r has the phase factor exp[i(k - k') · r] relative to the wave scattered from a 
volume element at the origin 0 . 
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Figure 7 Definition of the scattering vector Ak such that 
k + Ak = k'. I.n. elastic scattering the magnitudes satisfy 
k' = k. Further, in Bragg scattering from a periodic lattice, 
any allowed Ak must equal some reciprocal lattice vector G. 

of the wave scattered from a volume element is proportional to the local elec­
tron concentration n(r). The total amplitude of the scattered wave in the di­
rection ofk' is proportional to the integral over the crystal of n(r) dV times the 
phase factor exp[i(k - k') · r]. 

In other words, the amplitude of the electric or magnetic field vectors in 
the scattered electromagnetic wave is proportional to the following integral 
which defmes the quantity F that we call the scattering amplitude: 

F =I dV n(r) exp[i(k- k') · r]= I dV n(r) exp( -i~ · r) > (18) 

where k - k' = - Llk, or 

k+ ilk= k' . (19) 

Here Ak measures the change in wavevector and is called the scattering 
vector (Fig. 7). We add Ak to k to obtain k', the wavevector of the scat­
tered beam. 

We inrroduce into (18) the Fourier components (9) of n(r) to obtain for 
the scattering amplitude 

F = L f dV nG exp[i(G- Llk) · r] . (20) 
G 

When the scattering vector Ll.k is equal to a particular reciprocal lattice vector, 

(21} 

the argument of the exponential vanishes and F = Vnc. It is a simple exercise 
(Problem 4) to show that F is negligibly small when ilk differs significantly 
from any reciprocal lattice vector. 

In elastic scattering of a photon its energy fun is conserved, so that the 
frequency w' = ck, of the emergent beam is equal to the frequency of the inci­
dent beam. Thus the magnitudes k and k' are equal, andk2 

::::;= k 12
, a result that 

holds also for elastic scattering of electron and neutron beams. From (21) we 
found Ll.k = G or k + G = k', so that the diffraction condition is written as 
(k + G )2 = k2

, or 

(22) 
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This is the central result of the theory of elastic scattering of waves in a 
periodic lattice . If G is a reciprocal lattice vector, so is -G, and with this sub­
stitution we can write (22) as 

(23) 

This particular expression is often used as the condition for diffraction. 
Equation (23) is another statement of the Bragg condition (1). The result 

of Problem 1 is that the spacing d(hkl) betw~en parallel lattice planes that are 
normal to the direction G = hb1 + kb2 + lh3 is d(hkl) = 2n/IGI. Thus the 
result 2k · G = G2 may be written as 

2(2'7T/A) sin 0 = 2nld(hkl) , 

or 2d(hkl) sin () =A. Here 8 is the angle between the incident beam and the 
crystal plane. 

The integers hkl that define G are not necessarily identical with the in­

dices of an actual crystal plane, because the hkl may contain a common factor 
n, whereas in the definition of the indices in Chapter 1 the common factor has 
been eliminated. We thus obtain the Bragg result: 

2d sin 8 = nA , (24) 

where d is the spacing between adjacent parallel planes with indices h!n, 
kin, lin. 

Laue Equations 

The original result (21) of diffraction theory, namely that A.k = G, may be 
expressed in another way to give what are called the Laue equations. These 
are valuable because of their .geometrical representation. Take the scalar prod­
uct of both ~k and G successively with a1, a2 , a3. From (14) and (15) we get 

a 1 • L.\k = 21rv1 ; (25) 

These equations have a simple geometrical interpretation. The first equation 
a1 • L.\k = 27TV1 tells us that L.\k lies on a certain cone about the direction of a1. 

The second equation tells us that L.\k lies on a cone about a2 as well, and the 
third equation requires that L.\k lies on a cone about a 3. Thus, at a reflection 
L.\k must satisfy all three equations; it must he at the common line of intersec­
tion of three cones, which is a severe condition that can be satisfied only by 
systematic sweeping or searching in wavelength or crystal orientati_on-or by 
sheer accident. 

A beautiful construction, the Ewald construction, is exhibited in Fig. 8. 
This helps us visualize the nature of the accident that must occur in order to 
satisfy the diffraction condition in three dimensions. 
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Figure B The p()ints on the right-hand side are redprocal-latt::ice points of the crystal. The vector 
k i~ drawn iT1 the direction of the incident x-ray beam, and the origin is chosen such that k tenn.i­
nates at any reciprocal lattice point. We draw a sphere of radius k = 27T/A. about the origin of k. 
A diffracted beam will be formed if thi.s sphere intersects any other point in the reciprocal lattice. 
The ~·phere. as drawn iaterccpts a point connected with the end of k by a reciprocal ]athce vector 
G. The diffracted x-ray beam is in the direction k' = k + G. The angle 8 is the Bragg angle of 
Fig. 2. This construction is due toP. P. Ewald. 

BRILLOUIN ZONES 

Brillouin gave the statement of the diffraction condition that is most 
widely used in sohd state physics, which means in the description of electron 
energy band theory and of the elementary excitations of other kinds. A 

Brillouin zone is defined as a Wigner-Seitz primitive cell in the reciprocal lat­
tice. (The construction in the direct lattice was shown in Fig. 1.4.) The 
Brillouin zone gives a vivid geometrical interpretation of the diffraction c.ondi­
tion 2k · G = G2 ofEq. (23.). We divide both sides by4 to obtain 

(26) 

We now work in reciprocal space, the space of the k's and G's. Select a 
vector G from the origin to a reciprocal lattice point. Construct a plane normal 
to this vector G at its mjdpoint. This plane forms a part of a zone boundary 
(Fig. 9a). An x-ray beam in the crystal will be diffracted if its wavevector k has 
the magnitude and direction required by (26). The diffracted beam will then 
be in the direction k- G, as we see from (19) with Ak = -G. Thus the 
Brillouin construction exhibits all the wavevectors k which can be Bragg­

reflected by the crystal 



34 

Figure 9a Recipr-ocal lattice points ncar the point 0 at 
the origin of the reciprocal lattice. The re.ciprocallattice 
vector Gc connects points OC; and Gv connects OD. 
Two·planes 1 and 2 are drawn which are the perpendic­
ular bisectors of Gc and Gv, respectively. Any vector 
from the origin to the plane 1, such as k~o will .satisfy the 
diffraction condition k1 • (4 Gc) = (f Gc)2

• Any vector 
from the origi.o to the plane 2, such as k2, will satisfy the 
diffraction condition k2 • (i GJJ) = G Gv)z_ 

Figure 9b Square reciprocal lattice with reciprocal 
lattice vectors shown as fine black lines. The lines 
shown in white are perpendicular bisectors of the rec­
iprocal lattice vectors. The central square is the small­
est volume about the origin which is bounded entirely 
by white lines. The square is the Wigper-Se.itz primi­
tive celJ of the reciprocal lattice. It is called the first 
Brillouin zone. 

The· set of planes that are the perpendicular bisectors of the reciprocal 

lattice vectors i.s of general ini.portance in the theory of wave propagation in 
crystals: A wave whose wavevector drawn from the migin terminates on any of 
these planes will satisfy the condition for diffraction. These planes divide the 
Fourier space of the crystal into fragments, as shown in Fig. 9b for a square 
lattice. The central square is a primitive cell of the reciprocal lattice. It is a 
Wigner-Seitz cell of the reciprocal lattice. 

The central cell in the reciprOC<:lllattice is of special importance in the the­

ory of solids, and we call it the first Brillouin zone. The first Brillouin zone is 
the smallest volume entirely enclosed by planes that are the perpendicular bi­
se<;tQrs of the reciprocal lattice vectors drawn from the origin. Examples are 

shown in Figs. 10 and ll. 
Historically, Brillouin zones are not part of the language of x-ray diffrac­

tion analysis of crystal structures, but the zone,s are an essential part of the 
analysis of the electronic energy-band structure of crystaLs. 

Reciproc;al Lattice tQ sc Lattice 

The primitive translation vectors of a simple cubic lattice may be taken as 

the set 

a 1 =ax a 2 =ay a3 =az (27a) 
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Figure 10 Construction of the first Brillouin 
zone for an oblique lattice in two dimensions. We 
first draw a number of vectors from 0 to nearby 
points in the reciprocal lattice. Next we construct 
lines perpendicular to these vectors at their mid­
points. The smallest enclosed area is the first Bril­
louin zone . 

Figure 11 Crystal and reciprocal lattices in one dimension. The basis vector in the reciprocal lat­
tice is b, of length equal to 27T/a. The shortest reciprocal lattice vectors from the origin are h anp 
-b. The perpendicular bisectors of these vectors fonn the boundaries of the first Brillouin zone. 
The boundaries are at k = ± 7rla. 

Here i, y, z are orthogonal vectors of unit length. The volume of the cell is 
a 1 • a 2 X a 3 = a3

• The primitive translation vectors of the reciprocal latticE} are 
found from the standard prescription (13): 

h2 = (27T/a)y ; (27b) 

Here the reciprocal lattice is itself a simple cubic lattice, now of lattice 
constant 2'1T!a. 
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Figure 12 Primitive basis vectors of the body-crentered 
cubic lattice. 

Figure 13 First Brillouin zone of the body­
centered cubic lattice. The figure is a regular 
rhombic dodecahedron. 

The boundaries of the first Brillouin zones are the planes normal to the six 
reGiprocallattice vectors ±bl> ±he, ±b3 at their midpoints: 

+]_ b - + ( / \..:, . -2 2- - 1T. a,, , (28) 

The six planes bound a cube of edge 2Trla and of volume (2n/a)3; this cube is 
the first Brillouin zone of the sc crystal lattice. 

Reciprocal Lattice to bee Lattice 

The primitive translation vectors of the bee lattice (Fig. 12) are 

1 ( '"- A "') a 1 = 2a -x + y + z ; 1 (A A A) 
~=2ax-y+z ; l (A A A) a3 = 2 a x + y - z , (29) 

where a is the side of the conventional cube and i, y, z are orthogonal unit 
vectors parallel to the cube edges. The volume of the primitive cell is 

(30) 

The primitive. translations of the reciprocal lattice are defined by (13). We 
have, using (28), 

b2 = (.2w!a )(i + z) ; b3 = (2Tr/a)(i + y) . (31) 

Note by comparison with Fig. 14 (p. 37) that these are just the primitive 
vectors of an fcc lattice, so that an fcc lattice is the reciprocal lattice of the bee 
lattice. 

The general reciprocal lattice vector is, for integral vl> v2, v3, 
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Figure 14 Primitive basis vectors of the 
face-centered cubic lattice. 

The shortest G's are the following 12 vectors, where all choices of sign are 
independent: 

(2TTia)( ::!:y::!: i) (27T/a)( ±i ± i) ; (2TT1a)(±i: :t y) . (33) 

One primitive cell of the reciprocal lattice is the parallelepiped described 
by the h 1, h 2, h 3 defined by (31). The volume of this cell in reciprocal space 
is b 1 • h2 X h3 = 2(21Tla?. The ceU contains one reciprocal lattice point, 
because each of the eight corner points is shared among eight parallelepipeds. 
Each parallelepiped contains one-eighth of each of eight comer points (see 
Fig. 12). 

Another primitive cell is the central (Wigner-Seitz) cell of the reciprocal 
lattice wbich is the first Brillouin zone. Each such cell contains one lattice 
point at the central point of the cell. Tllis zone (for the bee lattice) is bounded 
by the planes normal to the 12 \lectors of Eq. (33) at their midpoints. The zone 
is a regular 12-faced solid, a rhombic dodecahedron, as shown in Fig. 13. 

Reciprocal Lattice to fcc Lattice 

The primitive translation vectors of the fcc lattice of Fig. 14 are 

1 (A ") a3 = 2a x + y (34) 

The volume of the primitive cell is 

l 
V = la1 • ~ X a3 ( = 4 d' (35) 
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Figure 15 Brillouin :r.ones of 
the face-centered cubic lattice . 
The cells are in recipro.cal space, 
and the reciprocal lattiee is body 
c~ntered. 

The primitive translation vectors of the lattice reciprocal to the fcc 
lattice are 

h1 = (27T/a;)( -x + y + i) ; h2 = (27T!a)(x- y + z) 
b3 = (2n/a)(i + y- z) ' 

(36) 

These are primitive translation vectors of a bee lattice, so that the bee lattice is 
reciprocal to the fcc lattice. The volume of the primitive cell of the reciprocal 
lattice is 4(27Tia?, 
The shortest G's are the eight vectors: 

(27T/a)(::ti ± y ± z) (37) 

The boundaries of the central cell in the reciprocal lattice are determine,d 
for the m:ost part by the eight planes normar to these vectors at their 
midpoints. But the corners of the octahedron thus formed are cut by the 
planes that are the perpendicular bisectors of six other reciprocal lattice 
vectors: 

(27T/a)(±2i:) ; (27T/a)( ±2y) ; (27T/a)( ±2z) . (38) 

Note that (27T/a)(2i) is a reciprocal lattice vector .because it is equal to b2 + b3. 

The first Brillouin zone is the smallest bounded volume about the origin, the 
trunc~ted octahedron shown in Fig. 15. The six planes bound a cube of edge 
47T/a and (before truncation) of volume (47T/af 
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FOURIER ANALYSIS OF THE BASIS 

When the diffraction condition ilk = G of Eq. (21) is satisfied, the ·scatter­
ing amplitude (18) for a crystal of N cells may be written as 

Fe= N J dVn(r) exp(-iG · r) = NSc . 
oell 

(39) 

The quantity Sc is called the structure factor a,nd is defined as an integral 
over a single cell, with r = 0 at one corner. 

Often it is useful to write the electron concentration n( r) as the super­
position of electron concentration functions nj associated with each atom j 
of the cell. If r; is the vector to the center of atom j, then the function 
n/r - rf) defines the cpntribution of that atom to the electron concentration 
at r . The total electron concentration at r due to all atoms in the single cell is 
the sum 

s 

n(r) = ~ n/r- rj) 
j-l 

(40) 

over the s atoms of the basis. The decomposition of n(r) is not unique, for we 
cannot always say how much charge density is associated with each atom. This 
is not an important difficulty. 

The structure factor defined by (39) may now be written as integrals over 
the s atoms of a celL 

Sc = 2": f dV n/r- ri) exp( -iG · r) 
j 

(41) 
= ~ exp( -iG · T_j) f dV n/p) exp( - iG · p) , 

j 

where p = r - rp We now define the atomic form factor as 

(42) 

integrated over all space. If n/p) is an atomic property,.fj is an atomic property. 
We combine (4l)and (42) to obtain the structure factor of the basis in 

the form 

Sc = ~fj exp( -iG · rj) . 
j 

The usual form of this result follows on writing for atom j: 

(43) 

(44) 
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as in ( 1.2). Then, for the reflection labelled by v 1, v 2, v3 , we have 

G 'lj = (v1b1 + v2b2 + v3b) · (:tjal + y1a 2 + z1a3) 

= 2'1T(V 1Xj + V(j.yj + V3Z) , 

so that (43) becomes 

Sc(vlv2v3) = ~jj exp( -i21T(v1xi + VriJJ + v~J)] 
j 

(45) 

(.46) 

The structure factor S need not be real because the scattered intensity will 
involve S*S, where S* is the complex conjugate of S so that S*S is real. 

Structure Factor of the bee Lattice 

The bee basis referred to the cubic cell has identical atoms at x1 = y1 = 
z1 = 0 and at x2 = y2 = z2 = k. Thus (46) becomes 

(47) 

where f is the form factor of an atom. The value of S is zero whenever 
the exponential has the value -1, which is whenever the argument 
is -i1T X (odd integer). Thus we have 

S=O 
s = 2f 

when v1 + v 2 + v 3. = odd integer ; 
when v 1 + v 2 + v3 = even integer . 

Metallic sodium has a bee structure. The diffraction pattern does not con­
tain lines such as (100), (300), (111), or (221), but lines such as (200), (110), and 

(222) will be present; here the indices (v1v2v3) are referred to a cubic cell. What 
is the physical interpretation of the result that the (100) reflection vanishes? 
The (100) reflection normally occurs when reflections from the planes that 
bound the cubic cdl differ in phase by 21T. In the bee lattice there is an inter­
vening plane (Fig. 16) of atoms, labeled the second plane in the figure, which is 
equal in scatteling power to the other planes. Situated midway between them, 
it gives a reflection retarded in phase by '1T with respect to the first plane, 
thereby canceling the contribution from that plane. The cancellation of the 
(100) reflection occurs in the bee lattice because the planes are identical in 

composition. A similar cancellation can easily be found in the hcp structure. 

Structure Fa.ctor of the fcc Lattice 

The basis of the fcc structure r~ferred to the cubic cell has identical atoms 
at 000; 0H; i~; ~0. Thus (46) becomes 

S(vtv2v3) = f11 + exp[ -i1T(V2 + v3)] + exp[ -i1i(v1 + v3)] 

+ expf -i1T(v1 + v2)]} 

(48) 
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Figure 16 Explanation of the absence of a (100) reflection from a body-centered cubic lattice. 
The phase difference between successive planes is 'TT, so that the reflected amplitude from two 
adjacent planes is l + e_,..,. = 1- l = 0. 

If all indices are even integers_, S = 4/; similarly if all indices are odd integers. 
But if only one of the integers is even, two of th~ exponents will be odd multi­
pl~s of -i1T and Swill vanish. If only one of the integers is odd, the same argu­
ment applies and S will also vanish. Thus in the fcc lattice no reflections can 
occur for which the indices are partly even and partly odd. 

The point is beautif11lly illustrated by Fig. 17: both KCl and KBr have an 
fcc lattice, but n(r) for KCl simulates an sc lattice because the K+ and Cl- ions 
have equal numbers of electrons. 

Atomic Form Factor 

In the expression (46) for the structure factor, there occurs the quantity jj. 
which is a measure of the scattering power of the jth atom in the unit cell. The 
value off involves the number and distribution of atomic electrons, and the 
wavelength and angle of scattering of the radiation. We now give a classical 
calculation of the scattering factor. 

The scattered radiation from a single atom takes account of interference 
effects within the atom. We defined the form factor in (42): 

iJ = J dV n/r) exp( -iG · r) , (49) 

with the integral extended over the electron cencentration associated with a 
single atom. Let r make an angle a with G; then G · r = Gr cos a. If the elec­
tron distribution is spherically symmetric about the origin, then 

jj == 21T I dr r d(cos a) n/r) exp( -iGr CQS a) 
eiGr _ e-iGr 

= 21T I dr rn}(r) . iGr ' 
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KCl 

(220) 

K.Br 

Figure 17 Comparison of x-ray reflections from KCl 
and KBr powders . In KCl the numbers of eJeetrons 
of K+ and cl- ions -are equal. The scattering ampli­
tudes fiK+) and j{Cl-) are. almost exactly equal, so 
that the crystal looks to x-rays as if it were a 
monatomic simple cubic lattice of lattice constant 
a/2, Only even integers occur in the reflection indices 
when these are based on a cuhic lattice of lattice con­
stant a.. In KBr the form factor of Br- i:s quite differ­
ent to that of K.+ , and all reflections of the fcc. 
lattice are present. (Comtesy of R. van Nordstrand.) 

(22Q) 

(Ill) 

50° 40° 30° 20° 
-28 

after integration over d(cos a) ·between -1 and 1. Thus the form factor is 

given by 

(50) 

If" the same total electron density were concentrated at r = 0, only Gr = 0 
would contribute to the integrand. In this hmit (sin Gr)/Gr = l, and 

fj = 47T f drn/r)~ = Z , (51) 

the number of atomic electrons. Therefore f is the ratio of the radiation ampli­
tude scattered by the actual electron distlibution in an atom to that scattered 
by one electron localized at a point. In the forward direction G = 0, and f 
reduces again to the value Z. 

The overall electron dishibution in a solid as seen in x-ray diffraction is 
fairly close to that of the appropriate free atoms . This statement does not 
mean that the outermost or valence electrons are not redistributed somewhat 
in forming the solid; it means only that the x-ray reflection intensities are 
represented well by the free atom va]ues of the form factors and are not very 
sensitive to small redistributions of the electrons. 
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SUMMARY 

• Various statements of the Bragg condition: 

2d sin 8 = nA G· 
' 

• Laue conditions: 

3:2 • Ak 21TV2 ; 

• The primitive translation vectors of the reciprocal lattice are 

bi 21T a2 X aa b2 b3 = 271' al X ~ 
a1 • a2 X a3 a1 • 3:2 X a3 

Here at> a2, a3 are the primitive translation vectors of the crystal lattice. 

• A reciprocal lattice vector has the form 

G = v 1b1 + v2b2 + v3b3 , 

where vh v2 ~ v3 are integers or zero. 

• The scattered amplitude in the direction k' = k + Ak = k + G is propor­
tional to the geometrical structure factor: 

Sc ~/.; exp( -il) ·G)= Ljj exp[ -i21T(xiv1 + yiv2 + ziv3)] , 

where j runs over the s atoms of the basis, and jj is the atomic form factor 
(49) of the jth atom of the basis. The expression on the right-hand side is 
written for a reflection (v 1v2v 3 ), for which G = v1b 1 + v2b 2 + v3b 3. 

• Any function invariant under a lattice translation T may be expanded in a 
Fourier series of the form 

n(r) = 2 nc exp(iG · r) 
G 

• The first Bd11ouin zone is the Wigner-Seitz primitive cell of the reciprocal 
lattice. Only waves whose wavevector k drawn from the origin terminates on 
a surface of the Brillouin zone can be diffracted by the crystal. 

• Crystal lattice First Brillouin zone 
Simple cubic Cube 
Body-centered cubic Rhombic dodecahedron (Fig. 13) 
Face-centered cubic Truncated octahedron (Fig. 15) 

Problems 

1. lnterplanar separation. Consider a plane hkl in a crystal lattice. (a) Prove that the 
reciprocal lattice vector G hb1 + kb2 + lb3 is perpendicular to this plane. (b) 
Prove that the distance between two adjacent parallel planes of the lattice is 
d(hkl) 2'17/IGI. (c) Show for a simple cubic lattice that d2 = a2/(h 2 + k2 + 12

). 
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2. He:ragonal space lattice. The primitive translation vectors of the hexagonal space . 
lattice may be taken as 

(a) Show that the volume of the primitive cell is (3112/2)a2c. 
(b) Show that the primitive translations of the reciprocal lattice are 

so that the lattice is its own reciprocal, but with a rotation of axes. 
(c) Describe and sketch the first Brillouin zone of the hexagonal space lattice. 

3. Volume of Brillouin zone. Show that the volume of the first Brillouin zone is 
(2Tr)31Vc, where Vc is the volume of a crystal primitive cell. Hint: The volume of a 
Brillouin zone is equal to the volume of the primitive parallelepiped in Fourier 
space. Recall the vector identity (c X a) X (a X h) (c ·a X b)a. 

4. Width of diffraction maximum. We suppose that in a linear crystal there are 
identical point scattering centers at every lattice point Pm ma, where m is an inte­
ger. By analogy with (20), the total scattered radiation amplitude will be proportional 
to F I exp[ -ima · ilk]. The sum over M lattice points is 

1 - exp[ -iM(a · Ak] 
F = --=-----

1- exp[ -i(a. ilk)] ) 

by the use of the series 
M-1 

~ Xm 
m=O 

(a) The scattered intensity is proportional to IFI2
• Show that 

{b) We know that a diffraction maximum appears when a· Ak =27Th, where h is an 
We change Ak slightly and define e in a · ilk 2Trh + e such that e gives 

the position of the first zero in sin lM(a ·ilk). Show that E 27T/M, so that the width 
of the diffraction maximum is proportional to 1/M and can be extremely narrow for 
macroscopic values of M. The same result holds true for a three-dimensional crystal. 

5. Structure factor of diamond. The crystal structure of diamond is described in 
Chapter 1. The basis consists of eight atoms if the cell is taken as the conventional 
cube. (a) Find the structure factorS of this basis. (b) Find the zeros of Sand show 
that the allowed reflections of the diamond structure satisfy v1 + v2 + v3 = 4n, 
where all indices are even and n is any integer, or else all indices are odd (Fig. 18). 
(Notice that h, k, l may be written for v1, v2 , v3 and this is often done.) 

6. Form factor of atomic hydrogen. For the hydrogen atom in its ground state, the 
number density is n(r) = (7rag)-1 exp( -2r/ao), where a0 is the Bohr radius. Show that 
the form factor is fc = 16/(4 + G2~)2• 
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(lll) 
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Counter position 26 

Figure 18 Neutron diffraction pattern for powdered diamond. (After G. Bacon.) 

7. Diatomic line. Consider a line of atoms ABAB ... AB, with an A-B bond length 
of ~a. The form factors are fA,fB for atoms A, B, respectively. The incident beam of 
x-rays is perpendicular to the line of atoms. (a) Show that the interference condition 
is nA. a cos 0, where 8 is the angle between the diffracted beam and the line of 
atoms. (b) Show that the intensity of the diffracted beam is proportional to 1£ - f 8 12 

for n odd, and to IJA + f 8 l
2 for n even. (c) Explain what happens if fA = f8. 
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