4.1 Application in Mechanics and dy/dx as a Rate Measure

4.1.1 Velocity and Acceleration in Rectilinear Motion

The velocity of a moving particle is defined as the rate of change of its displacement with respect to time and the acceleration is defined as the rate of change to time.

ect

Let a particle *A* moves rectilinearly as shown in figure.

Let *s* be the displacement from a fixed point *O* along the path at time *t*; *s* is considered to be positive on right of the point O and negative on the left of it.

Also, Δs is positive when s increases *i.e.*, when the particle moves towards right.

Thus, if Δs be the increment in s in time Δt . The **average velocity** in this interval is $\frac{\Delta s}{\Delta t}$

And the instantaneous velocity *i.e.*, velocity at time t is $v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt}$

If the velocity varies, then there is change of velocity Δv in time Δt .

Hence, the acceleration at time $t = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$

The distance travelled *s* (in metre) by a particle in *t* second is given by $s = t^3 + 2t^2 + t$. The speed of the Example: 1 particle after 1 sec. will be (d) None of these

(a) 8 cm/sec. (b) 6 cm/sec. (c) 2 cm/sec

Solution: (a) $s = t^3 + 2t^2 + t$, $v = \frac{ds}{dt} = 3t^2 + 4t + 1$

Speed of the particle after 1 second

$$v_{(t=1)} = \left(\frac{ds}{dt}\right)_{(t=1)} = 3 \times 1^2 + 4 \times 1 + 1 = 8 cm / sec$$

A particle moves in a straight line in such a way that its velocity at any point is given by $v^2 = 2 - 3x$, Example: 2 where *x* is measured from a fixed point. The acceleration is

> (a) Zero (b) Uniform (c) Non-uniform (d) Indeterminate

Solution: (b) Velocity, $v^2 = 2 - 3x$

Differentiating with respect to *t*, we get

 $2v \frac{dv}{dt} = -3 \cdot \frac{dx}{dt} \implies 2v \frac{dv}{dt} = -3v \implies \frac{dv}{dt} = -\frac{3}{2}$

ition of a point in time 't' is given by $x = a + bt - ct^2$, $y = at + bt^2$. Its acceleration at time 't' is [MP PET 2 Hence, acceleration is uniform.

(b)
$$(b+c)$$
 (c) $2b-2c$ (d) $2y^2+c^2$

Solution: (d) Acceleration in x-direction = $\frac{d^2x}{dt^2} = -2c$ and acceleration in y-direction = $\frac{d^2y}{dt^2} = 2b$

Resultant acceleration is = $\sqrt{(-2c)^2 + (2b)^2} = 2\sqrt{b^2 + c^2}$

Example: 4 If the path of a moving point is the curve x = at $y = b \sin at$, then its acceleration at any instant [SCRA 1996] (a) Is constant (b) Varies as the distance from the axis of x

(d) Varies as the of the point from the origin

(c) Varies as the distance from the axis of *y*

Solution: (c)
$$\frac{dx}{dt} = v_x = a \implies \frac{d^2x}{dt^2} = 0 = a_y$$

 a_x is acceleration in *x*-axis

$$\frac{d^2y}{dt^2} = -ba^2 \sin at \implies a_y = -a^2y$$

Hence, a_y changes as *y* changes.

Example: 5 A stone thrown vertically upwards from the surface of the moon at velocity of 24 *m/sec*. reaches a height of $s = 24t - 0.8t^2m$ after *t sec*. The acceleration due to gravity in *m/sec*² at the surface of the moon is [MP PET 1992]

Solution: (b) $\frac{ds}{dt}$ = velocity = 24 = 24 - 1.6 *t*

So acceleration at *t*, is $\left[\frac{d^2s}{dt^2}\right] = -1.6$

As stone is thrown upwards, so acceleration due to gravity (which acts downwards) = 1.6.

4.1.2 Derivative as the Rate of Change

If a variable quantity *y* is some function of time *t i.e.*, y = f(t), then small change in time Δt have a corresponding change Δy in *y*.

Thus, the average rate of change = $\frac{\Delta y}{\Delta t}$

When limit $\Delta t \rightarrow 0$ is applied, the rate of change becomes instantaneous and we get the rate of change with respect to *t*.

i.e.,
$$\lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t} = \frac{dy}{dt}$$

Hence, it is clear that the rate of change of any variable with respect to some other variable is derivative of first variable with respect to other variable.

Note: \Box The differential coefficient of y with respect to x *i.e*, $\frac{dy}{dx}$ is nothing but the rate of

increase of *y* relative to *x*.

Example: 6 The rate of change of the surface area of a sphere of radius *r* when the radius is increasing at the rate of 2cm/sec is proportional to

(a)
$$\frac{l}{r}$$
 (b) $\frac{l}{r^2}$ (c) r (d) r^2

$$\frac{ds}{dt} = 4\pi \times 2r \frac{dr}{dt} = 8\pi \times 2 = 16\pi \implies \frac{ds}{dt} \propto r.$$

(b) 22

(b) 0.8 *m*/sec.

r

r

dt

Example: 7 If the volume of a spherical balloon is increasing at the rate of $900 \text{ } cm^2/sec$. then the rate of change of radius of balloon at instant when radius is 15 cm [in cm/sec]

(c) $\frac{7}{22}$

(a)
$$\frac{22}{7}$$

4

(a) 0.4 *m*/sec

Solution: (c) $V = \frac{4}{3} \pi r^{3}$

.:. —

Differentiate with respect to t

 $\frac{dV}{dt} = \frac{4}{3}\pi 3r^2 \cdot \frac{dr}{dt} \Rightarrow \frac{dr}{dt} \Rightarrow \frac{1}{4\pi r^2} \cdot \frac{dV}{dt}$ $\frac{dr}{dt} = \frac{1}{4 \times \pi \times 15 \times 15} \times 900 \quad = \frac{1}{\pi} = \frac{7}{22} \cdot \frac{1}{22}$

- **Example: 8** A man of height 1.8 *m* is moving away from a lamp post at the rate of 1.2 *m/sec*. If the height of the lamp post be 4.5 *meter*, then the rate at which the shadow of the man is lengthening
- **Solution:** (b) $\frac{dy}{dt} = 1.2$ According to the figure,

$$x = \frac{2}{3}y$$

$$\Rightarrow \frac{dx}{dt} = \frac{2}{3} \cdot \frac{dy}{dt}$$

$$\Rightarrow \text{ Rate of length of shadow } \frac{dx}{dt} = 0.8 \text{ m/s}.$$

(d) None of these

Example: 9 A 10 *cm* long rod *AB* moves with its ends on two mutually perpendicular straight lines *OX* and *OY*. If the end *A* be moving at the rate of 2 *cm/sec*. then when the distance of *A* from *O* is 8 *cm*, the rate at which the end *B* is moving, is [SCRA 1996]

Application in Mechanics

Basic Level

The displacement of a particle in time *t* is given by $s = 2t^2 - 3t + 1$. The acceleration is 1. (a) 1 (b) 3 (c) 4 (d) 5 A stone is falling freely and describes a distance s in t seconds given by equation $s = \frac{1}{2}gt^2$. The acceleration of 2. the stone is (a) Uniform (b) Zero (c) Non-uniform (d) Indeterminate The velocity of a particle at time *t* is given by the relation $v = 6t - \frac{t^2}{6}$. The distance travelled in 3 *seconds* is, if 3. s = 0 at t = 0(a) $\frac{39}{2}$ (b) $\frac{57}{2}$ (c) $\frac{51}{2}$ (d) $\frac{33}{2}$ The equation of motion of a car is $s = t^2 - 2t$, where t is measured in *hours* and s in *kilometers*. when the 4. distance travelled by the car is 15 *km*, the velocity of the car is (a) 2km/h(b) 4*km*/*h* (c) 6km/h (d) 8km/h A particle is moving in a straight line according as $s = 45t + 11t^2 - t^3$, then the time when it will come to rest, is 5٠ (b) $\frac{5}{3}$ seconds (d) $-\frac{5}{3}$ seconds (c) 9 seconds (a) – 9 seconds If $t = \frac{v^2}{2}$, then $\left(-\frac{df}{dt}\right)$ is equal to (where *f* is acceleration) 6. [MP PET 1991] (c) $-f^3$ (a) f^2 (d) $-f^2$ (b) f^{3} A particle is moving in a straight line according to the formula $s = t^2 + 8t + 12$. If s be measured in meters and t 7. be measured in seconds then the average velocity of the particle in third second is (a) 14 *m*/sec (b) 13 *m*/sec (d) None of these (c) 15 *m*/sec If $2t = v^2$, then dv/dt is equal to 8. (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (d) $\frac{1}{-}$ (a) 0

9. The equation of motion of a particle moving along a straight line is $s = 2t^3 - 9t^2 + 12t$, where the units of *s* and *t* are *cm* and *sec*. The acceleration of the particle will be zero after

	(a) $\frac{3}{2}$ sec	(b) $\frac{2}{3}$ sec	(c) $\frac{1}{2}$ sec	(d) Never
10.	A body moves according will be (<i>v</i> in <i>cm/sec</i>)	to the formula $v = 1 + t^2$, wh	ere v is the velocity at time	e t. The acceleration after 3 sec
	(a) 24 <i>cm/sec</i> ²	(b) 12 <i>cm/sec</i> ²	(c) 6 <i>cm/sec</i> ²	[MP PET 1988] (d) None of these
11.	A particle moves in a st constant. The acceleration	traight line so that its veloc on is	tity at any point is given b	$y v^2 = a + bx$, where $a, b \neq 0$ are
	(a) Zero	(b) Uniform	(c) Non-uniform	(d) Indeterminate
12.	The distance in seconds	, described by a particle in	t seconds is given by $s = at$	$e^t + \frac{b}{e^t}$. The acceleration of the
	particle at time <i>t</i> is (a) Proportional to <i>t</i>	(b) Proportional to <i>s</i>	(c) s	(d) Constant
13.	A stone thrown vertically is [SCRA 1996]	y upwards rises ' <i>s</i> ' <i>metre</i> in	t seconds, where $s = 80t - 16t^2$	² , then velocity after 2 seconds
14.	(a) 8 <i>m per sec.</i> If the distance 's' travell	(b) 16 <i>m per sec</i> . ed by a particle in time <i>t</i> is <i>s</i>	(c) 32 <i>m</i> per sec. $a = a \sin t + b \cos 2t$, then the acc	(d) 64 <i>m</i> per sec. eleration at $t=0$ is
	(a) <i>a</i>	(b) – a	(c) 4 <i>b</i>	(d) - 4b
15.	If the distance travelled	by a point in time t is $s = 180$	$t-16t^2$, then the rate of char	nge in velocity is
	(a) – 16 <i>t unit</i>	(b) 48 <i>unit</i>	(c) – 32 unit	(d) None of these
16.	The motion of stone thr Then its velocity at $t = 1$	own up vertically is given b second is	y $s = 13.8t - 4.9t^2$, where <i>s</i> is	in metres and t is in seconds.
	(a) 3 <i>m/s</i>	(b) 5 <i>m/s</i>	(c) 4 <i>m/s</i>	(d) None of these
17.	A particle is moving in a	a straight line. Its displacem	ent at time t is given by $s =$	$= -4t^2 + 2t$, then its velocity and
	acceleration at time $t = \frac{1}{2}$	$\frac{1}{2}$ second are		
	(a) -2, -8	(b) 2, 6	(c) -2, 8	(d) 2, 8
18.	A ball thrown vertically	y upwards falls back on the	e ground after 6 seconds.	Assuming that the equation of
	motion is of the form $s =$	$ut - 4.9t^2$, where s is in metr	es and t is in seconds, find t	he velocity at $t = 0$
	(a) 0 <i>m/s</i>	(b) 1 <i>m/s</i>	(c) 29.4 <i>m/s</i>	(d) None of these
19.	A particle is moving in a velocity (<i>v</i>) is	\mathfrak{s} straight line according as \mathfrak{s}	$t = \sqrt{1+t}$, then the relation b	etween its acceleration (a) and
	(a) $a \propto v^2$	(b) $a \propto v^3$	(c) $a \propto \frac{1}{v^3}$	(d) $a \propto v$
20.	The distance travelled b particle is	by a particle moving in a str	raight line in time t is $s = x$	$\sqrt{at^2 + bt + c}$. Acceleration of the
				[Kerala (Engg.) 2002]
	(a) Proportional to <i>t</i>	(b) Proportional to <i>s</i>	(c) Proportional to s^{-3}	(d) None of these
		Advand	ce Level	

21. A particle is moving along the curve $x = at^2 + bt + c$. If $ac = b^2$, then the particle would be moving with uniform[**Orissa JE** (a) Rotation (b) Velocity (c) Acceleration (d) Retardation

22.	The equations of motion of two stones thrown vertically upwards simultaneously are $s = 19.6t - 4.9t^2$ and $s = 9.8t - 4.9t^2$ respectively and the maximum height attained by the first one is <i>h</i> . When the height of the first stone is maximum, the height of the second stone will be								
	(a) <i>h</i> /3	(b) 2h	(c) h	(d) o					
23.	A particle is moving of by $s = at^2 + bt + 6$, $t \ge 0$ from the starting positi	n a straight line, where its j . If it is known that the partion $(t = 0)$, then the retarda	position <i>s</i> (in <i>metres</i>) is a fun- rticle comes to rest after 4 <i>se</i> tion in its motion is	ction of time <i>t</i> (in <i>seconds</i>) given econds at a distance of 16 <i>metres</i>					
	(a) $-1m/\sec^2$	(b) $\frac{5}{4}m/\sec^2$	(c) $-\frac{1}{2}m/\sec^2$	(d) $-\frac{5}{4}m/\sec^2$					
24.	A point moves in a st velocity is	raight line during the time	e $t=0$ to $t=3$ according to t	the law $s = 15t - 2t^2$. The average					
	(a) 3	(b) 9	(c) 15	(d) 27					
25.	The equation of motio and <i>sec</i> . If the stone re	n of a stone, thrown vertica eaches at maximum height i	ally upwards is $s = ut - 6.3t^2$, we have $s = ut - 6.3t^2$, we have $s = 0.3t^2$.	where the units of s and t are cm					
	(a) 18.9 <i>cm/sec</i>	(b) 12.6 <i>cm/sec</i>	(c) 37.8 <i>cm/sec</i>	(d) None of these					
				Rate Measures ()					
		Ba	sic Level						
26.	Radius of a circle is in <i>cm</i> , will be	creasing uniformly at the r	ate of 3 <i>cm/sec</i> . The rate of in	crease of area when radius is 10					
	(a) $\pi cm^2 / s$	(b) $2\pi cm^2 / s$	(c) $10\pi cm^2/s$	(d) None of these					
27.	A 10 <i>cm</i> long rod <i>AB</i> m be moving at the rate moving , is	noves with its ends on two of 2 <i>cm/sec</i> , then when the	mutually perpendicular straig e distance of <i>A</i> from <i>O</i> is 8 <i>cr</i> [SCRA 1996]	ght lines OX and OY . If the end A n , the rate at which the end B is					
	(a) $\frac{8}{3}$ cm/sec	(b) $\frac{4}{3}$ cm/sec	(c) $\frac{2}{9}$ cm/sec	(d) None of these					
28.	If $y = x^3 + 5$ and x changed	ges from 3 to 2.99, then the	approximate change in y is						
29.	(a) 2.7 The volume of a sphe change of the surface	(b) – .27 erical balloon is increasing of the balloon at the instant	(c) 27 at the rate of 40 cubic cent when its radius is 8 centimet	(d) None of these timetre per minute. The rate of res, is					
	(a) $\frac{5}{2}$ <i>sq cm/min</i> .	(b) 5 <i>sq cm/min</i> .	(c) 10 <i>sq cm/min</i> .	(d) 20 <i>sq cm/min</i> .					
30.	A ladder 5 <i>m</i> in length from the wall at the ra is 4.0 <i>m</i> away from th	is resting against vertical v ate of 1.5 <i>m/sec</i> . The length e wall decreases at the rate	wall. The bottom of the ladder of the highest point of the la of	is pulled along the ground away dder when the foot of the ladder					
21	(a) 2 m/sec	(b) $3 m/sec$	(c) 2.5 m/sec	(d) 1.5 <i>m</i> /sec					
31.	the rate of increase of	area varies	Distant out the rate of increas	se of perimeter is constant, then					
	(a) As the square of th	ie perimeter(b)	Inversely as the perim	eter (c) As the radius (d)					
		Adv	vance Level						

Gas is being pumped into a spherical balloon at the rate of 30 ft^3/min . Then the rate at which the radius increases when its reaches the value 15 ft is 32.

(a)
$$\frac{1}{30\pi} ft/\min$$
. (b) $\frac{1}{15\pi} ft/\min$. (c) $\frac{1}{20} ft/\min$. (d) $\frac{1}{25} ft/\min$.

33. On dropping a stone in stationary water circular ripples are observed. Rate of flow of ripples is 6 *cm*/sec. When radius of the circle is 10 *cm*, then fluid rate of increase in its area is (a) $120\pi cm/sec$ (b) 120 sqcm/sec (c) $\pi sqcm/sec$ (d) $120\pi sqcm/sec$

34. If the edge of a cube increases at the rate of 60 *cm per second,* at what rate the volume is increasing when the edge is 90 *cm*

(a) 486000 *cu cm per sec* (b) 1458000 *cu cm per sec* (c) 43740000 *cu cm per sec* (d) None of these If a spherical balloon has a variable diameter $3x + \frac{9}{2}$, then the rate of change of its volume with respect to x is

(a)
$$27 \pi (2x+3)^2$$
 (b) $\frac{27\pi}{16} (2x+3)^2$ (c) $\frac{27\pi}{8} (2x+3)^2$ (d) None of these

36. Two cyclists start from the junction of two perpendicular roads, their velocities being 3v metres/minute and 4v metres/minute. The rate at which the two cyclists are separating is

(a)
$$\frac{1}{2} vm/min$$
 (b) $5vm/min$ (c) vm/min (d) None of these

37. A stick of length *a cm* rests against a vertical wall and the horizontal floor. If the foot of the stick slides with a constant velocity of *b cm/s* then the magnitude of the velocity of the middle point of the stick when it is equally inclined with the floor and the wall, is

(a)
$$\frac{b}{\sqrt{2}}cm/s$$
 (b) $\frac{b}{2}cm/s$ (c) $\frac{ab}{2}cm/s$ (d) None of these

38. If $y = \int_0^x \frac{t^2}{\sqrt{t^2 + 1}} dt$ then the rate of change of y with respect to x when x = 1, is (a) $\sqrt{2}$ (b) 1/2 (c) $1/\sqrt{2}$ (d) No

35.

(d) None of these

Answer Sheet

	Assignment (Basic and Advance Level)																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
С	а	С	d	с	b	b	d	a	С	b	с	b	d	с	с	a	с	b	с
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38		
С	d	b	b	с	d	а	b	С	a	с	a	d	b	с	b	a	с		

4.2 Tangent and Normal

4.2.1 Slope of the Tangent and Normal

(1) **Slope of the tangent :** If tangent is drawn on the curve y = f(x) at point $P(x_1, y_1)$ and this tangent makes an angle ψ with positive *x*-direction then,

 $\left(\frac{dy}{dx}\right)_{(x_1,y_1)} = \tan \psi$ = slope of the tangent

Note:
$$\Box$$
 If tangent is parallel to *x*-axis $\psi = 0 \Rightarrow \left(\frac{dy}{dx}\right)_{(x_1,y_1)} = 0$

□ If tangent is perpendicular to *x*-axis $\psi = \frac{\pi}{2} \Rightarrow \left(\frac{dy}{dx}\right)_{(x_1,y_1)} = \infty$

(2) **Slope of the normal :** The normal to a curve at $P(x_1, y_1)$ is a line perpendicular to the tangent at *P* and passing through *P* and slope of the normal = $\frac{-1}{\text{Slope of tangent}}$ =

$$\frac{-1}{\left(\frac{dy}{dx}\right)_{P(x_1,y_1)}} = -\left(\frac{dx}{dy}\right)_{P(x_1,y_1)}$$

Wole : If normal is parallel to *x*-axis

$$\Rightarrow -\left(\frac{dx}{dy}\right)_{(x_1,y_1)} = 0 \text{ or } \left(\frac{dx}{dy}\right)_{(x_1,y_1)} = 0$$

□ If normal is perpendicular to *x*-axis (for parallel to *y*-axis)

$$\Rightarrow -\left(\frac{dy}{dx}\right)_{(x_1, y_1)} = 0$$

 Example: 1
 The slope of the tangent to the curve $x^2 + y^2 = 2c^2$ at point (c, c) is
 [AMU 1998]

 (a) 1
 (b) - 1
 (c) 0
 (d) 2

Solution: (b) Given $x^2 + y^2 = 2c^2$

Differentiating w.r.t. x, $2x + 2y \frac{dy}{dx} = 0$

186 Application of Derivatives $\Rightarrow 2y \frac{dy}{dx} = -2x \Rightarrow \frac{dy}{dx} = \frac{-x}{y} \Rightarrow \left(\frac{dy}{dx}\right)_{(x,y)} = -1$ The line x + y = 2 is tangent to the curve $x^2 = 3 - 2y$ at its point Example: 2 [MP PET 1998] (c) $(\sqrt{3}, 0)$ (b) (-1, 1) (a) (1, 1) (d) (3, - 3) **Solution:** (a) Given curve $x^2 = 3 - 2y$ diff. w.r.t. x, $2x = -\frac{2dy}{dx}$; $\frac{dy}{dx} = -x$ Slope of the line = -1 $\frac{dy}{dx} = -x = -1 ; \quad x = 1$ $\therefore y = 1$ point (1, 1) The tangent to the curve $y = 2x^2 - x + 1$ at a point *P* is parallel to y = 3x + 4, the co-ordinate of *P* are **[Rajasthan H** Example: 3 (a) (2, 1) (b) (1, 2) (c) (-1,2) (d) (2, - 1) **Solution:** (b) Given $y = 2x^2 - x + 1$ Let the co-ordinate of *P* is (*h*, *k*) then $\left(\frac{dy}{dx}\right)_{(h,k)} = 4h-1$ Clearly 4h-1=3 $h=1 \implies k=2.P$ is (1, 2).

4.2.2 Equation of the Tangent and Normal

(1) **Equation of the tangent :** We know that the equation of *a* line passing through a point $P(x_1, y_1)$ and having slope *m* is $y - y_1 = m(x - x_1)$

Slope of the tangent at (x_1, y_1) is $= \left(\frac{dy}{dx}\right)_{(x_1, y_1)}$

The equation of the tangent to the curve y = f(x) at point $P(x_1, y_1)$ is

$$y - y_1 = \left(\frac{dy}{dx}\right)_{(x_1, y_1)} (x - x_1)$$

(2) Equation of the normal : Slope of the Normal = $\frac{-1}{\left(\frac{dy}{dx}\right)_{(x-y)}}$

Thus equation of the normal to the curve y = f(x) at point $P(x_1, y_1)$

$$y - y_1 = \frac{-1}{\left(\frac{dy}{dx}\right)_{(x_1, y_1)}} (x - x_1)$$

Wate : \Box If at any point $P(x_1, y_1)$ on the curve y = f(x), the tangent makes equal angle with the axes, then at the point *P*, $\psi = \frac{\pi}{4}$ or $\frac{3\pi}{4}$. Hence, at *P* tan $\psi = \frac{dy}{dx} = \pm 1$. The equation of the tangent at (-4, -4) on the curve $x^2 = -4y$ is Example: 4 [Karnataka CET 2001] (d) 2x - y + 4 = 0(b) 2x - y - 12 = 0(c) 2x + y - 4 = 0(a) 2x + y + 4 = 0 $x^2 = -4y \implies 2x = -4 \frac{dy}{dx} \implies \frac{dy}{dx} = \frac{-x}{2} \implies \left(\frac{dy}{dx}\right)_{(x-x)} = 2$. Solution: (d) We know that equation of tangent is $(y - y_1) = \left(\frac{dy}{dx}\right)_{(x_1, y_2)} (x - x_1) \Rightarrow y + 4 = 2(x + 4) \Rightarrow 2x - y + 4 = 0$. The equation of the normal to the curve $y = \sin \frac{\pi x}{2}$ at (1, 1) is Example: 5 (d) $y-1 = \frac{-2}{\pi}(x-1)$ (c) y = x(a) y = 1(b) x = 1**Solution:** (b) $y = \sin \frac{\pi x}{2} \Rightarrow \frac{dy}{dx} = \frac{\pi}{2} \cos \frac{\pi}{2} x \Rightarrow \left(\frac{dy}{dx}\right)_{(1,1)} = 0$ \therefore Equation of normal is $y-1 = \frac{1}{2}(x-1) \Rightarrow x = 1$. The equation of the tangent to the curve $y = be^{-x/a}$ at the point where it crosses *y*-axis is Example: 6 (b) ax - by = 1 (c) $\frac{x}{a} - \frac{y}{b} = 1$ (d) $\frac{x}{a} + \frac{y}{b} = 1$ (a) ax + by = 1**Solution:** (d) Curve is $y = be^{-x/a}$ Since the curve crosses *y*-axis (*i.e.*, x = 0) \therefore y = bNow $\frac{dy}{dx} = \frac{-b}{a}e^{-x/a}$. At point (0, b), $\left(\frac{dy}{dx}\right)_{a=1} = \frac{-b}{a}$ \therefore Equation of tangent is $y-b = \frac{-b}{a}(x-0) \Rightarrow \frac{x}{a} + \frac{y}{b} = 1$. If the normal to the curve y = f(x) at the point (3,4) makes an angle $\frac{3\pi}{4}$ with the positive *x*-axis then Example: 7 f'(3) is equal to [IIT Screening 2000; DCE 2001] (b) $\frac{-3}{4}$ (c) $\frac{4}{3}$ (a) – 1 (d) 1 **Solution:** (d) Slope of the normal $=\frac{-1}{dy/dx} \Rightarrow \tan \frac{3\pi}{4} = \frac{-1}{\left(\frac{dy}{dx}\right)_{2,4}}$ $\therefore \left(\frac{dy}{dx}\right) = 1; f'(3) = 1.$ The point (s) on the curve $y^3 + 3x^2 = 12y$ where the tangent is vertical (parallel to *y*-axis), is are[IIT Screenin Example: 8

(a)
$$\left[\pm \frac{4}{\sqrt{3}}, -2\right]$$
 (b) $\left(\pm \frac{\sqrt{11}}{3}, 1\right)$ (c) $(0,0)$ (d) $\left(\pm \frac{4}{\sqrt{3}}, 2\right)$

Solution: (d) $y^3 + 3x^2 = 12y$

	$\Rightarrow 3y^2 \cdot \frac{dy}{dx} + 6x = 12 \cdot \frac{dy}{dx} =$	$\Rightarrow \frac{dy}{dx}(3y^2 - 12) + 6x = 0 =$	$\Rightarrow \frac{dy}{dx} = \frac{6x}{12 - 3y^2} \Rightarrow \frac{dx}{dy} = \frac{12}{12}$	$\frac{-3y^2}{5x}$					
	Tangent is parallel to <i>y</i> -axis, $\frac{dx}{dy} = 0 \implies 12 - 3y^2 = 0$ or $y = \pm 2$. Then $x = \pm \frac{4}{\sqrt{3}}$, for $y = 2$								
	y = -2 does not satisfy t	he equation of the curv	e, \therefore The point is $\left(\pm\frac{4}{\sqrt{3}}, 2\right)$						
Example: 9	At which point the line	$\frac{x}{a} + \frac{y}{b} = 1$ touches the c	urve $y = be^{-x/a}$	[Rajasthan PET 1999]					
	(a) (0, 0)	(b) (0, a)	(c) (0, <i>b</i>)	(d) (<i>b</i> , 0)					
Solution: (c)	Let the point be (x_1, y_1)	$\therefore y_1 = b e^{-x_1/a}$	(i)						
	Also, curve $y = be^{-x/a} \Rightarrow$	$\frac{dy}{dx} = \frac{-b}{a} e^{-x/a}$							
	$\left(\frac{dy}{dx}\right)_{(x_1,y_1)} = \frac{-b}{a}e^{-x_1/a} = \frac{-b}{a}e^{-x_1/a}$	$\frac{y_1}{a}$	(by (i))						
	Now, the equation of ta	ngent of given curve at	z point (x_1, y_1) is $y - y_1 = \frac{-y}{a}$	$\frac{1}{a}(x-x_1) \implies \frac{x}{a} + \frac{y}{y_1} = \frac{x_1}{a} + 1$					
	Comparing with $\frac{x}{a} + \frac{y}{b} =$	= 1, we get, $y_1 = b$ and 1	$+\frac{x_1}{a} = 1 \implies x_1 = 0$						
	Hence, the point is (0,)	b).							
Example: 10	The abscissa of the poin	nt, where the tangent to	b curve $y = x^3 - 3x^2 - 9x + 5$	is parallel to <i>x</i> -axis are [Karnataka (
	(a) 0 and 0	(b) $x = 1$ and -1	(c) $x = 1$ and -3	(d) $x = -1$ and 3					
Solution: (d)	$y = x^3 - 3x^2 - 9x + 5 \implies \frac{d}{dt}$	$\frac{dy}{dx} = 3x^2 - 6x - 9$.							
	We know that this equ	ation gives the slope o	f the tangent to the curve	e. The tangent is parallel to x -					
axis $\frac{dy}{dx} = 0$									

Therefore, $3x^2 - 6x - 9 = 0 \implies x = -1, 3$.

4.2.3 Angle of Intersection of Two Curves

The angle of intersection of two curves is defined to be the angle between the tangents to the two curves at their point of intersection.

We know that the angle between two straight lines having slopes

$$\phi = \tan^{-1} \frac{m_1 - m_2}{1 + m_1 m_2}$$

Also slope of the tangent at $P(x_1, y_1)$

$$m_1 = \left(\frac{dy}{dx}\right)_{1(x_1, y_1)}$$
, $m_2 = \left(\frac{dy}{dx}\right)_{2(x_1, y_1)}$

Thus the angle between the tangents of the two curves $y = f_1(x)$ and $y = f_2(x)$

[MP PET 2001]

tan ϕ –	$\left(\frac{dy}{dx}\right)_{1(x_1,y_1)}$	$-\left(\frac{dy}{dx}\right)_{2(x_1,y_1)}$
$an \varphi =$	$1 + \left(\frac{dy}{dx}\right)_{1(x_1, y)}$	$\left(\frac{dy}{dx}\right)_{2(x_1,y_1)}$

Orthogonal curves : If the angle of intersection of two curves is right angle, the two curves are said to intersect orthogonally. The curves are called orthogonal curves. If the curves are orthogonal, then $\phi = \frac{\pi}{2}$

$$m_1m_2 = -1 \implies \left(\frac{dy}{dx}\right)_1 \left(\frac{dy}{dx}\right)_2 = -1$$

Example: 11 The angle between the curves $y^2 = x$ and $x^2 = y$ at (1, 1) is

(a)
$$\tan^{-1}\frac{4}{3}$$
 (b) $\tan^{-1}\frac{3}{4}$ (c) 90° (d) 45

Solution: (b) Given curve $y^2 = x$ and $x^2 = y$

Differentiating w.r.t. x, $2y \frac{dy}{dx} = 1$ and $2x = \frac{dy}{dx}$ $\left(\frac{dy}{dx}\right) = \frac{1}{2}$ and $\left(\frac{dy}{dx}\right) = 2$

$$\left(\frac{dy}{dx}\right)_{(1,1)} = \frac{1}{2}$$
 and $\left(\frac{dy}{dx}\right)_{(1,1)} = 2$

Angle between the curve

$$\Rightarrow \tan \phi = \frac{2 - \frac{1}{2}}{1 + \frac{1}{2} \cdot 2} \Rightarrow \tan \phi = \frac{3}{4} \Rightarrow \phi = \tan^{-1} \frac{3}{4} \cdot \frac{3}{4}$$

Example: 12 If the two curves $y = a^x$ and $y = b^x$ intersect at α , then $\tan \alpha$ equal

(a) $\frac{\log a - \log b}{1 + \log a \log b}$ (b) $\frac{\log a + \log b}{1 - \log a \log b}$ (c) $\frac{\log a - \log b}{1 - \log a \log b}$ (d) None of these

Solution: (a) Clearly the point of intersection of curves is (0, 1) Now, slope of tangent of first curve, $m_1 = \frac{dy}{dx} = a^x \log a \implies \left(\frac{dy}{dx}\right)_{(0,1)} = m_1 = \log a$ Slope of tangent of second curve, $m_2 = \frac{dy}{dx} = b^x \log b \implies m_2 = \left(\frac{dy}{dx}\right)_{(0,1)} = \log b$ $\therefore \tan \alpha = \frac{m_1 - m_2}{1 + m_1 m_2} = \frac{\log a - \log b}{1 + \log a \log b}$.

Example: 13 The angle of intersection between curve xy = 6 and $x^2y = 12$ (a) $\tan^{-1}\left(\frac{3}{4}\right)$ (b) $\tan^{-1}\left(\frac{3}{11}\right)$ (c) $\tan^{-1}\left(\frac{11}{3}\right)$ (d) 0°

Solution: (b) The equation of two curves are xy = 6 and $x^2y = 12$ from (i) we obtain $y = \frac{6}{x}$ putting this value of y in equation (ii) to obtain $x^2 \left(\frac{6}{x}\right) = 12 \implies 6x = 12 \implies x = 2$ Putting x = 2 in (i) or (ii) we get, y = 3. Thus, the two curves intersect at P(2, 3)Differentiating (i) w.r.t. x, we get $x \frac{dy}{dx} + y = 0 \implies \frac{dy}{dx} = \frac{-y}{x} \implies \left(\frac{dy}{dx}\right)_{x=0} = -\frac{3}{2} = m_1$

Differentiating (ii) w.r.t. x, we get
$$x^2 \frac{dy}{dx} + 2xy = 0 \Rightarrow \frac{dy}{dx} = \frac{-2y}{x}$$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{(2,3)} = -3 = m_2 \Rightarrow \tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2} = \left(\frac{-3}{2} + 3\right) / \left(1 + \left(\frac{-3}{2}\right)(-3)\right) = \frac{3}{11} \Rightarrow \theta = \tan^{-1}\frac{3}{11}.$$

4.2.4 Length of Tangent, Normal, Subtangent and Subnormal

Let the tangent and normal at point P(x,y) on the curve y = f(x) meet the *x*-axis at points *A* and *B* respectively. Then *PA* and *PB* are called length of tangent and normal respectively at point *P*. If *PC* be the perpendicular from *P* on *x*-axis, the *AC* and *BC* are called length of subtangent and subnormal respectively at *P*. If *PA* makes angle ψ with *x*-axis, then $\tan \psi = \frac{dy}{dx}$ from fig., we find that

Example: 15 For the curve $y^n = a^{n-1}x$, the sub-normal at any point is constant, the value of *n* must be (a) 2 (b) 3 (c) 0 (d) 1

Solution: (a) $y^n = a^{n-1}x \implies ny^{n-1}\frac{dy}{dx} = a^{n-1} \implies \left(\frac{dy}{dx}\right) = \frac{a^{n-1}}{ny^{n-1}}$

: Length of the subnormal =
$$y \frac{dy}{dx} = \frac{ya^{n-1}}{ny^{n-1}} = \frac{a^{n-1}y^{2-n}}{n}$$

We also know that if the subnormal is constant, then $\frac{a^{n-1}}{n} y^{2-n}$ should not contain y. Therefore, 2-n=0 or n=2.

4.2.5 Length of Intercept made on Axis by the Tangent

Equation of tangent at any point (x_1, y_1) to the curve y = f(x) is $y - y_1 = \left(\frac{dy}{dx}\right)$ $(x - x_1)$ (i)

Similarly solving (i) and (iii) we get, y-intercept OR = $y_1 - \left| x_1 \left(\frac{dy}{dx} \right)_{(x_1, x_2)} \right|$

The sum of intercepts on co-ordinate axes made by tangent to the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ is Example: 16

(c) $2\sqrt{a}$ (d) None of these (a) a $\sqrt{x} + \sqrt{y} = \sqrt{a} \implies \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}}\frac{dy}{dx} = 0 \implies \therefore \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}$ Solution: (a) Hence tangent at (x, y) is $Y - y = -\frac{\sqrt{y}}{\sqrt{x}}(X - x)$ or $X\sqrt{y} + Y\sqrt{x} = \sqrt{xy}(\sqrt{x} + \sqrt{y}) = \sqrt{axy}$ or $\frac{X}{\sqrt{a}\sqrt{x}} + \frac{Y}{\sqrt{a}\sqrt{y}} = 1$. Clearly its intercepts on the axes are $\sqrt{a}\sqrt{x}$ and $\sqrt{a}\sqrt{y}$. Sum of the intercepts = $\sqrt{a}(\sqrt{x} + \sqrt{y}) = \sqrt{a} \cdot \sqrt{a} = a$.

4.2.6 Length of Perpendicular from Origin to the Tangent

Length of perpendicular from origin (0, 0) to the tangent drawn at point $P(x_1, y_1)$ of the curve y = f(x)

$$p = \left| \frac{y_1 - x_1 \left(\frac{dy}{dx}\right)_{(x_1, y_1)}}{\sqrt{1 + \left(\frac{dy}{dx}\right)^2}} \right|$$

Example: 17 The length of perpendicular from (0, 0) to the tangent drawn to the curve $y^2 = 4(x+2)$ at point (2, 4) is

(a)
$$\frac{1}{\sqrt{2}}$$
 (b) $\frac{3}{\sqrt{5}}$ (c) $\frac{6}{\sqrt{5}}$ (d) 1

Solution: (c) Dif

ifferentiating the given equation w.r.t. x,
$$2y\frac{dy}{dx} = 4$$
 at point (2, 4) $\frac{dy}{dx} = \frac{1}{2}$

$$P = \frac{y_1 - x_1\left(\frac{dy}{dx}\right)}{\sqrt{1 + \left(\frac{dy}{dx}\right)^2}} = \frac{4 - 2\left(\frac{1}{2}\right)}{\sqrt{1 + \frac{1}{4}}} = \frac{6}{\sqrt{5}}.$$

Tangent and Normal

Basic Level If the line y = 2x + k is a tangent to the curve $x^2 = 4y$, then k is equal to 1. [AMU 2002] (b) $\frac{1}{2}$ (d) $-\frac{1}{2}$ (a) 4 (c) - 4 The point on the curve $y^2 = x$ where tangent makes 45° angle with *x*-axis is 2. [Rajasthan PET 1990, 92] (a) $\left(\frac{1}{2}, \frac{1}{4}\right)$ (b) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (c) (4, 2) (d) (1, 1) If $x = t^2$ and y = 2t, then equation of the normal at t = 1 is 3. (b) x + y - 1 = 0(a) x + y - 3 = 0(c) x + y + 1 = 0(d) x + y + 3 = 0If normal to the curve y = f(x) is parallel to x-axis, then correct statement is [Rajasthan PET 2000] 4. (c) $\frac{dx}{dy} = 0$ (a) $\frac{dy}{dx} = 0$ (b) $\frac{dy}{dy} = 1$ (d) None of these The equation of the tangent to the curve $(1 + x^2)y = 2 - x$, where it crosses the *x*-axis, is 5٠ (a) x + 5y = 2(b) x - 5y = 2(c) 5x - y = 2(d) 5x + y - 2 = 0The equation of tangent to the curve $y = 2\cos x$ at $x = \frac{\pi}{4}$ is 6. (a) $y - \sqrt{2} = 2\sqrt{2}\left(x - \frac{\pi}{4}\right)$ (b) $y + \sqrt{2} = \sqrt{2}\left(x + \frac{\pi}{4}\right)$ (c) $y - \sqrt{2} = -\sqrt{2}\left(x - \frac{\pi}{4}\right)$ (d) $y - \sqrt{2} = \sqrt{2}\left(x - \frac{\pi}{4}\right)$ For the curve $x = t^2 - 1$, $y = t^2 - t$, the tangent line is perpendicular to *x*-axis where 7. [MNR 1980] (c) $t = \frac{1}{\sqrt{3}}$ (d) $t = -\frac{1}{\sqrt{3}}$ (b) $t = \infty$ (a) t = 0If at any point on a curve the sub-tangent and subnormal are equal, then the tangent is equal to 8. (b) $\sqrt{2}$ ordinate (a) Ordinate (c) $\sqrt{2}$ (ordinate) (d) None of these If the tangent to the curve $2y^3 = ax^2 + x^3$ at the point (a, a) cuts off intercepts, α and β on the coordinate axes 9. such that $\alpha^2 + \beta^2 = 61$, then a =(c) ± 6 (a) ±30 (b) ±5 (d) ±61 If the tangent to the curve $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$ at $\theta = \frac{\pi}{3}$ makes an angle α with x-axis, then $\alpha = \alpha$ 10.

19	4 Application of Derivation	ives		
	(a) $\frac{\pi}{3}$	(b) $\frac{2\pi}{3}$	(c) $\frac{\pi}{6}$	(d) $\frac{5\pi}{6}$
11.	If the tangent to the curve	e xy + ax + by = 0 at (1, 1) is inc	clined at an angle $\tan^{-1} 2$ with	th <i>x</i> -axis, then
	(a) $a = 1, b = 2$	(b) $a=1, b=-2$	(c) $a = -1, b = 2$	(d) $a = -1, b = -2$
12.	The fixed point <i>P</i> on the o is given by	curve $y = x^2 - 4x + 5$ such that	the tangent at <i>P</i> is perpend	icular to the line $x + 2y - 7 = 0$
	(a) (3, 2)	(b) (1, 2)	(C) (2, 1)	(d) None of these
3.	The points of contact of the	ne tangents drawn from the o	rigin to the curve $y = \sin x$ lie	e on the curve
	(a) $x^2 - y^2 = xy$	(b) $x^2 + y^2 = x^2 y^2$	(c) $x^2 - y^2 = x^2 y^2$	(d) None of these
4.	The slope of the tangent t	o the curve $y^2 = 4ax$ drawn at	t point $(at^2, 2at)$ is	[Rajasthan PET 1993
	(a) <i>t</i>	(b) $\frac{1}{t}$	(c) - <i>t</i>	(d) $\frac{-1}{t}$
15.	The slope of the curve $y =$	$\sin x + \cos^2 x$ is zero at the point	int, where	
	(a) $x = \frac{\pi}{4}$	(b) $x = \frac{\pi}{2}$	(c) $x = \pi$	(d) No where
16.	The equation of tangent to	o the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at th	e point (x_1, y_1) is	
	(a) $\frac{x}{\sqrt{x_1}} + \frac{y}{\sqrt{y_1}} = \frac{1}{\sqrt{a}}$	(b) $\frac{x}{\sqrt{x_1}} + \frac{y}{\sqrt{y_1}} = \sqrt{a}$	(c) $x\sqrt{x_1} + y\sqrt{y_1} = \sqrt{a}$	(d) None of these
17.	A tangent to the curve $y =$	$x^{2} + 3x$ passes through a point	nt (0, – 9) if it is drawn at tl	he point
	(a) (- 3, 0)	(b) (1, 4)	(c) (0, 0)	(d) (- 4, 4)
8.	The sum of the intercepts	made by a tangent to the cur	ve $\sqrt{x} + \sqrt{y} = 4$ at point (4, 4)) on coordinate axes is
	(a) $4\sqrt{2}$	(b) $6\sqrt{3}$	(c) $8\sqrt{2}$	(d) $\sqrt{256}$
19.	The angle of intersection	between the curve $y^2 = 16x$ a	nd $2x^2 + y^2 = 4$ is	[Rajasthan PET 1993
	(a) 0°	(b) 30°	(c) 45°	(d) 90°
20.	The equation of normal to	the curve $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at the	point ($a \sec \theta, b \tan \theta$) is	
	(a) $\frac{ax}{\sec\theta} + \frac{by}{\tan\theta} = a^2 + b^2$	(b) $\frac{ax}{\sec\theta} - \frac{by}{\tan\theta} = a^2 - b^2$	(c) $\frac{ax}{\sec\theta} + \frac{by}{\tan\theta} = a^2 - b^2$	(d) $\frac{ax}{\sec\theta} + \frac{by}{\tan\theta} = a - b$
21.	If tangent to a curve at a	point is perpendicular to <i>x</i> -ax	is, then at the point	
	(a) $\frac{dy}{dx} = 0$	(b) $\frac{dx}{dy} = 0$	(c) $\frac{dy}{dx} = 1$	(d) $\frac{dy}{dx} = -1$
22.	If <i>m</i> be the slope of a tan	gent to the curve $e^y = 1 + x^2$ the	hen	
	(a) $ m > 1$	(b) <i>m</i> < 1	(c) m <1	(d) $ m \le 1$
23.	The equation of the tange	nt to the curve $y = e^{- x }$ at the	point where the curve cuts t	the line $x = 1$ is
	(2) $n + n = c$	(h) () 1		

24.	The slope of the tangent to the curve $y = \int_0^x \frac{dx}{1+x^3}$ at the point where $x = 1$ is					
	(a) $\frac{1}{2}$	(b) 1	(c) $\frac{1}{4}$	(d)	None of these	
25.	The angle of intersection	between the curves $x^2 = 4ay$	and $y^2 = 4ax$ at origin is		[Rajasthan PET 1997]	
	(a) 30°	(b) 45 [°]	(c) 60°	(d)	90 ^o	
26.	The equation of the norm	al to the curve $y = x(2-x)$ at t	he point (2, 0) is		[Rajasthan PET 1989, 1992]	
	(a) $x - 2y = 2$	(b) $x - 2y + 2 = 0$	(c) $2x + y = 4$	(d)	2x + y - 4 = 0	
27.	The angle of intersection [Rajasthan PET 1989, 1993;	of the curve $y = 4 - x^2$ and $y = $ MNR 1978]	$=x^2$ is			
	(a) $\frac{\pi}{2}$	(b) $\tan^{-1}\left(\frac{4}{3}\right)$	(c) $\tan^{-1}\left(\frac{4\sqrt{2}}{7}\right)$	(d)	None of these	
28.	Tangent to the curve $y = e$	e^{2x} at point (0, 1) meets <i>x</i> -axi	s at the point			
	(a) (0, a)	(b) (2, 0)	(c) $\left(-\frac{1}{2},0\right)$	(d)	Non where	
29.	The equation of the tange	ent to the curve $x = a\cos^3 t$, $y = a$	$a\sin^3 tat't'$ point is		[Rajasthan PET 1988]	
	(a) $x \sec t - y \csc t = a$	(b) $x \sec t + y \csc t = a$	(c) $x \operatorname{cosec} t - y \operatorname{sec} t = a$	(d)	$xco \sec t + y \sec t = a$	
30.	The length of the tangent	to the curve $x = a \left(\cos t + \log \tan t \right)$	$\left(\frac{t}{2}\right), y = a\sin t$ is			
	(a) <i>ax</i>	(b) <i>ay</i>	(c) a	(d)	xy	
31.	The point at the curve $y =$	$= 12x - x^3$ where the slope of the slope	he tangent is zero will be		[Rajasthan PET 1992]	
	(a) (0, 0)	(b) (2, 16)	(c) (3,9)	(d)	None of these	
32.	The angle of intersection	between the curves $y = x^2$ and	d $4y = 7 - 3x^3$ at point (1, 1) i	s	[Andhra CEE 1992]	
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{2}$	(d)	None of these	
		Advance	e Level			
33.	Consider the following sta	atements:				
	Assertion (A) : The circle	$x^2 + y^2 = 1$ has exactly two ta	angents parallel to the <i>x</i> -axis			
	Reason (R) : $\frac{dy}{dx} = 0$ on the	ne circle exactly at the points	$(0,\pm 1)$. Of these statements		[SCRA 1996]	
	(a) Both A and R and true	e and R is the correct explana	ation of A			
	(b) Both <i>A</i> and <i>R</i> are true	e but <i>R</i> is not the correct expl	anation of A			
	(c) A is true but R is fals	e				

- (d) *A* is false but *R* is true
- **34.** The slope of the tangent to the curve $x = 3t^2 + 1$, $y = t^3 1$ at x = 1 is

	(a) O	(b) $\frac{1}{2}$	(c) ∞	(d) -2
35.	The slope of tangent to the	e curve $x = t^2 + 3t - 8$, $y = 2t^2 - 3t - 8$	2t-5 at the point (2,-1) is	[MNR 1994]
	(a) $\frac{22}{7}$	(b) $\frac{6}{7}$	(c) -6	(d) None of these
36.	At what points of the curv	e $y = \frac{2}{3}x^3 + \frac{1}{2}x^2$, tangent mak	es the equal angle with axis	[UPSEAT 1999]
	(a) $\left(\frac{1}{2}, \frac{5}{24}\right)$ and $\left(-1, -\frac{1}{6}\right)$	(b) $\left(\frac{1}{2}, \frac{4}{9}\right)$ and (-1, 0)	(c) $\left(\frac{1}{3},\frac{1}{47}\right)$ and $\left(-1,\frac{1}{3}\right)$	(d) $\left(\frac{1}{3},\frac{1}{7}\right)$ and $\left(-3,\frac{1}{2}\right)$
37.	For the curve $xy = c^2$ the s	ubnormal at any point varies	as	
	(a) x^2	(b) x^3	(c) y^2	(d) y^3
38.	The point of the curve $y^2 =$	= 2(x-3) at which the normal	is parallel to the line $y - 2x$	+1 = 0 is
	(a) (5, 2)	(b) $\left(-\frac{1}{2},-2\right)$	(c) (5, - 2)	(d) $\left(\frac{3}{2},2\right)$
39.	Coordinates of a point on t	the curve $y = x \log x$ at which t	the normal is parallel to the	line $2x - 2y = 3$ are [Rajasthan]
	(a) (0, 0)	(b) (<i>e</i> , <i>e</i>)	(c) $(e^2, 2e^2)$	(d) $(e^{-2}, -2e^{-2})$
40.	The abscissa of the points	of curve $y = x(x-2)(x-4)$ whe	ere tangents are parallel to x	c-axis is obtained as
	(a) $x = 2 \pm \frac{2}{\sqrt{3}}$	(b) $x = 1 \pm \frac{1}{\sqrt{3}}$	(c) $x = 2 \pm \frac{1}{\sqrt{3}}$	(d) $x = \pm 1$
41.	The length of the normal a	at point 't' of the curve $x = a(t)$	$+\sin t$, $y = a(1 - \cos t)$ is	[Rajasthan PET 2001]
	(a) $a\sin t$	(b) $2a\sin^3\left(\frac{t}{2}\right)\sec\left(\frac{t}{2}\right)$	(c) $2a\sin\left(\frac{t}{2}\right)\tan\left(\frac{t}{2}\right)$	(d) $2a\sin\left(\frac{t}{2}\right)$
42.	The length of normal to th	he curve $x = a(\theta + \sin \theta), y = a(1 - \theta)$	$\cos \theta$) at the point $\theta = \frac{\pi}{2}$ is	[Rajasthan PET 1999;
	AIEEE 2004]		2	
	(a) 2 <i>a</i>	(b) $\frac{a}{2}$	(c) $\sqrt{2}a$	(d) $\frac{a}{\sqrt{2}}$
43.	The area of the triangle fo	ormed by the coordinate axes	and a tangent to the curve	$xy = a^2$ at the point (x_1, y_1) on
	$a^2 a$	[DCE 2001]		
	(a) $\frac{d x_1}{y_1}$	(b) $\frac{a y_1}{x_1}$	(c) $2a^2$	(d) $4a^2$
44.	The normal of the curve x	$= a(\cos\theta + \theta\sin\theta), y = a(\sin\theta - \theta\cos\theta)$	$\cos \theta$) at any θ is such that	[DCE 2000]
	(a) It makes a constant an	gle with <i>x</i> -axis	(b) It passes through the o	origin
	(c) It is at a constant dista	ance from the origin	(d) None of these	
45 ∙	An equation of the tangent	t to the curve $y = x^4$ from the	point (2, 0)not on the curve	e is
	(a) $y = 0$	(b) $x = 0$	(c) $x + y = 0$	(d) None of these
46.	For the curve $by^3(x+a)^3$ the	ne square of subtangent is pro	oportional to	

			App	olication of Derivatives 197
	(a) (Subnormal) ^{1/2}	(b) Subnormal	(c) (Subnormal) ^{3/2}	(d) None of these
47.	The tangent to the curve	$y = ax^2 + bx$ at (2,-8) is pa	rallel to <i>x</i> -axis. Then	[AMU 1999]
	(a) $a = 2, b = -2$	(b) $a = 2, b = -4$	(c) $a = 2, b = -8$	(d) $a = 4, b = -4$
48.	If the area of the triang equal to	le include between the axe	s and any tangent to the curv	$x^n y = a^n$ is constant, then <i>n</i> is
	(a) 1	(b) 2	(c) $\frac{3}{2}$	(d) $\frac{1}{2}$
49.	All points on the curve	$y^2 = 4a\left(x + a\sin\frac{x}{a}\right)$ at which	the tangents are parallel to th	ne axis of <i>x</i> , lie on a
	(a) Circle	(b) Parabola	(c) Line	(d) None of these
50.	If the curves $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	and $\frac{x^2}{l^2} - \frac{y^2}{m^2} = 1$ cut each of	other orthogonally, then	
	(a) $a^2 + b^2 = l^2 + m^2$	(b) $a^2 - b^2 = l^2 - m^2$	(c) $a^2 - b^2 = l^2 + m^2$	(d) $a^2 + b^2 = l^2 - m^2$
51.	The length of the norma	ll at any point on the catena	ary $y = c \cos h\left(\frac{x}{c}\right)$ varies as	
	(a) (abscissa) ²	(b) (Ordinate) ²	(c) abscissa	(d) ordinate
52.	The point <i>P</i> of the curve by	e $y^2 = 2x^3$ such that the tar	ngent at <i>P</i> is perpendicular to	the line $4x - 3y + 2 = 0$ is given
	(a) (2, 4)	(b) (1, $\sqrt{2}$)	(c) $\left(\frac{1}{2}, -\frac{1}{2}\right)$	$(d) \left(\frac{1}{8}, -\frac{1}{16}\right)$
53.	The length of the norma	al to the curve $y = a \left(\frac{e^{-x/a} + e}{2} \right)$	$\frac{x/a}{a}$ at any point varies as the	e
	(a) Abscissa of the poin	t	(b) Ordinate of the poin	nt
	(c) Square of the abscis	sa of the point	(d) Square of the ordin	ate of the point
5 4 .	If the parametric equat	ion of a curve given by $x =$	$e^t \cos t$, $y = e^t \sin t$, then the ta	ngent to the curve at the point
	$t = \frac{\pi}{4}$ makes with axes of	of x the angle		
	(a) 0	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{2}$
55.	For the parabola $y^2 = 4a$	ux , the ratio of the subtange	ent to the abscissa is	
	(a) 1:1	(b) 2:1	(c) <i>x</i> : <i>y</i>	(d) $x^2:y$
56.	Tangents are drawn from	m the origin to the curve y	$= \cos x$. Their points of contac	t lie on
	(a) $x^2y^2 = y^2 - x^2$	(b) $x^2y^2 = x^2 + y^2$	(c) $x^2y^2 = x^2 - y^2$	(d) None of these
57.	If $y = 4x - 5$ is a tangent	to the curve $y^2 = px^3 + q$ at	: (2, 3) then	
	(a) $p = 2, q = -7$	(b) $p = -2, q = 7$	(c) $p = -2, q = -7$	(d) $p = 2, q = 7$
58.	The curve $y - e^{xy} + x = 0$	has a vertical tangent at th	e point	
	(a) (1, 1)	(b) At no point	(c) (0, 1)	(d) (1, 0)

59.	If the tangent and normal	l at any point <i>P</i> of parabola me	eet the axes at <i>T</i> and <i>G</i> respe	ectively then
	(a) ST = SG.SP	(b) $ST = SG = SP$	(c) ST \neq SG = SP	(d) ST = SG \neq SP
60.	Slope of the tangent to th	e curve $y = x^3 $ at origin is		
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{6}$	(d) 0
61.	The line $\left(\frac{x}{a}\right) + \left(\frac{y}{b}\right) = 2$, to	iches the curve $\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$	2 at point (a , b) then $n =$	[Rajasthan PET 1998]
	(a) 1 n	(b) 2	(c) 3	(d) For non-zero values of
62.	The sum of the squares of	f intercepts made by a tangent	t to the curve $x^{2/3} + y^{2/3} = a^{2/3}$	³ with coordinate axes is [Rajastha
	(a) <i>a</i>	(b) 2a	(c) a^2	(d) $2a^2$
63.	The point of the curve <i>y</i> =	$x^2 - 3x + 2$ at which the tange	ent is perpendicular to the y	= x will be
	(a) (0, 2)	(b) (1, 0)	(c) (-1, 6)	(d) (2, -2)
64.	The equation of normal to	the curve $\frac{x^2}{16} - \frac{y^2}{9} = 1$ at the	point $(8, 3\sqrt{3})$ is	[MP PET 1996]
	(a) $\sqrt{3}x + 2y = 25$	(b) $x + y = 25$	(c) $y + 2x = 25$	(d) $2x + \sqrt{3}y = 25$
65.	The angle of intersection	between the curves $xy = a^2$ and	nd $x^2 + y^2 = 2a^2$ is	[Rajasthan PET 1998]
	(a) 0°	(b) 30°	(c) 45°	(d) 90°
66.	The subtangent to the cur	The $x^m y^n = a^{m+n}$ at any point is	proportional to	[Rajasthan PET 1998]
	(a) Ordinate	(b) Abscissa	(c) (Ordinate) ⁿ	(d) (Abscissa) ⁿ
67.	If tangents drawn on the	curve $x = at^2, y = 2at$ is perpendicular to the set of the set	dicular to x-axis then its poi	int of contact is
	(a) (<i>a, a</i>)	(b) (a, 0)	(c) (0, a)	(d) (0, 0)
68.	Tangents are drawn to th are	e curve $y = x^2 - 3x + 2$ at the j	points where it meets <i>x</i> -axis	. Equations of these tangents
				[Rajasthan PET 1993]
	(a) $x - y + 2 = 0, x - y - 1 = 0$	0 (b) $x + y - 1 = 0, x - y = 2$	(c) $x - y - 1 = 0, x - y = 0$	(d) $x - y = 0, x + y = 0$
69.	If the tangents at any p $p^{-4/3} + q^{-4/3}$ is	oint on the curve $x^4 + y^4 = a$	p^4 cuts off intercept p and	\boldsymbol{q} on the axes, the value of
	(a) $a^{-4/3}$	(b) $a^{-1/2}$	(c) $a^{1/2}$	(d) None of these
7 0.	At any point (x_1, y_1) of the	e curve $y = ce^{x/a}$		
	(a) Subtangent is constar	nt		
	(b) Subnormal is proport	ional to the square of the ordi	inate of the point	
	(c) Tangent cuts <i>x</i> -axis a	t $(x_1 - a)$ distance from the original	igin	
	(d) All the above			
71.	The equation of the tange	ent to the curve $y = 1 - e^{x/2}$ at t	the point where it meets y-a	xis is

			Aj	pplication of Derivatives 199
	(a) $x + 2y = 2$	(b) $2x + y = 0$	(c) $x - y = 2$	(d) None of these
72.	The coordinates of the po	points on the curve $x = a(\theta + \sin \theta)$	θ , $y = a(1 - \cos \theta)$, where	tangent is inclined an angle $\frac{\pi}{4}$ to
	the <i>x</i> -axis are			7
	(a) (<i>a</i> , <i>a</i>)	(b) $\left(a\left(\frac{\pi}{2}-1\right),a\right)$	(c) $\left(a\left(\frac{\pi}{2}+1\right),a\right)$	(d) $\left(a, a\left(\frac{\pi}{2}+1\right)\right)$
73.	If equation of normal at a	a point $(m^2 - m^3)$ on the curve	$x^3 - y^2 = 0$ is $y = 3mx - 4$	$4m^3$, then m^2 equals
	(a) 0	(b) 1	(c) $-\frac{2}{9}$	(d) $\frac{2}{9}$
74.	For a curve $\frac{\text{(Length of norm})}{\text{(Length of tangest)}}$	$\frac{(\ln a)^2}{(\ln a)^2}$ is equal to		
	(a) (Subnormal)/(Subtar (Subtangent/Subnormal)	ngent) (b) ² (d) Constant	(Subtangent)/(Subnot	rmal) (c)
7 5 .	If the curve $y = x^2 + bx + c$	x, touches the line $y = x$ at the	e point (1, 1), the values	of <i>b</i> and <i>c</i> are
	(a) – 1, 2	(b) -1, 1	(c) 2, 1	(d) -2, 1
76.	Let <i>C</i> be the curve $y^3 - 3$. horizontal and vertical re-	xy + 2 = 0. If H and V be the sespectively, then	set of points on the curv	e <i>C</i> where tangent to the curve is
	(a) $H = \{(1,1)\}, V = \phi$	(b) $H = \phi, V = \{(1,1)\}$	(c) $H = \{(0,0)\}, V = \{(1,0)\}, V = \{(1,0)\},$	1)} (d) None of these
77.	If the line $ax + by + c = 0$ i	s a normal to the curve $xy = 1$	then	
	(a) $a,b \in R$	(b) $a > 0, b > 0$	(c) $a < 0, b > 0 \text{ or } a > 0,$	b < 0 (d) $a < 0, b < 0$
78.	If the tangent to the curv	The $f(x) = x^2$ at any pint $(c, f(c))$	is parallel to line joinin	g the points $(a, f(a))$ and $(b, f(b))$ on
	the curve, then <i>a</i> , <i>c</i> , <i>b</i> are	e in		
	(a) H.P.	(b) G.P.	(c) A.P.	(d) A.P. and G.P. both
7 9 .	The area of triangle form	ed by tangent to the hyperbol	a $2xy = a^2$ and coordinat	tes axes is
	(a) a^2	(b) $2a^2$	(c) $\frac{a^2}{2}$	(d) $\frac{3a^2}{2}$
80.	The angle of intersection	between the curves $r = a \sin(\theta)$	$-\alpha$) and $r = b\cos(\theta - \beta)$ is	S
	(a) $\alpha - \beta$	(b) $\alpha + \beta$	(c) $\frac{\pi}{2} + \alpha + \beta$	(d) $\frac{\pi}{2} + \alpha - \beta$
81.	The distance between the	e origin and the normal to the	cure $y = e^{2x} + x^2$ at the j	point $x = 0$ is
	(a) $2\sqrt{5}$	(b) $\frac{2}{\sqrt{5}}$	(c) $\sqrt{5}$	(d) None of these
82.	If the curve $y = ax^2 - 6x + bx^2 - $	b passes through (0, 2) and	has its tangent parallel	to x-axis at $x = \frac{3}{2}$, then the value
	of a and b are			2
				[SCRA 1999]
	(a) 2, 2	(b) -2, -2	(c) -2, 2	(d) 2, -2

83.	If at any point S of the	e curve $by^2 = (x+a)^3$ the rel	lation between subnormal	SN and subtangent ST be			
	$p(SN) = q(ST)^2$ then p/q is equal to						
	[Rajasthan PET 1999; EAMC	ET 1991]					
	(a) $\frac{8b}{27}$	(b) $\frac{8a}{27}$	(c) $\frac{b}{a}$	(d) None of these			
84.	The points on the curve 9y	$y^2 = x^3$ where the normal to the	ne curve cuts equal intercep	ts from the axes are			
	(a) (4, 8/3), (4, -8/3)	(b) (1, 1/3) (1, -1/3)	(c) (0, 0)	(d) None of these			
85.	The equation of the norma	1 to the curve $y^2 = x^3$ at the p	ooint whose abscissa is 8, w	ill be			
	(a) $x \pm \sqrt{2}y = 104$	(b) $x \pm 3\sqrt{2}y = 104$	(c) $3\sqrt{2}x \pm y = 104$	(d) None of these			
86.	At any point (except vertex	x) of the parabola $y^2 - 4ax$ su	btangent, ordinate and subr	normal are in			
	(a) AP	(b) GP	(c) HP	(d) None of these			
87.	At what point the slope of	the tangent to the curve x^2 +	$y^2 - 2x - 3 = 0$ is zero	[Rajasthan PET 1989, 1995]			
	(a) (3 0); (-1, 0)	(b) (3,0); (1,2)	(c) (-1, 0); (1, 2)	(d) (1, 2); (1, -2)			
88.	Let the equation of a curv	we be $x = a(\theta + \sin \theta), y = a(1 - \cos \theta)$	$(s \theta)$. If θ changes at a constant	stant rate k then the rate of			
	change of the slope of the	tangent to the curve at $\theta = \frac{\pi}{3}$	is				
	(a) $\frac{2k}{\sqrt{3}}$	(b) $\frac{k}{\sqrt{3}}$	(c) <i>k</i>	(d) None of these			
89.	The equation of a curve	is $y = f(x)$. The tangents at	(1, f(1)), (2, f(2)) and $(3, f(3))$	makes angles $\frac{\pi}{6}, \frac{\pi}{3}$ and $\frac{\pi}{4}$			
	respectively with the posit	tive direction of the <i>x</i> -axis. Th	then the value of $\int_2^3 f'(x)f''(x)dx$	$x + \int_{1}^{3} f''(x) dx$ is equal to			
	(a) $-\frac{1}{\sqrt{3}}$	(b) $\frac{1}{\sqrt{3}}$	(c) O	(d) None of these			
90.	$P(2,2)$ and $Q\left(\frac{1}{2},-1\right)$ are ty	wo points on the parabolas y	$v^2 = 2x$. the coordinates of	the point R on the parabola,			
	where the tangent to the c	urve is parallel to the chord <i>F</i>	PQ, is				
	(a) $\left(\frac{5}{4}, \sqrt{\frac{5}{2}}\right)$	(b) (2, - 1)	(c) $\left(\frac{1}{8},\frac{1}{2}\right)$	(d) None of these			
91.	The number of tangents to	the curve $x^{3/2} + y^{3/2} = a^{3/2}$,	where the tangents are equa	lly inclined to the axes, is			
	(a) 2	(b) 1	(c) 0	(d) 4			
92.	If at each point of the cudirection of the <i>x</i> -axis the	arve $y = x^3 - ax^2 + x + 1$ the tan	angent is inclined at an ac	cute angle with the positive			
	(a) $a > 0$	(b) $a \le \sqrt{3}$	(c) $-\sqrt{3} \le a \le \sqrt{3}$	(d) None of these			

\mathcal{A} nswer Sheet

	Assignment (Basic and Advance Level)																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
с	b	a	с	a	с	a	b	a	d	b	a	с	b	b	b	a	d	d	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	d	d	a	d	a	с	с	b	с	b	d	a	a	b	a	d	с	d	a
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
с	с	с	с	a	b	с	a	b	с	b	d	d	d	b	с	a	d	b	d
61	62	63	64	65	66	67	68	69	7 0	71	72	73	74	75	76	77	78	79	80
d	c	b	d	a	b	d	b	a	d	d	с	d	a	b	b	c	c	a	d
81	82	83	84	85	86	87	88	89	90	91	92								
b	a	a	a	b	b	d	d	a	с	b	с								

4.3 Maxima and Minima

4.3.1 Introduction

In this chapter we shall study those points of the domain of a function where its graph changes its direction from upwards to downwards or from downwards to upwards. At such points the derivative of the function arily zero.

4.3.2 Maximum and Minimum Values of a Function

By the maximum / minimum value of function f(x) we should mean local or regional maximum/minimum and not the greatest / least value attainable by the function. It is also possible in a function that local maximum at one point is smaller than local minimum at another point. Sometimes we use the word extreme for maxima and minima.

Definition: A function f(x) is said to have a maximum at x = a if f(a) is greatest of all values in the suitably small neighbourhood of a where x = a is an interior point in the

domain of f(x). Analytically this means $f(a) \ge f(a+h)$ and $f(a) \ge f(a-h)$ where $h \ge 0$. (very small quantity).

Similarly, a function y = f(x) is said to have a minimum at x = b. If f(b) is smallest of all values in the suitably small neighbourhood of *b* where x = b is an interior point in the domain of f(x). Analytically, $f(b) \le f(b+h)$ and $f(b) \le f(b-h)$ where $h \ge 0$. (very small quantity).

Hence we find that,

(i)
$$x = a$$
 is a maximum point of $f(x)$

$$\begin{cases}
f(a) - f(a+h) > 0 \\
f(a) - f(a-h) > 0
\end{cases}$$
(ii) $x = b$ is a minimum point of $f(x)$

$$\begin{cases}
f(b) - f(b+h) < 0 \\
f(b) - f(b-h) < 0
\end{cases}$$
(iii) $x = c$ is neither a maximum point nor a minimum point nor a minimum point $f(c) - f(c+h)$ and $f(c) - f(c-h)$
have opposite signs.

4.3.3 Local Maxima and Local Minima

(1) **Local maximum :** A function f(x) is said to attain a local maximum at x = a if there exists a neighbourhood $(a - \delta, a + \delta)$ of a such that f(x) < f(a) for all $x \in (a - \delta, a + \delta), x \neq a$

or f(x) - f(a) < 0 for all $x \in (a - \delta, a + \delta), x \neq a$.

In such a case f(a) is called the local maximum value of f(x) at x = a.

(2) **Local minimum:** A function f(x) is said to attain a local minimum at x = a if there exists a neighbourhood $(a - \delta, a + \delta)$ of a such that

f(x) > f(a) for all $x \in (a - \delta, a + \delta), x \neq a$

or f(x) - f(a) > 0 for all $x \in (a - \delta, a + \delta), x \neq a$

The value of function at x = a *i.e.*, f(a) is called the local minimum value of f(x) at x = a.

The points at which a function attains either the local maximum values or local minimum values are known as the extreme points or turning points and both local maximum and local

minimum values are called the extreme values of f(x). Thus, a function attains an extreme value at x = a if f(a) is either a local maximum value or a local minimum value. Consequently at an extreme point '*a*' f(x) - f(a) keeps the same sign for all values of *x* in a deleted *nbd* of *a*.

In fig. we observe that the *x*-coordinates of the points *A*, *C*, *E* are points of local maximum and the values at these points *i.e.*, their *y*-coordinates are the local maximum values of f(x). The *x*-coordinates

of points *B* and *D* are points of local minimum and their *y*-coordinates are the local minimum values of f(x).

- *Note* : \Box By a local maximum (or local minimum) value of a function at a point x = a we mean
 - the greatest (or the least) value in the neighbourhood of point x = a and not the absolute maximum (or the absolute minimum). In fact a function may have any number of points of local maximum (or local minimum) and even a local minimum value may be greater than a local maximum value. In fig. the minimum value at *D* is greater than the maximum value at *A*. Thus, a local maximum value may not be the greatest value and a local minimum value may not be the least value of the function in its domain.
 - □ The maximum and minimum points are also known as extreme points.
 - □ A function may have more than one maximum and minimum points.
 - □ A maximum value of a function f(x) in an interval [a, b] is not necessarily its greatest value in that interval. Similarly, a minimum value may not be the least value of the function. A minimum value may be greater than some maximum value for a function.
 - □ If a continuous function has only one maximum (minimum) point, then at this point function has its greatest (least) value.
 - □ Monotonic functions do not have extreme points.

4.3.4 Conditions for Maxima and Minima of a Function

(1) Necessary condition: A point x = a is an extreme point of a function f(x) if f'(a) = 0, provided f'(a) exists. Thus, if f'(a) exists, then

$$x = a$$
 is an extreme point $\Rightarrow f'(a) = 0$
or
 $f'(a) \neq 0 \Rightarrow x = a$ is not an extreme point

But its converse is not true *i.e.*, f'(a) = 0, x = a is not an extreme point.

For example if $f(x) = x^3$, then f'(0) = 0 but x = 0 is not an extreme point.

(2) Sufficient condition:

(i) The value of the function f(x) at x = a is maximum, if f'(a) = 0 and f''(a) < 0.

(ii) The value of the function f(x) at x = a is minimum if f'(a) = 0 and f''(a) > 0.

Note : \Box If f'(a) = 0, f''(a) = 0, $f''(a) \neq 0$ then x = a is not an extreme point for the function f(x).

□ If f'(a) = 0, f''(a) = 0, f''(a) = 0 then the sign of $f^{(iv)}$ (a) will determine the maximum and minimum value of function *i.e.*, f(x) is maximum, if $f^{(iv)}(a) < 0$ and minimum if $f^{(iv)}(a) > 0$.

4.3.5 Working rule for Finding Maxima and Minima

(1) Find the differential coefficient of f(x) with respect to x, *i.e.*, f'(x) and equate it to zero.

(2) Find differential real values of x by solving the equation f'(x) = 0. Let its roots be a, b, c.....

(3) Find the value of f''(x) and substitute the value of a_1, a_2, a_3, \dots in it and get the sign of f''(x) for each value of x.

(4) If f''(a) < 0 then the value of f(x) is maximum at x = a and if f''(a) > 0 then value of f(x) will be minimum at x = a. Similarly by getting the signs of f''(x) at other points *b*, *c*....we can find the points of maxima and minima.

Example: 1 What are the minimum and maximum values of the function $x^5 - 5x^4 + 5x^3 - 10$ [DCE 1999; Rajasthan PET 1995]

(c) It has 2 minimum and 1 maximum values (d) It has 2 maximum and 1 minimum values

Solution: (a)
$$y = x^3 - 5x^4 + 5x^3 - 10$$

 $\therefore \frac{dy}{dx} = 5x^4 - 20x^3 + 15x^2 = 5x^2(x^2 - 4x + 3) = 5x^2(x - 3)(x - 1)$
 $\frac{dy}{dx} = 0$, gives $x = 0, 1, 3$ (i)
Now, $\frac{d^2y}{dx^2} = 20x^3 - 60x^2 + 30x = 10x(2x^2 - 6x + 3)$ and $\frac{d^3y}{dx^3} = 10(6x^2 - 12x + 3)$
For $x = 0$: $\frac{dy}{dx} = 0, \frac{d^3y}{dx^2} = 0, \frac{d^3y}{dx^3} \neq 0$, \therefore Neither minimum nor maximum
For $x = 1$, $\frac{d^2y}{dx^2} = -10$ = negative, \therefore Maximum value $y_{max} = -9$
For $x = 3$, $\frac{d^3y}{dx^2} = 90$ = positive, \therefore Minimum value $y_{min} = -37$.
Example: 2 The maximum value of $\sin x(1 + \cos x)$ will be at
(uPSEAT 1999]
(a) $x = \frac{\pi}{2}$ (b) $x = \frac{\pi}{6}$ (c) $x = \frac{\pi}{3}$ (d) $x = \pi$
Solution: (c) $y = \sin x(1 + \cos x) = \sin x + \frac{1}{2} \sin 2x$
 $\therefore \frac{dy}{dx} = \cos x + \cos 2x$ and $\frac{d^2y}{dx^2} = -\sin x - 2\sin 2x$
On putting $\frac{dy}{dx} = 0, \cos x + \cos 2x = 0 \Rightarrow \cos x = -\cos 2x = \cos(\pi - 2x) \Rightarrow x = \pi - 2x$
 $\therefore x = \frac{\pi}{3}, \therefore (\frac{d^2y}{dx^2})_{x=x/3} = -\sin(\frac{1}{3}\pi) - 2\sin(\frac{2}{3}\pi) = -\frac{\sqrt{3}}{2} - 2 \cdot \frac{\sqrt{3}}{2} = -\frac{-3\sqrt{3}}{2}$ which is negative.
 \therefore at $x = \frac{\pi}{3}$ the function is maximum.

Example: 3 If $y = a \log x + bx^2 + x$ has its extremum value at x = 1 and x = 2, then (a,b) =

(a)
$$\left(1,\frac{1}{2}\right)$$
 (b) $\left(\frac{1}{2},2\right)$ (c) $\left(2,-\frac{1}{2}\right)$ (d) $\left(-\frac{2}{3},-\frac{1}{6}\right)$
Solution: (d) $\frac{dr}{dt} = \frac{a}{x} + 2bx + 1 \Rightarrow \left(\frac{dv}{dt}\right)_{x-1} = a + 2b + 1 = 0 \Rightarrow a = -2b - 1$
and $\left(\frac{dt}{dt}\right)_{x-2} = \frac{a}{2} + 4b + 1 = 0 \Rightarrow -\frac{2b-1}{2} + 4b + 1 = 0 \Rightarrow -b + 4b + \frac{1}{2} = 0 \Rightarrow 3b - \frac{-1}{2} \Rightarrow b - \frac{-1}{6}$ and
 $a = \frac{1}{3} - 1 = \frac{2}{3}$.
Example: 4 Maximum value of $\left(\frac{1}{x}\right)^{x}$ is [DCE 1999;
Karnataka CET 1999; UPSEAT 2003]
(a) $(ef (b) (e)^{1/x} (c) (e)^{-x} (d) (\frac{1}{e})^{x}$
Solution: (b) $f(x) = \left(\frac{1}{x}\right)^{x} \Rightarrow f(x) = \left(\frac{1}{x}\right)^{x} \left(\log \frac{1}{x} - 1\right)$
 $f'(x) = 0 \Rightarrow \log \frac{1}{x} - 1 - \log e \Rightarrow \frac{1}{x} - e \Rightarrow x - \frac{1}{e}$. Therefore, maximum value of function is $e^{1/x}$.
Example: 5 Maximum slope of the curve $y = -x^{x} + 3x^{2} + 9x - 27$ is
(a) $0 (b) 12 (c) 16 (d) 32$
Solution: (b) $y = f(x) = -x^{2} + 3x^{2} + 9x - 27$
The slope of this curve $f(x) = -3x^{2} + 6x + 9$
Let $g(x) = 0 \Rightarrow x = 1$
Now, $g'(x) = -6 < 0$ and hence at $x = 1, g(x)$
(Slope) will have maximum value.
 $\therefore [g(0)]_{max} = -3x + 1 + 6y = 12$.
Example: 6 The function $f(x) - \int g(e^{-1})(e^{-1})(e^{-1})(x^{-1})(x - 1)(x - 2)^{2}(x - 3)^{2}$
For local minima, slope *i.e.*, $f(x)$ should change sign from - ve to +ve
 $f(x) = 0 \Rightarrow x = 0, 1, 2.3$
If $x = 0 - b$, where *h* is a very small number, then $f(x) = (-1)(x - 1)(x - 2)^{2}(x - 3)^{2}$
For local minima, slope *i.e.*, $f(x)$ should change sign from - ve to +ve
If $x = 0 + b$, where *h* is a very small number, then $f(x) = (-1)(-1)(-1)(-1)(-1) = -ve$
If $x = 0 + b$, $f(x) = (-0)(-(-1)(-1) = -ve$
Hence, at $x = 0$ neither maxima nor minima.
If $x = 1 - h$, $f(x) = (-0)(-(-1)(-1) = -ve$
Hence, at $x = 1$ the tip is a local minima.
If $x = 1 + h$, $f(x) = (-0)(-(-1)(-1) = -ve$

If x = 2 + h, f'(x) = (+)(+)(+)(+)(-1) = -veHence at x = 2 there is a local maxima. If x = 3 - h, f'(x) = (+)(+)(+)(+)(-) = -veIf x = 3 + h, f'(x) = (+)(+)(+)(+)(+) = +veHence at x = 3 there is a local minima. If the function $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$, where a > 0 attains its maximum and minimum at p and q Example: 7 respectively such that $p^2 = q$, then a equals (d) $\frac{1}{2}$ (a) 3 (b) 1 (c) 2 $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$ Solution: (c) $f'(x) = 6x^2 - 18ax + 12a^2$ f''(x) = 12x - 18aFor maximum and minimum, $6x^2 - 18ax + 12a^2 = 0 \implies x^2 - 3ax + 2a^2 = 0$ x = a or x = 2a at x = a maximum and at x = 2a minimum $\therefore p^2 = a$ $a^2 = 2a \implies a = 2$ or a = 0 but a > 0, therefore a = 2. The points of extremum of the function $\phi(x) = \int_{-\infty}^{x} e^{-t^2/2} (1-t^2) dt$ are Example: 8 (b) x = 1 (c) $x = \frac{1}{2}$ (a) x = 0(d) x = -1 $\phi(x) = \int_{1}^{x} e^{-t^{2}/2} (1-t^{2}) dt \quad \Rightarrow \ \phi'(x) = e^{-x^{2}/2} (1-x^{2})$ **Solution:** (b,d) Now $\phi'(x) = 0 \Longrightarrow 1 - x^2 = 0 \Longrightarrow x = \pm 1$ Hence, $x = \pm 1$ are points of extremum of $\phi(x)$.

4.3.6 Point of Inflection

A point of inflection is a point at which a curve is changing concave upward to concave downward or vice-versa. A curve y = f(x) has one of its points x = c as an inflection point, if f''(c) = 0 or is not defined and if f''(x) changes sign as x increases through x = c.

The later condition may be replaced by $f''(c) \neq 0$, when f'''(c) exists.

Thus, x = c is a point of inflection if f''(c) = 0 and $f'''(c) \neq 0$.

Properties of maxima and minima

(i) If f(x) is continuous function in its domain, then at least one maxima and one minima must lie between two equal values of x.

(ii) Maxima and minima occur alternately, that is, between two maxima there is one minimum and vice-versa.

(iii) If $f(x) \to \infty$ as $x \to a$ or *b* and f'(x) = 0 only for one value of *x* (say *c*) between *a* and *b*, then f(c) is necessarily the minimum and the least value.

If $f(x) \to -\infty$ as $x \to a$ or b, then f(c) is necessarily the maximum and the greatest value.

4.3.7 Greatest and Least Values of a Function in a given Interval

If a function f(x) is defined in an interval [*a*, *b*], then greatest or least values of this function occurs either at x = a or x = b or at those values of *x* where f'(x) = 0.

Remember that a maximum value of the function f(x) in any interval [a, b] is not necessarily its greatest value in that interval. Thus greatest value of f(x) in interval $[a, b] = \max$. [f(a), f(b), f(c)]

Least value of f(x) interval [a, b] = min. [f(a), f(b), f(c)]

Where x = c is a point such that f'(c) = 0

The maximum and minimum values of $x^3 - 18x^2 + 96$ in interval (0, 9) are Example: 9 [RPET 1999] (b) 60, 0 (a) 160, 0 (c) 160, 128 (d) 120, 28 **Solution:** (c) Let $y = x^3 - 18x^2 + 96x \Rightarrow \frac{dy}{dx} = 3x^2 - 36x + 96 = 0$ $\therefore x^2 - 12x + 32 = 0 \implies (x - 4)(x - 8) = 0, x = 4, 8$ Now, $\frac{d^2y}{dx^2} = 6x - 36$ at $x = 4, \frac{d^2y}{dx^2} = 24 - 36 = -12 < 0$: at x = 4 function will be maximum and $[f(x)]_{max} = 64 - 288 + 384 = 160$ at $x = 8 \frac{d^2y}{dx^2} = 48 - 36 = 12 > 0$ \therefore at x = 8 function will be minimum and $[f(x)]_{\min} = 128$. The minimum value of the function $2\cos 2x - \cos 4x$ in $0 \le x \le \pi$ is Example: 10 (c) $\frac{3}{2}$ (b) 1 (a) 0 (d) - 3 **Solution:** (d) $y = 2\cos 2x - \cos 4x = 2\cos 2x(1 - \cos 2x) + 1 = 4\cos 2x\sin^2 x + 1$ Obviously, $\sin^2 x \ge 0$ Therefore, to be least value of y, cos 2x should be least *i.e.*, -1. Hence least value of y is -4 + 1 = -3. **Example: 11** On [1, *e*] the greatest value of $x^2 \log x$ [AMU 2002] (b) $\frac{1}{e} \log \frac{1}{\sqrt{e}}$ (c) $e^2 \log \sqrt{e}$ (a) e^2 (d) None of these **Solution:** (a) $f(x) = x^2 \log x \Rightarrow f'(x) = (2 \log x + 1)x$ Now $f'(x) = 0 \implies x = e^{-1/2} 0$ $\therefore 0 < e^{-1/2} < 1$, \therefore None of these critical points lies in the interval [1, e] \therefore So we only compare the value of f(x) at the end points 1 and e. We have $f(1) = 0, f(e) = e^2$ \therefore greatest value = e^2

4.3.8 Maxima and Minima of Functions of Two Variables

If a function is defined in terms of two variables and if these variables are associated with a given relation then by eliminating one variable, we convert function in terms of one variable and then find maxima and minima by known methods.

x and y be two variables such that x > 0 and xy = 1. Then the minimum value of x + y is Example: 12 [Kurukshetra CEE 1988; MP PET 2002] (a) 2 (c) 4 (d) 0 (b) 3 **Solution:** (a) $xy = 1 \implies y = \frac{1}{x}$ and let z = x + y $z = x + \frac{1}{r} \Rightarrow \frac{dz}{dr} = 1 - \frac{1}{r^2} \Rightarrow \frac{dz}{dr} = 0 \Rightarrow 1 - \frac{1}{r^2} = 0 \Rightarrow x = -1, +1 \text{ and } \frac{d^2z}{dr^2} = \frac{2}{r^3}$ $\left(\frac{d^2z}{dx^2}\right) = \frac{2}{1} = 2 = +ve$, $\therefore x = 1$ is point of minima. x = 1, y = 1, \therefore minimum value = x + y = 2. Example: 13 The sum of two non-zero numbers is 4. The minimum value of the sum of their reciprocals is (b) $\frac{6}{5}$ (a) $\frac{3}{4}$ (c) 1 (d) None of these **Solution:** (c) Let x + y = 4 or y = 4 - x $\frac{1}{x} + \frac{1}{y} = \frac{x+y}{xy}$ or $f(x) = \frac{4}{xy} = \frac{4}{r(4-r)}$ $f(x) = \frac{4}{4x - x^2}$, $f'(x) = \frac{-4}{(4x - x^2)^2} \cdot (4 - 2x)$ Put $f'(x) = 0 \implies 4 - 2x = 0 \implies x = 2$ and y = 2 $\therefore \min \left(\frac{1}{r} + \frac{1}{r}\right) = \frac{1}{2} + \frac{1}{2} = 1$. The real number which most exceeds its cube is Example: 14 [MP PET 2000] (b) $\frac{1}{\sqrt{2}}$ (c) $\frac{1}{\sqrt{2}}$ (a) $\frac{1}{2}$ (d) None of these **Solution:** (b) Let number = x, then cube = x^3 Now $f(x) = x - x^3$ (Maximum) $\Rightarrow f'(x) = 1 - 3x^2$ Put $f'(x) = 0 \implies 1 - 3x^2 = 0 \implies x = \pm \frac{1}{\sqrt{2}}$ Because f''(x) = -6x = -ve. when $x = +\frac{1}{\sqrt{2}}$.

4.3.9 Geometrical Results related to Maxima and Minima

The following results can easily be established.

(1) The area of rectangle with given perimeter is greatest when it is a square.

(2) The perimeter of a rectangle with given area is least when it is a square.

(3) The greatest rectangle inscribed in a given circle is a square.

(4) The greatest triangle inscribed in given circle is equilateral.

(5) The semi vertical angle of a cone with given slant height and maximum volume is $\tan^{-1}\sqrt{2}$

(6) The height of a cylinder of maximum volume inscribed in a sphere of radius *a* is a $2a/\sqrt{3}$.

Important Tips

Equilateral triangle: Area = $(\sqrt{3}/4)x^2$, where x is its side.

- **Square:** Area = a^2 , perimeter = 4a, where a is its side.
- **For a constant of a constant**
- Trapezium: Area = $\frac{1}{2}(a+b)h$, where a, b are lengths of parallel sides and h be the distance between them.
- *Circle:* Area = πa^2 , perimeter = $2\pi a$, where a is its radius.
- **Sphere:** Volume = $\frac{4}{3}\pi a^3$, surface area = $4\pi a^2$, where a is its radius.
- **Fight circular cone:** Volume = $\frac{1}{3}\pi r^2 h$, curved surface = $\pi r l$, where r is the radius of its base, h is its height and l is its slant height.
- **Cylinder:** Volume = $\pi r^2 h$, whole surface = $2\pi r(r+h)$, where r is the radius of the base and h is its height.

Example: 15 The adjacent sides of a rectangle with given perimeter as 100 cm and enclosing maximum area are[MP PET a (a) 10 cm and 40 cm (b) 20 cm and 30 cm (c) 25 cm and 25 cm (d) 15 cm and 35 cm $2x + 2y = 100 \implies x + y = 50$ **Solution:** (c)(i) Let area of rectangle is A, $\therefore A = xy \implies y = \frac{A}{x}$ From (i), $x + \frac{A}{r} = 50 \implies A = 50 x - x^2 \implies \frac{dA}{dx} = 50 - 2x$ for maximum area $\frac{dA}{dx} = 0$ \therefore 50 - 2x = 0 \Rightarrow x = 25 and y = 25 \therefore adjacent sides are 25 *cm* and 25 *cm*. The radius of the cylinder of maximum volume, which can be inscribed a sphere of radius R is [AMU 1999] Example: 16 (b) $\sqrt{\frac{2}{2}}R$ (d) $\sqrt{\frac{3}{4}R}$ (c) $\frac{3}{4}R$ (a) $\frac{2}{2}R$ **Solution:** (b) If *r* be the radius and *h* the height, the from the figure, $r^2 + \left(\frac{h}{2}\right)^2 = R^2 \Rightarrow h^2 = 4(R^2 - r^2)$ Now, $V = \pi r^2 h = 2\pi r^2 \sqrt{R^2 - r^2}$

Example: 17 The ratio of height of a cone having maximum volume which can be inscribed in a sphere with the diameter of sphere is

[MNR 1985]

(a)
$$\frac{2}{3}$$
 (b) $\frac{1}{3}$ (c) $\frac{3}{4}$ (d) $\frac{1}{4}$

Solution: (a) Let OM = x

Then height of cone *i.e.*, h = x + a (where *a* is radius of sphere) Radius of base of cone = $\sqrt{a^2 - x^2}$ Therefore, volume $V = \frac{1}{3}\pi(a^2 - x^2)(x + a) \Rightarrow \frac{dV}{dx} = \frac{\pi}{3}(a + x)(a - 3x)$ Now, $\frac{dV}{dx} = 0 \Rightarrow x = -a, \frac{a}{3}$ But $x \neq -a$, So, $x = \frac{a}{3}$ The volume is maximum at $x = \frac{a}{3}$ Height of a cone $h = a + \frac{a}{3} = \frac{4}{3}a$

Therefore ratio of height and diameter = $\frac{\frac{4}{3}a}{2a} = \frac{2}{3}$.

Maxima and Minima

		Basic Lo	evel		
1.	The maximum value of $f(x)$	$x = \frac{x}{4 + x + x^2}$ on [-1, 1] is			[MP PET 2000]
	(a) $\frac{-1}{4}$	(b) $\frac{-1}{3}$	(c) $\frac{1}{6}$	(d) $\frac{1}{5}$	
2.	Maximum value of $x(1-x)^2$	when $0 \le x \le 2$, is			[MP PET 1997]
	(a) 2	(b) $\frac{4}{27}$	(c) 5	(d) 0	

3. The maximum value of $2x^3 - 24x + 107$ in the interval [-3, 3] is

			Ар	plication of Derivatives 211							
	(a) 75	(b) 89	(c) 125	(d) 139							
4.	The maximum value of the	e function $f(x) = 3\sin x + 4\cos x$	is								
	(a) 3	(b) 4	(c) 5	(d) 7							
5٠	If the function $f(x) = x^4 - 62$	$2x^2 + ax + 9$ is maximum at $x =$	=1, then the value of a is								
	(a) 120	(b) - 120	(c) 52	(d) 128							
6.	The maximum value of $f(\theta$ 2000]	$\theta = a\sin\theta + b\cos\theta$ is		[MP PET 1999; UPSEAT							
	(a) $\frac{a}{b}$	(b) $\frac{a}{\sqrt{a^2+b^2}}$	(c) \sqrt{ab}	(d) $\sqrt{a^2 + b^2}$							
7.	The minimum value of the function $y = 2x^3 - 21x^2 + 36x - 20$ is										
	(a) – 128	(b) - 126	(c) – 120	(d) None of these							
8.	$\frac{x}{1+x\tan x}$ is maximum at			[UPSEAT 1999]							
	(a) $x = \sin x$	(b) $x = \cos x$	(c) $x = \frac{\pi}{3}$	(d) $x = \tan x$							
9.	The minimum value of the	expression $7-20x+11x^2$ is									
	(a) $\frac{177}{}$	(b) $-\frac{177}{1}$	(c) $-\frac{23}{2}$	(d) $\frac{23}{2}$							
	11	11	11	11							
10.	The minimum value of $2x^2$	x + x - 1 is		[EAMCET 2003]							
	(a) $\frac{-1}{4}$	(b) $\frac{3}{2}$	(c) $\frac{-9}{8}$	(d) $\frac{9}{4}$							
11.	The maximum value of <i>xy</i>	subject to $x + y = 8$, is	0	[MNR 1995]							
	(a) 8	(b) 16	(c) 20	(d) 24							
12.	If $A + B = \frac{\pi}{2}$, the maximum	value of $\cos A \cos B$ is		[AMU 1999]							
	(a) $\frac{1}{2}$	(b) $\frac{3}{4}$	(c) 1	(d) $\frac{4}{3}$							
10	If $m = e^2$ then minimum t	r		[Dejectheon DET 2001]							
13.	If $xy = c^2$, then minimum v	$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$									
	(a) $c\sqrt{ab}$	(b) $2c\sqrt{ab}$	(c) $-c\sqrt{ab}$	(d) $-2c\sqrt{ab}$							
14.	If $a^2x^4 + b^2y^4 = c^6$, then maximum	ximum value of <i>xy</i> is		[Rajasthan PET 2001]							
	(a) $\frac{c^2}{\sqrt{ab}}$	(b) $\frac{c^3}{ab}$	(c) $\frac{c^3}{\sqrt{2ab}}$	(d) $\frac{c^3}{2ab}$							
15.	The function $f(x) = 2x^3 - 15$.	$x^2 + 36x + 4$ is maximum at		[Karnataka CET 2001]							
	(a) $x = 2$	(b) $x = 4$	(c) $x = 0$	(d) $x = 3$							
16.	The function $f(x) = x^{-x}, (x \in$	<i>R</i>) attains a maximum value	at <i>x</i> =								
	(a) 2	(b) 3	(c) $\frac{1}{e}$	(d) 1							
17.	The function $y = a(1 - \cos x)$	is maximum when $x =$		[Kerala (Engg.) 2002]							
	(a) <i>π</i>	(b) $\frac{\pi}{2}$	(c) $\frac{-\pi}{2}$	(d) $\frac{-\pi}{6}$							
18.	The minimum value of $\left(x^2\right)$	$\left(+\frac{250}{x}\right)$ is		[Haryana CEE 2002]							
	(a) 75	(b) 50	(c) 25	(d) 55							
19.	In the graph of the functio	n $\sqrt{3} \sin x + \cos x$ the maximum	n distance of a point from	x-axis is							
	(a) 4	(b) 2	(c) 1	(d) $\sqrt{3}$							
-----	------------------------------------	--	---	---							
20.	The function $f(x) =$	$x + \sin x$ has		[AMU 2000]							
	(a) A minimum bu minimum	t no maximum	(b)	A maximum but no							
	(c) Neither maxim minimum	ıum nor minimum	(d)	Both maximum and							
21.	The point for the c	urve $y = xe^{x}$									
	(a) $x = -1$ is minim	num (b) $x = 0$ is minim	num (c) $x = -1$ is maxim	num (d) $x = 0$ is maximum							
22.	36 is factorized int	two factors in such a way	that sum of factors is minimu	ım, then the factors are							
	(a) 2, 18	(b) 9, 4	(c) 3, 12	(d) None of these							
23.	The necessary con	dition to be maximum or mi	inimum for the function is								
	(a) $f'(x) = 0$ and it	is sufficient	(b)	f''(x) = 0 and it is sufficient							
	(c) $f'(x) = 0$ but it :	is not sufficient	(d)	f'(x) = 0 and $f''(x) = -ve$							
24.	The maximum and	minimum value of the func	tion $3x^4 - 8x^3 + 12x^2 - 48x + 25$	in the interval [1, 3]							
	(a) 16, - 39	(b) - 16, 39	(c) 6, - 9	(d) None of these							
25.	If $f(x) = 2x^3 - 3x^2 - 1$	$2x+5$ and $x \in [-2,4]$, then t	he maximum value of function	is at the following value of <i>x</i> [MP PET 1							
	(a) 2	(b) – 1	(c) - 2	(d) 4							
- 6	TT le		5								
26.	The minimum valu	e of $ x + x + \frac{1}{2} + x - 3 + x $	$ -\frac{1}{2} $ 1S								
	(a) O	(b) 2	(c) 4	(d) 6							
27.	The maximum valu	ue of the function $x^3 + x^2 + x$	-4 is								
	(a) 127		(b) 4								
	(c) Does not have	a maximum value	(d) None of these								
28.	The function $x^5 - 5$	$x^4 + 5x^3 - 10$ has a maximum	m when $x =$								
	(a) 3	(b) 2	(C) 1	(d) o							
29.	If $x - 2y = 4$, the matrix	inimum value of <i>xy</i> is		[UPSEAT 2003]							
	(a) – 2	(b) 2	(c) O	(d) - 3							
30.	The minimum valu	e of $x^{2} + \frac{1}{1+x^{2}}$ is at		[UPSEAT 2003]							
	(a) $x = 0$	(b) $x = 1$	(c) $x = 4$	(d) $x = 3$							
31.	The maximum and	minimum value of the func	stion $ \sin 4x + 3 $ are								
	(a) 1, 2	(b) 4, 2	(c) 2, 4	(d) - 1, 1							
32.	The maximum valu	ue of function $x^3 - 12x^2 + 36x^2$	x + 17 in the interval [1, 10] is								
	(a) 17	(b) 177	(c) 77	(d) None of these							
33.	Let $f(x) = (x - p)^2 + (x - p)^2$	$(x-q)^{2} + (x-r)^{2}$. Then $f(x)$ has	is a minimum at $x = \lambda$, where	λ is equal to							
	(a) $\frac{p+q+r}{3}$	(b) $3\sqrt{pqr}$	(c) $\frac{3}{\frac{1}{n} + \frac{1}{a} + \frac{1}{r}}$	(d) None of these							
34.	The function $x^2 \log x$	x in the interval (1, e) has	r 7								
	(a) A point of max	imum	(b) A point of mini	mum							
	(c) Points of maxi	mum as well as of minimun	n (d) Neither a point	of maximum nor minimum							
35.	The two parts of 10	00 for which the sum of dou	able of first and square of seco	nd part is minimum, are							
~	(a) 50, 50	(b) 99, 1	(c) 98, 2	(d) None of these							
36.	Of the given perim	eter, the triangle having ma	axımum area is								

			Арр	lication of Derivatives 213
	(a) Isosceles triangle	(b) Right angled triangle	(c) Equilateral	(d) None of these
37.	The function $x^5 - 5x^4 + 5x^3$	-1 is		
	(a) Maximum at $x = 3$ and	minimum at $x = 1$	(b) Minimum at $x = 1$	
	(c) Neither maximum nor	minimum at $x = 0$	(d) Maximum at $x = 0$	
38.	If $u = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} + \sqrt{a^2 \sin^2 \theta}$	$a^2 \sin^2 \theta + b^2 \cos^2 \theta$ then the difference of $a^2 \sin^2 \theta + b^2 \cos^2 \theta$	ifference between the max	imum and minimum values of
	<i>u</i> is given by			[AIEEE 2004]
	(a) $(a-b)^2$	(b) $2\sqrt{a^2+b^2}$	(c) $(a+b)^2$	(d) $2(a^2 + b^2)$
39.	The minimum value of $2x$ -	+ $3y$, when $xy = 6$, is		[MP PET 2003]
	(a) 12	(b) 9	(c) 8	(d) 6
40.	The real number <i>x</i> when a 2000; AIEEE 2003]	dded to its inverse gives the	minimum value of the sum	at x equal to [Rajasthan PET
	(a) – 2	(b) 2	(c) 1	(d) – 1
41.	$x + \frac{1}{x}$ is maximum at			[Rajasthan PET 1991]
	(a) $x = 1$	(b) $x = -1$	(c) $x = 2$	(d) $x = -2$
42.	$f(x) = (1-x)^2 e^x$ is minimum	at		
	(a) $x = 1$	(b) $x = -1$	(c) $x = 0$	(d) $x = 2$
43 .	The maximum value of the	function $x^3 - 12x^2 + 45x$ is		[Rajasthan PET 1994]
	(a) 0	(b) 50	(c) 54	(d) 70
		Advance	e Level	
44.	Let $f(x) = \begin{cases} x & , & 0 \leq x \leq 2 \\ 1 & , & x = 0 \end{cases}$,	then at $x = 0f$ has		[IIT Screening 2000]
	(a) A local maximum	(b) No local maximum	(c) A local minimum	(d) No extremum
45.	If $f(x) = \frac{x^2 - 1}{x^2 + 1}$, for every re	al number <i>x</i> , then the minim	um value of <i>f</i>	
	(a) Does not exist because	f is unbounded	(b) Is not attained even t	though f is bounded
	(c) Is equal to 1		(d) Is equal to -1	
46.	The number of values of <i>x</i>	where the function $f(x) = \cos x$	$x + \cos(\sqrt{2}x)$ attains its maxi	mum is
	(a) 0	(b) 1	(c) 2	(d) Infinite
47.	On the interval [0, 1] the f	unction $x^{25}(1-x)^{75}$ takes its n	naximum value at the point	[IIT 1995]
	(a) O	(b) $\frac{1}{2}$	(c) $\frac{1}{3}$	(d) $\frac{1}{4}$
48.	x ^x has a stationary point a	at		
	(a) $x = e$	(b) $x = \frac{1}{e}$	(c) $x = 1$	(d) $x = \sqrt{e}$
49.	A minimum value of $\int_0^x te^{-t^2}$	dt is		
	(a) 1	(b) 2	(c) 3	(d) 0
50.	The sum of two numbers is	s fixed. Then its multiplicatio	on is maximum, when	
	(a) Each number is half of	the sum	(b)	Each number is $\frac{1}{3}$ and $\frac{2}{3}$
	respectively of the sum			

	(c) Each number is $\frac{1}{4}$	- and $\frac{3}{4}$ respectively of the sum	(d) None of these	
51.	The value of <i>a</i> so that value, is	t the sum of the squares of the ro	ots of the equation $x^2 - (a-2)$	(2)x - a + 1 = 0 assume the least
	(a) 2	(b) 1	(c) 3	(d) 0
52.	If from a wire of leng	th 36 <i>metre</i> a rectangle of greates	t area is made, then its two	adjacent sides in <i>metre</i> are[MP P]
	(a) 6, 12	(b) 9, 9	(c) 10, 8	(d) 13, 5
53.	The maximum value of	of $x^4 e^{-x^2}$ is		
	(a) e^2	(b) e^{-2}	(c) $12e^{-2}$	(d) $4e^{-2}$
54.	One maximum point o 2000]	of $\sin^p x \cos^q x$ is		[Rajasthan PET 1997; AMU
	(a) $x = \tan^{-1} \sqrt{(p/q)}$	(b) $x = \tan^{-1} \sqrt{(q/p)}$	(c) $x = \tan^{-1}(p/q)$	(d) $x = \tan^{-1}(q/p)$
55.	20 is divided into tw	wo parts so that product of cub	e of one quantity and squa	are of the other quantity is
	maximum. The parts a	are		
	(a) 10, 10	(b) 16 4	(c) 8 12	[Rajastnan PET 1997]
-6	The minimum value of	$f_{a}(2x^{2}-2x+1)\sin^{2}x$ is	(0) 0, 12	[Porkes 1008]
50.				[K01Kee 1996]
	(a) <i>e</i>	(b) $\frac{-}{e}$	(C) 1	(d) o
57.	Divide 20 into two pa are [DCE 1999]	rts such that the product of one p	art and the cube of the other	r is maximum. The two parts
	(a) (10, 10)	(b) (5, 15)	(c) (13, 7)	(d) None of these
58.	The minimum value o	f $\exp(2 + \sqrt{3}\cos x + \sin x)$ is		[AMU 1999]
	(a) exp(2)	(b) $\exp(2-\sqrt{3})$	(c) exp(4)	(d) 1
59.	The minimum value o	f $\frac{\log x}{x}$ in the interval [2, ∞)		[Roorkee 1999]
	(a) Is $\frac{\log 2}{2}$	(b) Is zero	(c) Is $\frac{1}{e}$	(d) Does not exist
50.	The function $f(x) = ax$	$+\frac{b}{x}, a, b, x > 0$ takes on the least val	ue at <i>x</i> equal to	[AMU 2000]
	(a) <i>b</i>	(b) \sqrt{a}	(c) \sqrt{b}	(d) $\sqrt{b/a}$
51.	The area of a rectangl	le of given perimeter is maximum	, when ratio of its length and	d breadth is
	(a) 2: 1	(b) 3:2	(c) 4:3	(d) 1:1
52.	The denominator of a number is	a fraction number is greater than	16 of the square of numer	ator, then least value of the
				[Rajasthan PET 2000]
	(a) $\frac{-1}{4}$	(b) $\frac{-1}{8}$	(c) $\frac{1}{12}$	(d) $\frac{1}{16}$
63.	If for a function $f(x)$,	f'(a) = 0, $f''(a) = 0$, $f'''(a) > 0$, then at	x = a, f(x) is	[MP PET 1994]
-	(a) Minimum	(b) Maximum	(c) Not an extreme points	(d) Extreme point
64.	The least value of the	sum of any positive real number	and its reciprocal is	[MP PET 1994]
	(a) 1	(b) 2	(c) 3	(d) 4

65.	If <i>x</i> is real, then greatest a	and least values of $\frac{x^2 - x + 1}{x^2 + x + 1}$	are	[Rajasthan PET
	1999; AMU 1999; UPSEAT 20	002]		
	(a) 3, $-\frac{1}{2}$	(b) 3, $\frac{1}{3}$	(c) - 3, $-\frac{1}{3}$	(d) None of these
66.	A wire of constant length	is given. In which shape it sh	ould be bent to surround ma	ximum area
	(a) Circle	(b) Square	(c) Both (a) and (b)	(d) Neither (a) nor (b)
67.	The function $x\sqrt{1-x^2}$, $(x > 0)$	0) has		
	(a) A local maxima		(b) A local minima	
	(c) Neither a local maxim	a nor a local minima	(d) None of these	
68.	If $x + y = 16$ and $x^2 + y^2$ is	minimum, the value of x and	y are	
	(a) 3, 13	(b) 4, 12	(c) 6, 10	(d) 8, 8
69.	The area of a rectangle wi	ll be maximum for the given	perimeter. When rectangle i	s a
	(a) Parallelogram	(b) Trapezium	(c) Square	(d) None of these
7 0.	Local maximum value of t	he function $\frac{\log x}{x}$ is		
	[MNR 198	34; Rajasthan PET 1997, 2002; I	OCE 2002; Karnataka CET 2000); UPSEAT 2001; MP PET 2002]
	(a) e	(b) 1	(c) $\frac{1}{e}$	(d) 2e
71.	Local maximum and local	minimum values of the functi	ion $(x-1)(x+2)^2$ are	
	(a) - 4, 0	(b) 0, - 4	(c) 4,0	(d) None of these
72.	If $f(x) = 2x^3 - 21x^2 + 36 - 30$, then which one of the follow	ving is correct	
	(a) $f(x)$ has minimum at .	x = 1	(b)	f(x) has maximum at $x = 6$
	(c) $f(x)$ has maximum at	x = 1	(d) $f(x)$ has no maxima or	minima
73.	If sum of two numbers is :	3, then maximum value of the	product of first and the squ	are of second is
	(a) 4	(b) 3	(c) 2	(d) 1
74.	If $f(x) = x^2 + 2bx + 2c^2$ and	$g(x) = -x^2 - 2cx + b^2$ such that 1	min $f(x) > \max g(x)$, then the	relation between <i>b</i> and <i>c</i> is
		<u></u>	<u> </u>	[IIT Screening 2003]
	(a) No real value of <i>b</i> and	c(b) $0 < c < b\sqrt{2}$	(c) $ c < b \sqrt{2}$	(d) $ c > b \sqrt{2}$
75.	The minimum value of [(5	(x + x)(2 + x)]/[1 + x] for non-nega	tive real x is	
	(a) 12	(b) 1	(c) 9	(d) 8
76.	Let $f(x) = \int_0^x \frac{\cos t}{t} dt, x > 0$ th	en $f(x)$ has		[Haryana CEE 2002]
	(a) Maxima when $n = -2, -2$	4,-6	(b) Maxima $n = -1, -3, -5,$	
	(c) Minima when $n = 0, 2, 4$	·,	(d) Minima when $n = 1, 3, 5, 5$,
77.	The function $f(x) = 2x^3 - 3x$	$x^2 - 12x + 4$ has		[DCE 2002]
	(a) No maxima and minin minimum	ıa	(b)	One maximum and one
	(c) Two maxima		(d) Two minima	
78.	If $f(x) = \frac{1}{4x^2 + 2x + 1}$, then i	ts maximum value is		[Rajasthan PET 2002]
	(a) $\frac{4}{3}$	(b) $\frac{2}{3}$	(c) 1	(d) $\frac{3}{4}$

79. If *PQ* and *PR* are the two sides of a triangle, then the angle between them which gives maximum area of the triangle is

							[Kera	ala (I	Engg.) 20	002]
	(a) <i>π</i>	(b) $\frac{\pi}{3}$	(c)	$\frac{\pi}{4}$	(d)	$\frac{\pi}{2}$				
80.	If $ab = 2a + 3b, a > 0, b > 0$ the	nen the minimum value of <i>ab</i>	is				[Oris	sa JEE 20	002]
	(a) 12	(b) 24	(c)	$\frac{1}{4}$	(d)	No	one of	the	se	
81.	The perimeter of a sector	is <i>p</i> . The area of the sector is	s max	imum when its radius is			[Karı	natał	a CET 20	002]
	(a) \sqrt{p}	(b) $\frac{1}{\sqrt{p}}$	(c)	$\frac{p}{2}$	(d)	$\frac{p}{4}$				
82.	The maximum area of the	rectangle that can be inscrib	oed in	a circle of radius <i>r</i> is				[E4	MCET 1	994]
	(a) π^{r^2}	(b) <i>r</i> ²	(c)	$\frac{\pi r r^2}{4}$	(d)	$2r^2$	2			
83.	If $f(x) = \begin{cases} 3x^2 + 12x - 1 & , & -1 \\ 37 - x & , & 2 \end{cases}$	$x \le 2$, then $x \le 3$, then							[IIT 1;	993]
	(a) $f(x)$ is increasing [-1,	2] (b) $f(x)$ is continuous in [-	• 1, 3]	(c)	f(x)) is	maxi	imur	n at $x =$	2 (d)
84.	If $f'(x) = (x-a)^{2n}(x-b)^{2p+1}$ w	when <i>n</i> and <i>p</i> are positive inte	egers,	then						
	(a) $x = a$ is a point of mir maximum	nimum		(b)	<i>x</i> =	а	is	а	point	of
85.	(c) $x = a$ is not a point of N characters of information time is $\alpha + \beta x^2$ seconds, α	f maximum or minimum ion are held on magnetic tap and β are constants. The c	(d) pe, in optica) None of these batches of <i>x</i> characters l value of <i>x</i> for fast proc	s ead essii	ch, ng i	the t is	atch	proces	sing
	(a) $\frac{\alpha}{\beta}$	(b) $\frac{\beta}{\alpha}$	(c)	$\sqrt{\frac{\alpha}{\beta}}$	(d)	$\sqrt{\frac{\mu}{c}}$	$\frac{\beta}{\alpha}$			
86.	If $f(x) = \sin^6 x + \cos^6 x$, then									
	(a) $f(x) \le 1$	(b) $f(x) \le 2$	(c)	$f(x) > \frac{1}{4}$	(d)	f(x	$x) > \frac{1}{8}$			
87.	The maximum and minim	um values of $y = \frac{ax^2 + 2bx + c}{Ax^2 + 2Bx + c}$	- are	those for which						
	(a) $ax^2 + 2bx + c - y(Ax^2 + 2bx)$	Bx + C) is equal to zero	(b)) $ax^2 + 2bx + c - y(Ax^2 + 2Bx)$	c + C) is	a pe	rfect	square	
	(c) $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} \neq 0$		(d)) None of these						
88.	A differentiable function	f(x) has a relative minimum	n at <i>x</i>	x = 0, then the function	y = f	`(x)-	+ax + a	b ha	is a rela	tive
89.	minimum at $x = 0$ for (a) All <i>a</i> and all <i>b</i> An isosceles triangle of maximum when θ	(b) All <i>b</i> if $a = 0$ vertical angle 2θ is inscribe	(c) ed in	All $b > 0$ a circle of radius a . T	(d) 'hen	All ar	a > 0 ea of) E the	triangl	e is
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{4}$	(c)	$\frac{\pi}{3}$	(d)	$\frac{\pi}{2}$				
90.	The greatest value of the	function $f(x) = \frac{\sin 2x}{\sin\left(x + \frac{\pi}{4}\right)}$ on t	he in	terval $\left[0,\frac{\pi}{2}\right]$ is						
	(a) $\frac{1}{\sqrt{2}}$	(b) $\sqrt{2}$	(c)	1	(d)	- \	$\sqrt{2}$			
91.	The longest distance of th	e point (a, 0) from the curve	$2x^{2} +$	$-y^2 - 2x = 0$, is given by						

(a)
$$\sqrt{1-2a+a^2}$$
 (b) $\sqrt{1+2a+2a^2}$ (c) $\sqrt{1+2a-a^2}$ (d) $\sqrt{1-2a+2a^2}$

				• The function $f(x) = \int_{1}^{x} \{2(t-1)(t-2)^3 + 3(t-1)^2(t-2)^2 dt \text{ attains its maximum at } x =$							
	(a) 1	(b) 2	(c) 3	(d) 4							
93.	If the function $f(x) = x^3 + 3(x)$	$(a-7)x^2 + 3(a^2-9)x - 1$ has a pos	itive point of maximum, the	n							
	(a) $a \in (3,\infty) \cup (-\infty, -3)$	(b) $a \in (-\infty, -3) \cup \left(3, \frac{29}{7}\right)$	(c) (-∞,7)	(d) $\left(-\infty,\frac{29}{7}\right)$							
94.	The minimum value of $\left(1 + \frac{1}{2}\right)$	$\frac{1}{\sin^n \alpha} \left(1 + \frac{1}{\cos^n \alpha} \right)$ is									
	(a) 1	(b) 2	(c) $(1+2^{n/2})^2$	(d) None of these							
95.	A cubic $f(x)$ vanishes a	t $x = -2$ and has relative	minimum/maximum at x	$=-1$ and $x=\frac{1}{3}$ such that							
	$\int_{-1}^{1} f(x) dx = \frac{14}{3}$. Then $f(x)$ is										
	(a) $x^3 + x^2 - x$	(b) $x^3 + x^2 - x + 1$	(c) $x^3 + x^2 - x + 2$	(d) $x^3 + x^2 - x - 2$							
96.	If $A > 0, B > 0$ and $A + B = \frac{\pi}{3}$, then the maximum value of	tan A tan B is								
	· · · 1	a) ¹									
	(a) $\frac{1}{\sqrt{3}}$	(b) $\frac{1}{3}$	(c) 3	(a) $\sqrt{3}$							
9 7.	Total number of parallel ta	angents of $f_1(x) = x^2 - x + 1$ and	$1 x^{3} - x^{2} - 2x + 1$ is equal to								
	(a) 2	(b) 3	(c) 4	(d) None of these							
98.	Function $f(x) = px - q +r x$	(p > 0, q > 0, r > 0) attains its m	inimum value only at one p	oint, if							
00	(a) $p \neq q$ The height of right circular	(b) $q \neq r$	(c) $r \neq p$	(d) $p = q = r$							
99.	a^{a}		$\frac{2a}{a}$								
	(a) $\frac{1}{\sqrt{3}}$	$(0) \sqrt{3a}$	(c) $\frac{1}{\sqrt{3}}$	(d) $2\sqrt{3a}$							
100.	A line is drawn through a	fixed point (<i>a</i> , <i>b</i>), $(a > 0, b > 0)$	to meet the positive direct	ion of the coordinate axes in							
	<i>P,Q</i> respectively. The minit	mum value of $OP + OQ$ is									
	(a) $\sqrt{a} + \sqrt{b}$	(b) $(\sqrt{a} + \sqrt{b})^2$	(c) $(\sqrt{a} + \sqrt{b})^3$	(d) None of these							
101.	For the curve $\frac{C^4}{r^2} = \frac{a^2}{\sin^2 \theta} +$	$\frac{b^2}{\cos^2 \theta}$, the maximum value of	<i>r</i> is								
	(a) $\frac{c^2}{a+b}$	(b) $\frac{a+b}{c^2}$	(c) $\frac{c^2}{a-b}$	(d) $c^2(a+b)$							
102.	The coordinates of a point	situated on the curve $4x^2 + a^2$	$dy^2 = 4a^2(4 < a^2 < 8)$, which ar	e at maximum distance from							
	the point $(0, -2)$ is	(b) $(2\pi, 4)$		(d) None of these							
	(d) (d, 0)	(0) (2a, -4)	(c) (0, 2)	(d) None of these							
103.	For what value of <i>k</i> , the fu	nction: $f(x) = kx^2 + \frac{2k^2 - 81}{2}x - 1$	2, is maximum at $x = \frac{9}{4}$								
	(a) $\frac{9}{2}$	(b) -9	(c) $\frac{-9}{2}$	(d) 9							
104.	If $\alpha < \beta$, then correct state	ement is									
	(a) $\alpha - \sin \alpha > \beta - \sin \beta$	(b) $\alpha - \sin \alpha < \beta - \sin \beta$	(c) $\sin \alpha - \alpha < -\sin \beta + \beta$	(d) None of these							
105.	The difference between tw	o numbers is a if their produc	ct is minimum, then number	are							
	(a) $\frac{-a}{2}, \frac{a}{2}$	(b) <i>-a</i> , 2 <i>a</i>	(c) $\frac{-a}{3}, \frac{2a}{3}$	(d) $\frac{-a}{3}, \frac{4a}{3}$							

106. If λ, μ be real numbers such that $x^3 - \lambda x^2 + \mu x - 6 = 0$ has its roots real and positive then the minimum value of μ is (a) $3 \times \sqrt[3]{36}$ (b) 11 (c) 0 (d) None of these **107.** Let the tangent to the graph of y = f(x) at the point x = a be parallel to the x-axis, let f'(a-h) > 0 and f'(a+h) < 0, where *h* is a very small positive number. Then the ordinate of the point is (a) A maximum (b) A minimum (c) Both a maximum and a minimum (d) Neither a maximum nor a minimum **108.** If a > b > 0, the minimum value of $a \sec \theta - b \tan \theta$ is (b) $\sqrt{a^2 + b^2}$ (c) $\sqrt{a^2 - b^2}$ (d) $2\sqrt{a^2-b^2}$ (a) b-a**109.** Let the function f(x) be defined as below: $f(x) = \sin^{-1} \lambda + x^2, 0 < x < 1; 2x, x \ge 1$ f(x) can have a minimum at x = 1 if the value of λ is (a) 1 (b) - 1(c) 0 (d) None of these **110.** Let $f(x) = ax^3 + bx^2 + cx + 1$ have extreme at $x = \alpha, \beta$ such that $\alpha\beta < 0$ and $f(\alpha).f(\beta) < 0$. Then the equation f(x) = 0has (a) Three equal real roots (b) Three distinct real roots (c) One positive root if $f(\alpha) < 0$ and $f(\beta) > 0$ (d) One negative root if $f(\alpha) > 0$ and $f(\beta) < 0$ **111.** Let $f(x) = 1 + 2x^2 + 2^2x^4 + \dots + 2^{10}x^{20}$; Then f(x) has (a) More than one minimum (b) Exactly one minimum (c) At least one maximum(d) **112.** Let the function f(x) be defined as follows: $f(x) = x^3 + x^2 - 10x, \quad -1 \le x < 0$ $\cos x, \ 0 \le x < \frac{\pi}{2}; \ 1 + \sin x, \ \frac{\pi}{2} \le x \le \pi$ Then f(x) has (a) A local minimum at $x = \frac{\pi}{2}$ A local maximum at $x = \frac{\pi}{2}$ (b) An absolute maximum at (c) An absolute minimum at x = -1(d) $x = \pi$ **113.** Two part of 64 such that the sum of their cubes is minimum will be (b) 16, 48 (a) 44, 20 (c) 32, 32 (d) 50, 14 **114.** If *x* be real then the minimum value of $f(x) = 3^{x+1} + 3^{-(x+1)}$ is (c) $\frac{2}{3}$ (d) $\frac{7}{2}$ (a) 2 (b) 6 **115.** The minimum value of $e^{(2x^2-2x-1)\sin^2 x}$ is [Roorkee 1998] (b) $\frac{1}{a}$ (a) e (c) 1 (d) 0 **116.** The semi-vertical angle of a right circular cone of given slant height and maximum volume is (a) $\tan^{-1} 2$ (b) $\tan^{-1}\sqrt{2}$ (c) $\tan^{-1} 1/2$ (d) $\tan^{-1} 1/\sqrt{2}$ **117.** If 0 < a < x, then the minimum value of $\log_a x + \log_a a$ is [IIT 1984] (b) - 2 (a) 2 (c) 2a (d) Does not exist **118.** Which point of the parabola $y = x^2$ is nearest to the point (3, 0) (a) (-1, 1) (b) (1, 1) (c) (2, 4) (d) (-2,4) **119.** The point of inflexion for the curve $y = x^{5/2}$ is [Rajasthan PET 1989, 1992]

			Application of Derivatives 219
(a) (1, 1)	(b) (0, 0)	(c) (1, 0)	(d) (0, 1)

Answer Sheet

$\left(\right)$	Assignment (Basic & Advance Level)																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
с	a	d	с	a	d	a	b	с	с	b	a	b	с	a	с	a	a	b	с
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
a	d	с	a	d	d	с	с	a	a	b	b	a	d	b	с	С	a	a	С
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	a	с	a	d	b	d	b	d	a	b	b	d	a	d	с	b	d	d	d
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
d	b	с	b	b	a	a	d	с	с	b	с	a	d	С	a,d	b	a	d	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
d	d	d	С	с	a,c	b,c	b	a	с	d	a	b	С	С	b	d	d	с	b
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	
a	с	b	b	a	a	a	с	d	b,c	b	b	С	a	с	b	d	b	b	

4.4 Increasing and Decreasing Function

4.4.1 Definition

(1) **Strictly increasing function :** A function f(x) is said to be a strictly increasing function on (a, b), if $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$ for all x_1 , $x_2 \in (a, b)$.

Thus, f(x) is strictly increasing on (*a*, *b*), if the values of f(x) increase with the increase in the values of *x*.

(2)**Strictly decreasing function :** A function f(x) is said to be a strictly decreasing function on (a,b), if $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$ for all

 $x_1, x_2 \in (a, b)$. Thus, f(x) is strictly decreasing on (a, b), if the values of f(x) decrease with the increase in the values of x.

Example: 1 On the interval (1,3) the function
$$f(x) = 3x + \frac{2}{x}$$
 is [AMU 1999]
(a) Strictly decreasing (b) Strictly increasing
(c) Decreasing in (2, 3) only (d) Neither increasing nor
decreasing
Solution: (b) $f(x) = 3x + \frac{2}{x} \Rightarrow f'(x) = 3 - \frac{2}{x^2}$
Clearly $f'(x) > 0$ on the interval (1, 3)
 $\therefore f(x)$ is strictly increasing.

Example: 2 For which value of *x*, the function $f(x) = x^2 - 2x$ is decreasing

(a) x > 1 (b) x > 2(c) x < 1 (d) x < 2

Solution: (c) $f(x) = (x-1)^2 - 1$ Hence decreasing in x < 1

Alternative method: f'(x) = 2x - 2 = 2(x - 1)To be decreasing, $2(x-1) < 0 \implies (x-1) < 0 \implies x < 1$. $2x^{3} + 18x^{2} - 96x + 45 = 0$ is an increasing function when Example: 3 (b) $x < -2, x \ge 8$ (c) $x \le -2, x \ge 8$ (a) $x \le -8, x \ge 2$ (d) $0 < x \le -2$ $f'(x) = 6x^2 + 36x - 96 > 0$, for increasing Solution: (a) $\Rightarrow f'(x) = 6(x+8)(x-2) \ge 0 \Rightarrow x \ge 2, x \le -8.$ Example: 4 The function x^x is increasing, when [MP PET 2003] (a) $x > \frac{1}{a}$ (b) $x < \frac{1}{a}$ (c) x < 0(d) For all real x **Solution:** (a) Let $y = x^x \Rightarrow \frac{dy}{dx} = x^x(1 + \log x)$; For $\frac{dy}{dx} > 0$ $x^{x}(1 + \log x) > 0 \implies 1 + \log x > 0 \implies \log_{e} x > \log_{e} \frac{1}{e}$ For this to be positive, x should be greater than $\frac{1}{a}$.

4.4.2 Monotonic Function

A function f(x) is said to be monotonic on an interval (a, b) if it is either increasing or decreasing on (a, b).

(1) **Monotonic increasing function :** A function is said to be a monotonic increasing function in defined interval if, u

 $x_1 > x_2 \implies f(x_1) \ge f(x_2)$ or $x_1 > x_2 \Longrightarrow f(x_1) \le f(x_2)$ or $x_1 < x_2 \Longrightarrow f(x_1) \le f(x_2)$ or $x_1 < x_2 \Longrightarrow f(x_1) \le f(x_2)$

(2) **Monotonic decreasing function:** A function is said to be a monotonic decreasing function in defined interval, if $x_1 > x_2 \Rightarrow f(x_1)$ *y y*

Example: 5 The function $f(x) = \cos x - 2px$ is monotonically decreasing for

[MP PET 2002]

(a)
$$p < \frac{1}{2}$$
 (b) $p > \frac{1}{2}$ (c) $p < 2$ (d) $p > 2$
Solution: (b) $f(x)$ will be monotonically decreasing, if $f'(x) < 0$.
 $\Rightarrow f'(x) = -\sin x - 2p < 0 \Rightarrow \frac{1}{2}\sin x + p > 0 \Rightarrow p > \frac{1}{2}$ [: $-1 \le \sin x \le 1$]
Example: 6 If $f(x) = x^5 - 20x^3 + 240x$, then $f(x)$ satisfies which of the following [Kurukshetra CEE 1996]
(a) It is monotonically decreasing everywhere (b) It is monotonically decreasing only in $(0,\infty)$
(c) It is monotonically increasing everywhere (d) It is monotonically increasing only in $(-\infty, 0)$
Solution: (c) $f'(x) = 5x^4 - 60x^2 + 240 = 5(x^4 - 12x^2 + 48) = 5[(x^2 - 6)^2 + 12]$
 $\Rightarrow f'(x) > 0 \lor x \in R$
i.e., $f(x)$ is monotonically increasing everywhere.
Example: 7 The value of a for which the function $(a + 2)x^3 - 3ax^2 + 9ax - 1$ decrease monotonically throughout for all real x, are
[Kurukshetra CEE 2002]
(a) $a < -2$ (b) $a > -2$ (c) $-3 < a < 0$ (d) $-\infty < a \le -3$
Solution: (d) If $f(x) = (a + 2)x^3 - 3ax^2 + 9ax - 1$ decreases monotonically throughout for all $x \in R$
 $\Rightarrow 3(a + 2)x^2 - 6ax + 9a \le 0$ for all $x \in R \Rightarrow (a + 2)x^2 - 2ax + 3a \le 0$ for all $x \in R$
 $\Rightarrow a + 2 < 0$ and discriminant ≤ 0 $\Rightarrow a < -2$ and $-8a^2 - 24a \le 0$
 $\Rightarrow a < -2$ and $a(a + 3) \ge 0 \Rightarrow a < -2$ and $a \le -3 \Rightarrow -\infty < a \le -3$
Example: 8 Function $f(x) = \frac{\lambda \sin x + 6 \cos x}{2 \sin x + 3 \cos x}$ is monotonic increasing if
(a) $\lambda > 1$ (b) $\lambda < 1$ (c) $\lambda < 4$ (d) $\lambda > 4$
Solution: (d) The function is monotonic increasing if, $f(x) > 0$
 $\Rightarrow \frac{(2\sin x + 3\cos x)^2}{(2\sin x + 3\cos x)^2} - \frac{(4\sin x + 6\cos x)(2\cos x - 3 \sin x)}{(2\sin x + 3\cos x)^2} > 0$
 $\Rightarrow 3\lambda(\sin^2 x + \cos^2 x) - 12(\sin^2 x + \cos^2 x) > 0 \Rightarrow 3\lambda - 12 > 0 \Rightarrow \lambda > 4$.

4.4.3 Necessary and Sufficient Condition for Monotonic Function

In this section we intend to see how we can use derivative of a function to determine where it is increasing and where it is decreasing

(1) **Necessary condition :** From figure we observe that if f(x) is an increasing function on (*a*,

b), then tangent at every point on the curve y = f(x) makes an acute angle θ with the positive direction of *x*-axis.

$$\therefore \quad \tan \theta > 0 \Rightarrow \frac{dy}{dx} > 0 \text{ or } f'(x) > 0 \quad \text{for all}$$

 $x \in (a, b)$

It is evident from figure that if f(x) is a

decreasing function on (*a*, *b*), then tangent at every point on the curve y = f(x) makes an obtuse angle θ with the positive direction of *x*-axis.

$$\therefore \quad \tan \theta < 0 \Rightarrow \frac{dy}{dx} < 0 \text{ or } f'(x) < 0 \text{ for all } x \in (a, b).$$

Thus, f'(x) > 0 < 0 for all $x \in (a, b)$ is the necessary condition for a function f(x) to be increasing (decreasing) on a given interval (a, b). In other words, if it is given that f(x) is increasing (decreasing) on (a, b), then we can say that f'(x) > 0 < 0.

(2) **Sufficient condition : Theorem :** Let *f* be a differentiable real function defined on an open interval (*a*, *b*).

(a) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b).

(b) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b).

Corollary : Let f(x) be a function defined on (a, b).

(a) If f'(x) > 0 for all $x \in (a, b)$, except for a finite number of points, where f'(x) = 0, then f(x) is increasing on (a, b).

(b) If f'(x) < 0 for all $x \in (a, b)$, except for a finite number of points, where f'(x) = 0, then f(x) is decreasing on (a, b).

Example: 9 The function
$$f(x) = \frac{\ln(\pi + x)}{\ln(e + x)}$$
 is
(a) Increasing on $[0, \infty)$ (b) Decreasing on $[0, \infty)$
(c) Decreasing on $\left[0, \frac{\pi}{e}\right]$ and increasing on $\left[\frac{\pi}{e}, \infty\right]$ (d) Increasing on $\left[0, \frac{\pi}{e}\right]$ and
decreasing on $\left[\frac{\pi}{e}, \infty\right]$
Solution: (b) Let $f(x) = \frac{\ln(\pi + x)}{\ln(e + x)}$
 $\therefore f'(x) = \frac{\ln(e + x) \times \frac{1}{\pi + x} - \ln(\pi + x) \frac{1}{e + x}}{(\ln(e + x))^2} = \frac{(e + x)\ln(e + x) - (\pi + x)\ln(\pi + x)}{(\ln(e + x))^2 \times (e + x)(\pi + x)}$
 $\Rightarrow f'(x) < 0$ for all $x \ge 0$ {:: $\pi > e$ }. Hence, $f(x)$ is decreasing in $[0, \infty)$.
Example: 10 Which of the following is not a decreasing function on the interval $\left(0, \frac{\pi}{2}\right)$
(a) $\cos x$ (b) $\cos 2x$ (c) $\cos 3x$ (d) $\cot x$
Solution: (c) Obviously, here $\cos 3x$ in not decreasing in $\left(0, \frac{\pi}{2}\right)$ because $\frac{d}{dx} \cos 3x = -3 \sin 3x$.
But at $x = 75^{\circ}$, $-3 \sin 3x > 0$. Hence the result.
Example: 11 The interval of increase of the function $f(x) = x - e^x + \tan\left(\frac{2\pi}{7}\right)$ is
(a) $(0, \infty)$ (b) $(-\infty, 0)$ (c) $(1, \infty)$ (d) $(-\infty, -1)$

[IIT Screening 2001]

Solution: (b, d) We have $f(x) = x - e^x + \tan\left(\frac{2\pi}{7}\right) \Rightarrow f'(x) = 1 - e^x$

For f(x) to be increasing, we must have $f'(x) > 0 \Rightarrow 1 - e^x > 0 \Rightarrow e^x < 1 \Rightarrow x < 0 \Rightarrow x \in (-\infty, 0) \Rightarrow (-\infty, -1) \subseteq (-\infty, 0)$

4.4.4 Test for Monotonicity

(1) At a point : (i) Function f(x) will be monotonic increasing in domain at a point if and only if, f'(a) > 0

(ii) Function f(x) will be monotonic decreasing in domain at a point if and only if, f'(a) < 0.

(2) In an interval : Function *f* (*x*), defined in [*a*, *b*] is

(i) Monotonic increasing in (a, b) if, $f'(x) \ge 0$, a < x < b

(ii) Monotonic increasing in [a, b] if, $f'(x) \ge 0$, $a \le x \le b$

(iii) Strictly increasing in [a, b], if, f'(x) > 0, $a \le x \le b$

(iv) Monotonic decreasing in (a, b), if, $f'(x) \le 0$, a < x < b

(v) Monotonic decreasing in [a, b], if, $f'(x) \le 0$, $a \le x \le b$

(vi) Strictly decreasing in [a, b], if, f'(x) < 0, $a \le x \le b$

Example: 12 $f(x) = xe^{x(1-x)}$ then f(x) is

(a) Increasing on $\left[\frac{-1}{2}, 1\right]$ (b) Decreasing on R (c) Increasing on R (d) Decreasing on $\left[\frac{-1}{2}, 1\right]$

Solution: (a) $f'(x) = e^{x(1-x)} + x \cdot e^{x(1-x)} \cdot (1-2x) = e^{x(1-x)} \{1 + x(1-2x)\} = e^{x(1-x)} \cdot (-2x^2 + x + 1)$

Now by the sign-scheme for $-2x^2 + x + 1$

_		+	_
			<u> </u>
- 1	/2		1

 $f'(x) \ge 0$, if $x \in \left[-\frac{1}{2}, 1\right]$, because $e^{x(1-x)}$ is always positive. So, f(x) is increasing on $\left[-\frac{1}{2}, 1\right]$.

Example: 13 *x* tends 0 to π then the given function $f(x) = x \sin x + \cos^2 x$ is

(a) Increasing(b) Decreasing(c) Neither increasing nor decreasing(d) None of these

Solution: (b) $f(x) = x \sin x + \cos^2 x$

 $\therefore f'(x) = \sin x + x \cos x - \sin x - 2 \cos x \sin x = \cos x (x - 2 \sin x)$

Hence $x \to 0$ to π , then $f'(x) \le 0$, *i.e.*, f(x) is decreasing function.

4.4.5 Properties of Monotonic Function

(1) If f(x) is strictly increasing function on an interval [*a*, *b*], then f^{-1} exists and it is also a strictly increasing function.

(2) If f(x) is strictly increasing function on an interval [*a*, *b*] such that it is continuous, then f^{-1} is continuous on [f(a), f(b)]

(3) If f(x) is continuous on [a, b] such that $f'(c) \ge 0(f'(c) > 0)$ for each $c \in (a,b)$, then f(x) is monotonically (strictly) increasing function on [a, b].

(4) If f(x) is continuous on [a, b] such that $f'(c) \le 0(f'(c) < 0)$ for each $c \in (a,b)$, then f(x) is monotonically (strictly) decreasing function on [a, b]

(5) If f(x) and g(x) are monotonically (or strictly) increasing (or decreasing) functions on [*a*, *b*], then gof(x) is a monotonically (or strictly) increasing function on [*a*, *b*]

(6) If one of the two functions f(x) and g(x) is strictly (or monotonically) increasing and other a strictly (monotonically) decreasing, then gof(x) is strictly (monotonically) decreasing on [a, b].

Example: 14 The interval in which the function $x^2 e^{-x}$ is non decreasing, is

(a) $(-\infty, 2]$ (b) [0, 2] (c) $[2, \infty)$ (d) None of these

Solution: (b) Let $f(x) = x^2 e^{-x}$

$$\Rightarrow \frac{dy}{dx} = 2xe^{-x} - x^2e^{-x} = e^{-x}(2x - x^2)$$

Hence $f'(x) \ge 0$ for every $x \in [0, 2]$, therefore it is non-decreasing in [0, 2].

Example: 15 The function $\sin^4 x + \cos^4 x$ increase if

(a)
$$0 < x < \frac{\pi}{8}$$
 (b) $\frac{\pi}{4} < x < \frac{3\pi}{8}$ (c) $\frac{3\pi}{8} < x < \frac{5\pi}{8}$ (d) $\frac{5\pi}{8} < x < \frac{3\pi}{4}$

Solution: (b) $f(x) = \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x$

$$= 1 - \frac{4\sin^2 x \cos^2 x}{2} = 1 - \frac{\sin^2 2x}{2} = 1 - \frac{1}{4}(2\sin^2 2x)$$
$$= 1 - \left(\frac{1 - \cos 4x}{4}\right) = \frac{3}{4} + \frac{1}{4}\cos 4x$$

Hence function f(x) is increasing when f'(x) > 0

$$f'(x) = -\sin 4x > 0 \implies \sin 4x < 0$$

Hence $\pi < 4x < \frac{3\pi}{2}$ or $\frac{\pi}{4} < x < \frac{3\pi}{8}$.

[IIT 1999]

Increasing and Decreasing Function

Basic Level

The function $x + \frac{1}{x}$ ($x \neq 0$) is a non-increasing function in the interval 1. (a) [- 1, 1] (b) [0, 1] (c) [-1,0] (d) [-1, 2] The interval for which the given function $f(x) = 2x^3 - 3x^2 - 36x + 7$ is decreasing, is 2. (a) (- 2, 3) (b) (2, 3) (c) (2, -3) (d) None of these If $f(x) = \sin x - \frac{x}{2}$ is increasing function, then [MP PET 1987] 3. (b) $-\frac{\pi}{3} < x < 0$ (c) $-\frac{\pi}{3} < x < \frac{\pi}{3}$ (d) $x = \frac{\pi}{2}$ (a) $0 < x < \frac{\pi}{3}$ 4. If the function $f: R \to R$ be defined by $f(x) = \tan x - x$, then f(x)(c) Remains constant (d) Becomes zero (a) Increases (b) Decreases

5۰	$2x^3 - 6x + 5$ is an increas	ing function if		[UPSEAT 2003]
	(a) $0 < x < 1$	(b) $-1 < x < 1$	(c) $x < -1$ or $x > 1$	(d) $-1 < x < -1/2$
6.	The function $f(x) = 1 - x^3$	$-x^5$ is decreasing for		[Kerala (Engg.) 2002]
	(a) $1 \le x \le 5$	(b) $x \le 1$	(c) $x \ge 1$	(d) All values of <i>x</i>
7.	For which interval, the g	given function $f(x) = -2x^3 - 9x^2$.	-12x+1 is decreasing	[MP PET 1993]
	(a) (−2,∞)	(b) (-2,-1)	(C) (−∞,−1)	(d) $(-\infty, -2)$ and $(-1, \infty)$
8.	The function $f(x) = \tan x$ –	- x		[MNR 1995]
	(a) Always increases		(b) Always decreases	
	(c) Never decreases		(d) Sometimes increases	and sometimes decreases
9.	If $f(x) = kx^3 - 9x^2 + 9x + 3$ Kurukshetra CEE 2002]	is monotonically increasing	in each interval, then	[Rajasthan PET 1992;
	(a) $k < 3$	(b) $k \le 3$	(c) $k > 3$	(d) None of these
10.	The least value of <i>k</i> for v	which the function $x^2 + kx + 1$ is	s an increasing function in th	ne interval $1 < x < 2$ is
	(a) - 4	(b) - 3	(C) - 1	(d) - 2
11.	The function $f(x) = x + \cos \theta$	sx is		
	(a) Always increasing		(b) Always decreasing	
	(c) Increasing for certai	in range of x	(d)	None of these
12.	The function $f(x) = x^2$ is	increasing in the interval		
	(a) (-1,1)	(b) $(-\infty,\infty)$	(C) (0,∞)	(d) (-∞,0)
13.	Function $f(x) = x^4 - \frac{x^3}{3}$ is	3		
	(a) Increasing for $x > \frac{1}{4}$	and decreasing for $x < \frac{1}{4}$	(b) Increasing for every v	value of <i>x</i>
	(c) Decreasing for every	v value of x	(d)	None of these
14.	The function $y = 2x^3 - 9x$ PET 1994; Rajasthan PET	² +12 <i>x</i> -6 is monotonic decrea 1996]	sing when	[MP
	(a) $1 < x < 2$	(b) $x > 2$	(c) <i>x</i> < 1	(d) None of these
15.	The interval in which th	e $x^2 e^{-x}$ is non-decreasing, is		
	(a) (-∞,2]	(b) [0, 2]	(c) [2,∞)	(d) None of these
16.	The function $\frac{1}{1+x^2}$ is defined as	ecreasing in the interval		
	(a) (-∞,-1]	(b) (−∞,0]	(C) [1,∞)	(d) (0,∞)
17.	The function $\sin x - bx + c$	will be increasing in the inter	rval (−∞,∞) if	
	(a) <i>b</i> ≤1	(b) $b \le 0$	(c) <i>b</i> < -1	(d) $b \ge 0$
18.	In the interval [0, 1], the	e function $x^2 - x + 1$ is		
	(a) Increasing		(b) Decreasing	

(c) Neither increasing nor decreasing (d) None of these $f(x) = x^3 - 27x + 5$ is an increasing function, when 19. [MP PET 1995] (a) x < -3(b) |x| > 3(c) $x \le -3$ (d) |x| < 3For the every value of x the function $f(x) = \frac{1}{5^x}$ is 20. (a) Decreasing (b) Increasing (c) Neither increasing nor decreasing (d) Increasing for x > 0 and decreasing for x < 0In which interval is the given function $f(x) = 2x^3 - 15x^2 + 36x + 1$ is monotonically decreasing 21. (a) [2, 3] (b) (2, 3) (c) (-∞,2) (d) (3,∞) The interval of the decreasing function $f(x) = x^3 - x^2 - x - 4$ is 22. (a) $\left(\frac{1}{3}, 1\right)$ (b) $\left(-\frac{1}{3},1\right)$ (c) $\left(-\frac{1}{3},\frac{1}{3}\right)$ (d) $\left(-1, -\frac{1}{3}\right)$ Let $f(x) = x^3 + bx^2 + cx + d, 0 < b^2 < c$. Then f 23. [IIT JEE Screening 2004] (b) Has a local maxima (a) Is bounded (c) Has a local minima (d) Is strictly increasing The function $f(x) = x^3 - 3x^2 - 24x + 5$ is an increasing function in the interval given below 24. (c) (-2,4) (a) $(-\infty, -2) \cup (4, \infty)$ (b) (−2,∞) (d) (-∞,4) Which one is the correct statement about the function $f(x) = \sin 2x$ 25. (a) f(x) is increasing in $\left(0, \frac{\pi}{2}\right)$ and decreasing in $\left(\frac{\pi}{2}, \pi\right)$ (b) f(x) is decreasing in $\left(0, \frac{\pi}{2}\right)$ and increasing in $\left(\frac{\pi}{2}, \pi\right)$ (c) f(x) is increasing in $\left(0, \frac{\pi}{4}\right)$ and decreasing in $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ (d) The statement (a), (b) and (c) are all correct If $f(x) = x^3 - 10x^2 + 200x - 10$, then 26. [Kurukshetra CEE 1998] (a) f(x) is decreasing in $\left[-\infty, 10\right]$ and increasing in $\left[10, \infty\right]$ (b) f(x) is increasing in $\left[-\infty, 10\right]$ and decreasing in [10,∞[(c) f(x) is increasing throughout real line (d) f(x) is decreasing throughout real line If *f* is a strictly increasing function, then $\lim_{x\to 0} \frac{f(x^2) - f(x)}{f(x) - f(0)}$ is equal to 27. (a) 0 (b) 1 (c) - 1 (d) 2 Function $x^3 - 6x^2 + 9x + 1$ is monotonic decreasing when 28. [Rajasthan PET 1991] (a) 1 < x < 3(c) *x* > 1 (b) x < 3(d) x > 3 or x < 1The function $f(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 - 6x + 8$ is decreasing in the interval 29. (b) x > 2(c) -3 < x < 2(a) x < -3(d) None of these

30.	The function $f(x) = 2\log(x - x)$	2) – x^2 + 4 x + 1 increases in the	interval	
	(a) (1, 2)	(b) (2, 3)	(C) (−∞,−1)	(d) (2, 4)
31.	The function $f(x) = \frac{ x }{x} (x \neq x)$	0), $x > 0$ is		
	(a) Monotonically decreas	sing (b)	Monotonically increasing	(c) Constant function (d)
32.	In the following decreasin	g function is		
	(a) ln <i>x</i>	(b) $\frac{1}{ x }$	(c) $e^{1/x}$	(d) None of these
33.	If $f(x) = kx - \sin x$ is monoto	onically increasing, then		
	(a) <i>k</i> > 1	(b) $k > -1$	(c) <i>k</i> < 1	(d) $k < -1$
		Advance L	evel	
34.	The function <i>f</i> defined by	$f(x) = (x+2)e^{-x}$ is		[IIT Screening 1994]
	(a) Decreasing for all <i>x</i>		(b) Decreasing in $(-\infty, -1)$	and increasing in $(-1,\infty)$
	(c) Increasing for all <i>x</i>		(d) Decreasing in $(-1,\infty)$ a	and increasing in $(-\infty, -1)$
35.	The value of <i>a</i> in order th	at $f(x) = \sqrt{3} \sin x - \cos x - 2ax + \frac{1}{2}$	b decreases for all real val	ues of x, is given by
	(a) <i>a</i> < 1	(b) <i>a</i> ≥1	(c) $a \ge \sqrt{2}$	(d) $a < \sqrt{2}$
36.	The interval in which the	function x^3 increases less rap	bidly then $6x^2 + 15x + 5$, is	
	(a) (−∞,−1)	(b) (-5,1)	(c) (-1,5)	(d) (5,∞)
37.	Let $f(x) = \int e^{x} (x-1)(x-2) dx$. Then f decreases in the inter	val	
	(a) (−∞,−2)	(b) (-2,-1)	(C) (1, 2)	(d) $(2, +\infty)$
38.	If $f(x) = 2x + \cot^{-1} x + \log(\sqrt{1 + \cos^{-1} x})$	$+x^2 - x$), then $f(x)$		
	(a) Increases in $[0,\infty)$		(b) Decreases in $[0,\infty)$	
	(c) Neither increases nor	decreases in $(0,\infty)$	(d) Increases in $(-\infty,\infty)$	
39.	The function $\frac{(e^{2x}-1)}{(e^{2x}+1)}$ is			[Roorkee 1998]
	(a) Increasing	(b) Decreasing	(c) Even	(d) Odd
40.	The function $\frac{a \sin x + b \cos x}{c \sin x + d \cos x}$	is decreasing if		[Rajasthan PET 1999]
	(a) $ad - bc > 0$	(b) $ad - bc < 0$	(c) $ab - cd > 0$	(d) $ab - cd < 0$
41.	If $f(x) = \sin x - \cos x$, $0 \le x \le$	2π the function decreasing in		[UPSEAT 2001]
	(a) $\left[\frac{5\pi}{6}, \frac{3\pi}{4}\right]$	(b) $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$	(c) $\left[\frac{3\pi}{2}, \frac{5\pi}{2}\right]$	(d) None of these

42.	If $f(x) = \frac{1}{x+1} - \log(1+x)$,	x > 0 then <i>f</i> is		[Rajasthan PET 2002]
	(a) An increasing func	tion	(b) A decreasing fu	unction
	(c) Both increasing an	d decreasing function	(d) None of these	
43.	The function $f(x) = x^{1/x}$	is		[AMU 2002]
	(a) Increasing in $(1,\infty)$		(b) Decreasing in	$(1,\infty)$
	(c) Increasing in $(1, e)$,	decreasing in (e,∞)	(d) Decreasing in	$(1,e)$ increasing in (e,∞)
44.	The length of the longe	est interval, in which the funct	ion $3\sin x - 4\sin^3 x$ is in	creasing, is
	(a) π	$(h) \pi$	(3π)	
	(a) $\frac{1}{3}$	(b) $\frac{1}{2}$	(c) $\frac{1}{2}$	(a) π
45.	The function $f(x) = 1 - e^{-1}$	$-x^{2/2}$ is		
	(a) Decreasing for all	x	(b) Increasing for	all x
	(c) Decreasing for $x < x < x < x < x < x < x < x < x < x $	0 and increasing for $x > 0$	(d) Increasing for	x < 0 and decreasing for $x > 0$
46.	The function $\sin x - \cos x$	x is increasing in the interval		
	(a) $\left[\frac{3\pi}{4}, \frac{7\pi}{4}\right]$	(b) $\left[0,\frac{3\pi}{4}\right]$	(c) $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$	(d) None of these
47.	On the interval $\left(0,\frac{\pi}{2}\right)$,	the function $\log \sin x$ is		
	(a) Increasing		(b) Decreasing	
	(c) Neither increasing	nor decreasing	(d) None of these	
48.	For all real values of <i>x</i>	, increasing function $f(x)$ is		[MP PET 1996]
	(a) x^{-1}	(b) x^2	(c) x^{3}	(d) x^4
49.	The function which is	neither decreasing nor increas	ing in $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ is	
	(a) $cosec x$	(b) tan <i>x</i>	(c) x^2	(d) $ x-1 $
50.	For every value of <i>x</i> , fu	unction $f(x) = e^x$ is		
	(a) Decreasing		(b) Increasing	
	(c) Neither increasing	nor decreasing	(d) None of these	
51.	Consider the following	statements S and R		
	S : Both $\sin x$ and $\cos x$	are decreasing functions in $\left(\cdot \right)$	$\left(\frac{\pi}{2},\pi\right)$	
	<i>R</i> : If a differentiable	function decreases in (a, b) the	en its derivative also de	ecrease in (<i>a</i> , <i>b</i>)
	Which of the following	g is true		
	(a) Both <i>S</i> and <i>R</i> are w	vrong		
	(b) Both <i>S</i> and <i>R</i> are co	orrect but <i>R</i> is not the correct e	explanation for S	
	(c) S is correct and R	is the correct explanation for S	1	
	(d) S is correct and R i	s wrong		

If f'(x) is zero in the interval (a, b) then in this interval it is 52. (a) Increasing function (b) Decreasing function (c) Only for a > 0 and b > 0 is increasing function (d) None of these The function $\frac{x-2}{x+1}$, $(x \neq -1)$ is increasing on the interval 53. (a) (−∞,0] (b) $[0,\infty)$ (c) R (d) None of these If *f* and *g* are two decreasing functions such that *fog* exists, then *fog* 54. (a) Is an increasing function (b) Is a decreasing function (c) Is neither increasing nor decreasing (d) None of these The function $f(x) = \cos(\pi / x)$ is increasing in the interval 55. (b) $\left(\frac{1}{2n+1}, 2n\right)$, $n \in N$ (c) $\left(\frac{1}{2n+2}, \frac{1}{2n+1}\right)$, $n \in N$ (d) None of these (a) $(2n+1, 2n), n \in N$ The set of all values of *a* for which the function $f(x) = \left(\frac{\sqrt{a+4}}{1-a} - 1\right) x^5 - 3x + \log 5$ decreases for all real *x* is 56. (b) $\left[-4, \frac{3-\sqrt{21}}{2}\right] \cup (1,\infty)$ (c) $\left(-3, 5-\frac{\sqrt{27}}{2}\right) \cup (2,\infty)$ (d) $[1,\infty)$ (a) $(-\infty,\infty)$ The function $f(x) = x\sqrt{ax - x^2}, a > 0$ 57. (a) Increases on the interval $\left(0, \frac{3a}{4}\right)$ (b) Decreases on the interval $\left(\frac{3a}{4},a\right)$ (c) Decreases on the interval $\left(0, \frac{3a}{4}\right)$ (d) Increases on the interval $\left(\frac{3a}{4},a\right)$ The function $f(x) = \frac{|x-1|}{|x|^2}$ is monotonically decreasing on 58. (a) (−2,∞) (b) (0, 1) (c) (0, 1) $\cup (2,\infty)$ (d) $(-\infty,\infty)$ The set of values of a for which the function $f(x) = x^2 + ax + 1$ is an increasing function on [1, 2] is 59. (c) [−∞,−2) (a) $(-2,\infty)$ (b) $[-4,\infty]$ (d) (-∞,2] **60.** On which of the following intervals is the function $x^{100} + \sin x - 1$ decreasing (a) $\left(0,\frac{\pi}{2}\right)$ (c) $\left(\frac{\pi}{2},\pi\right)$ (b) (0, 1) (d) None of these If a < 0 the function $f(x) = e^{ax} + e^{-ax}$ is a monotonically decreasing function for values of x given by 61. (a) x > 0(b) x < 0(c) x > 1(d) *x* < 1 $y = [x(x-3)]^2$ increases for all values of x lying in the interval 62. (a) $0 < x < \frac{3}{2}$ (c) $-\infty < x < 0$ (b) $0 < x < \infty$ (d) 1 < x < 3**63.** The function $f(x) = \frac{\log x}{x}$ is increasing in the interval [EAMCET 1994]

	(a) $(1, 2e)$	(b) $(0,e)$	(c) $(2, 2e)$	(d) $\left(\frac{1}{e}, 2e\right)$
64.	The value of <i>a</i> for which the	the function $f(x) = \sin x - \cos x - \cos x$	ax + b decreases for all real $ax + b$	values of <i>x</i> , is given by
	(a) $a \ge \sqrt{2}$	(b) $a \ge 1$	(c) $a < \sqrt{2}$	(d) <i>a</i> < 1
65.	If the function $f(x) = \cos x $	-2ax+b increases along the	entire number scale, the rar	nge of values of a is given by
	(a) $a \leq b$	(b) $a = \frac{b}{2}$	(c) $a \le -\frac{1}{2}$	(d) $a \ge -\frac{3}{2}$
66.	If $f(x) = \frac{x}{\sin x}$ and $g(x) = \frac{x}{\tan x}$	$\frac{1}{x}$, where $0 < x \le 1$, then in the	is interval	
	(a) Both $f(x)$ and $g(x)$ are	increasing functions	(b) Both $f(x)$ and $g(x)$ are	decreasing function
	(c) $f(x)$ is an increasing function	inction	(d)	g(x) is an increasing
67.	Let $h(x) = f(x) - (f(x))^2 + (f(x))$	3 for every real number <i>x</i> , th	en	
	(a) <i>h</i> is increasing whenev	ver <i>f</i> is increasing and decreas	sing whenever <i>f</i> is decreasin	ıg
	(b) <i>h</i> is increasing whenev	ver f is decreasing		
	(c) <i>h</i> is decreasing whenever	ver <i>f</i> is increasing		
	(d) Nothing can be said in	general		
68.	If $f(x) = \begin{cases} 3x^2 + 12x - 1 & , & -1 \\ 27 & x & 2 \end{cases}$	$\leq x \leq 2$ then $f(x)$ is		[IIT 1993]
	(57-x), 27	$\langle x \geq 5$		
	(a) Increasing in [-1, 2]	< x > 3 (b) Continuous in [-1, 3]	(c) Greatest at $x = 2$	(d) All of these
69.	(a) Increasing in [-1, 2] If $f'(x) = g(x)(x - \lambda)^2$ where	(b) Continuous in [-1, 3] $g(\lambda) \neq 0$ and $g(x)$ is continuou	(c) Greatest at $x = 2$ as at $x = \lambda$ then function $f(x)$	(d) All of these
69.	(a) Increasing in [-1, 2] If $f'(x) = g(x)(x - \lambda)^2$ where (a) Increasing near to λ if $g(\lambda) > 0$	(b) Continuous in [-1, 3] $g(\lambda) \neq 0$ and $g(x)$ is continuou f $g(\lambda) > 0$	 (c) Greatest at x = 2 us at x = λ then function f(x (b) 	(d) All of these) Decreasing near to λ if
69.	(a) Increasing in [-1, 2] If $f'(x) = g(x)(x - \lambda)^2$ where (a) Increasing near to λ if $g(\lambda) > 0$ (c) Increasing near to λ if every value of $g(\lambda)$	(b) Continuous in [-1, 3] $g(\lambda) \neq 0$ and $g(x)$ is continuou f $g(\lambda) > 0$ f $g(\lambda) < 0$	 (c) Greatest at x = 2 as at x = λ then function f(x (b) (d) 	(d) All of these) Decreasing near to λ if Increasing near to λ for
69. 70.	(a) Increasing in [-1, 2] If $f'(x) = g(x)(x - \lambda)^2$ where (a) Increasing near to λ if $g(\lambda) > 0$ (c) Increasing near to λ if every value of $g(\lambda)$ Function $\cos^2 x + \cos^2 \left(\frac{\pi}{3} + x\right)^2$	(b) Continuous in [-1, 3] $g(\lambda) \neq 0$ and $g(x)$ is continuou f $g(\lambda) > 0$ f $g(\lambda) < 0$ f $g(\lambda) < 0$ f $g(\lambda) < 0$	 (c) Greatest at x = 2 us at x = λ then function f(x (b) (d) values of x will be 	(d) All of these) Decreasing near to λ if Increasing near to λ for
69. 70.	(a) Increasing in [-1, 2] If $f'(x) = g(x)(x - \lambda)^2$ where (a) Increasing near to λ if $g(\lambda) > 0$ (c) Increasing near to λ if every value of $g(\lambda)$ Function $\cos^2 x + \cos^2 \left(\frac{\pi}{3} + x\right)^2$ (a) Increasing	(b) Continuous in [-1, 3] $g(\lambda) \neq 0$ and $g(x)$ is continuou f $g(\lambda) > 0$ f $g(\lambda) < 0$ f $g(\lambda) < 0$ (b) Constant	 (c) Greatest at x = 2 1s at x = λ then function f(x (b) (d) values of x will be (c) Decreasing 	(d) All of these Decreasing near to λ if Increasing near to λ for (d) None of these
69. 70. 71.	(a) Increasing in [-1, 2] If $f'(x) = g(x)(x - \lambda)^2$ where (a) Increasing near to λ if $g(\lambda) > 0$ (c) Increasing near to λ if every value of $g(\lambda)$ Function $\cos^2 x + \cos^2 \left(\frac{\pi}{3} + x\right)^2$ (a) Increasing Let $Q(x) = f(x) + f(1 - x)$ and	(b) Continuous in [-1, 3] $g(\lambda) \neq 0$ and $g(x)$ is continuou f $g(\lambda) > 0$ f $g(\lambda) < 0$ f $g(\lambda) < 0$ (b) Constant $f''(x) < 0$ whereas $0 \le x \le 1$ the	 (c) Greatest at x = 2 1s at x = λ then function f(x (b) (d) values of x will be (c) Decreasing en function Q(x) is decreasing 	(d) All of these) Decreasing near to λ if Increasing near to λ for (d) None of these ng in
69. 70. 71.	(a) Increasing in [-1, 2] If $f'(x) = g(x)(x - \lambda)^2$ where (a) Increasing near to λ if $g(\lambda) > 0$ (c) Increasing near to λ if every value of $g(\lambda)$ Function $\cos^2 x + \cos^2 \left(\frac{\pi}{3} + x\right)^2$ (a) Increasing Let $Q(x) = f(x) + f(1 - x)$ and (a) $\left[\frac{1}{2}, 1\right]$	(b) Continuous in [-1, 3] $g(\lambda) \neq 0$ and $g(x)$ is continuou f $g(\lambda) > 0$ f $g(\lambda) < 0$ f $g(\lambda) < 0$ (b) Constant $f''(x) < 0$ whereas $0 \le x \le 1$ the (b) $\left[0, \frac{1}{2}\right]$	 (c) Greatest at x = 2 (c) Greatest at x = 2 (c) Lecreasing (c) Lecreasing (c) (1/2,1) 	 (d) All of these Decreasing near to λ if Increasing near to λ for (d) None of these ng in (d) (0, 1)
69. 70. 71. 72.	(a) Increasing in [-1, 2] If $f'(x) = g(x)(x - \lambda)^2$ where (a) Increasing near to λ if $g(\lambda) > 0$ (c) Increasing near to λ if every value of $g(\lambda)$ Function $\cos^2 x + \cos^2 \left(\frac{\pi}{3} + x\right)^2$ (a) Increasing Let $Q(x) = f(x) + f(1 - x)$ and (a) $\left[\frac{1}{2}, 1\right]$ If $f(x) = \frac{x}{c} + \frac{c}{x}$ for $-5 \le x \le 5$	(b) Continuous in [-1, 3] $g(\lambda) \neq 0$ and $g(x)$ is continuou f $g(\lambda) > 0$ f $g(\lambda) > 0$ f $g(\lambda) < 0$ f $g(\lambda) < 0$ (b) Constant $f''(x) < 0$ whereas $0 \le x \le 1$ the (b) $\left[0, \frac{1}{2}\right]$ 5, then $f(x)$ is increasing func-	 (c) Greatest at x = 2 (d) (d) (d) (c) Decreasing (c) function Q(x) is decreasing (c) (1/2,1) (c) in the interval 	 (d) All of these Decreasing near to λ if Increasing near to λ for (d) None of these ng in (d) (0, 1)
69. 70. 71. 72.	(a) Increasing in [-1, 2] If $f'(x) = g(x)(x - \lambda)^2$ where (a) Increasing near to λ if $g(\lambda) > 0$ (c) Increasing near to λ if every value of $g(\lambda)$ Function $\cos^2 x + \cos^2 \left(\frac{\pi}{3} + x\right)^2$ (a) Increasing Let $Q(x) = f(x) + f(1 - x)$ and (a) $\left[\frac{1}{2}, 1\right]$ If $f(x) = \frac{x}{c} + \frac{c}{x}$ for $-5 \le x \le 5$ (a) [c, 5]	(b) Continuous in [-1, 3] $g(\lambda) \neq 0$ and $g(x)$ is continuou f $g(\lambda) > 0$ f $g(\lambda) < 0$ f $g(\lambda) < 0$ f) $-\cos x \cos\left(\frac{\pi}{3} + x\right)$ for all real (b) Constant f''(x) < 0 whereas $0 \le x \le 1$ the (b) $\left[0, \frac{1}{2}\right]$ 5, then $f(x)$ is increasing func- (b) $[0, c]$	(c) Greatest at $x = 2$ is at $x = \lambda$ then function $f(x = 0)$ (b) (d) values of x will be (c) Decreasing en function $Q(x)$ is decreasing (c) $\left(\frac{1}{2}, 1\right)$ ction in the interval (c) $[c, 0]$	 (d) All of these Decreasing near to λ if Increasing near to λ for (d) None of these (d) (0, 1) (d) [c, c]
 69. 70. 71. 72. 73. 	(a) Increasing in [-1, 2] If $f'(x) = g(x)(x - \lambda)^2$ where (a) Increasing near to λ if $g(\lambda) > 0$ (c) Increasing near to λ if every value of $g(\lambda)$ Function $\cos^2 x + \cos^2 \left(\frac{\pi}{3} + x\right)^2$ (a) Increasing Let $Q(x) = f(x) + f(1 - x)$ and (a) $\left[\frac{1}{2}, 1\right]$ If $f(x) = \frac{x}{c} + \frac{c}{x}$ for $-5 \le x \le 5$ (a) [c, 5] If the domain of $f(x) = \sin x$	(b) Continuous in [-1, 3] $g(\lambda) \neq 0$ and $g(x)$ is continuou f $g(\lambda) > 0$ f $g(\lambda) > 0$ f $g(\lambda) < 0$ f) $g(\lambda) < 0$ f) $g(\lambda) < 0$ (b) Constant f''(x) < 0 whereas $0 \le x \le 1$ the (b) $\left[0, \frac{1}{2}\right]$ 5, then $f(x)$ is increasing func- (b) $\left[0, c\right]$ is $D = \{x : 0 \le x \le \pi\}$, then $f(x)$	(c) Greatest at $x = 2$ is at $x = \lambda$ then function $f(x = 0)$ (b) (d) values of x will be (c) Decreasing en function $Q(x)$ is decreasing (c) $\left(\frac{1}{2}, 1\right)$ ction in the interval (c) $[c, 0]$) is	 (d) All of these Decreasing near to λ if Increasing near to λ for (d) None of these (d) (0, 1) (d) [c, c]

(c) Decreasing in $\left[0, \frac{\pi}{2}\right]$ and increasing in $\left[\frac{\pi}{2}, \pi\right]$ (d) None of these 74. If $f(x) = (ab - b^2 - 1)x - \int_0^x (\cos^4 \theta + \sin^4 \theta) d\theta$ is a decreasing function of x for all $x \in R$ and $b \in R$, b being independent of x, then (b) $a \in (-\sqrt{6}, \sqrt{6})$ (c) $a \in (-\sqrt{6}, 0)$ (a) $a \in (0, \sqrt{6})$ (d) None of these **75.** If $f(x) = \frac{p^2 - 1}{p^2 + 1}x^3 - 3x + \log 2$ is a decreasing function of x in R then the set of possible values of p (independent of x) is (a) [-1, 1] (b) [1,∞) (c) $(-\infty, -1]$ (d) None of these **76.** Let $f(x) = a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x$, where a_i 's are real and f(x) = 0 has a positive root α_0 . Then (a) f'(x) = 0 has a root α_1 such that $0 < \alpha_1 < \alpha_0$ (b) f'(x) = 0 has at least two real root (c) f''(x) = 0 has at least one real roots (d) None of these 77. If *a*, *b*, *c* are real, then $f(x) = \begin{vmatrix} x+a^2 & ab & ac \\ ab & x+b^2 & bc \\ ac & bc & x+c^2 \end{vmatrix}$ is decreasing in (a) $\left(-\frac{2}{3}(a^2+b^2+c^2),0\right)$ (b) $\left(0,\frac{2}{3}(a^2+b^2+c^2)\right)$ (c) $\left(\frac{a^2+b^2+c^2}{3},0\right)$ (d) None of these

Answer Sheet

						A	ssign	ment	: (Bas	ic an	d Adv	ance	Level)					
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a	a	с	a	с	d	d	a	с	d	a	с	a	a	b	d	с	d	b	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	b	d	a	с	с	с	a	с	b	с	с	a	d	b	с	с	a,d	a,d	b
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
d	b	С	a	с	b	a	с	a	b	d	d	b	a	d	b	a,b	с	a	d
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77			
b	a	b	a	С	С	a	d	a	b	a	a	d	b	a	a,b, c	a			

4.5 Rolle's Theorem

4.5.1 Definition

Let *f* be a real valued function defined on the closed interval [*a*, *b*] such that,

(1) f(x) is continuous in the closed interval [a, b]

(2) f(x) is differentiable in the open interval]a,b[and

(3) f(a) = f(b)

Then there is at least one value *c* of *x* in open interval]*a*, *b*[for which f'(c) = 0.

4.5.2 Analytical Interpretation

Now, Rolle's theorem is valid for a function such that

(1) f(x) is continuous in the closed interval [a, b]

(2) f(x) is differentiable in open interval]*a*, *b*[and

(3)
$$f(a) = f(b)$$

So, generally two cases arises in such circumstances.

Case I: f(x) is constant in the interval [a, b] then f'(x) = 0 for all $x \in [a,b]$. Hence, Rolle's theorem follows, and we can say, f'(c) = 0, where a < c < b

Case II: f(x) is not constant in the interval [a, b] and since f(a) = f(b).

The function should either increase or decrease when *x* takes values slightly greater than *a*. Now, let f(x) increases for x > a

Since, f(a) = f(b), hence the function must seize to increase at some value x = c and decreasing upto x = b.

Clearly at x = c function has maximum value.

Now let h be a small positive quantity then, from definition of maximum value of the function,

$$f(c+h) - f(c) < 0 \quad \text{and} \quad f(c-h) - f(c) < 0$$

$$\therefore \quad \frac{f(c+h) - f(c)}{h} < 0 \quad \text{and} \quad \frac{f(c-h) - f(c)}{-h} > 0$$

So,

$$\lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \le 0 \text{ and } \lim_{h \to 0} \frac{f(c-h) - f(c)}{-h} \ge 0 \qquad \dots \dots (i)$$

But, if $\lim_{h\to 0} \frac{f(c+h) - f(c)}{h} \neq \lim_{h\to 0} \frac{f(c-h) - f(c)}{-h},$

The Rolle's theorem cannot be applicable because in such case,

RHD at $x = c \neq$ LHD at x = c.

Hence, f(x) is not differentiable at x = c, which contradicts the condition of Rolle's theorem.

 \therefore Only one possible solution arises, when $\lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0} \frac{f(c-h) - f(c)}{-h} = 0$

Which implies that, f'(c) = 0 where a < c < b

Similarly, the case where f(x) decreases in the interval a < x < c and then increases in the interval c < x < b, f'(c) = 0. But when x = c, the minimum value of f(x) exists in the interval [a, b].

4.5.3 Geometrical Interpretation

Consider the portion *AB* of the curve y = f(x), lying between x = aand x = b, such that

(1) It goes continuously from A to B.

(2) It has tangent at every point between A and B and

(3) Ordinate of A = ordinate of B

From figure, it is clear that f(x) increases in the interval AC_1 , which implies that f'(x) > 0 in this region and decreases in the

interval C_1B which implies f'(x) < 0 in this region. Now, since there is unique tangent to be drawn on the curve lying in between *A* and *B* and since each of them has a unique slope *i.e.*, unique value of f'(x).

 \therefore Due to continuity and differentiability of the function f(x) in the region *A* to *B*. There is a point x = c where f'(c) = 0. Hence, f'(c) = 0 where a < c < b

Thus Rolle's theorem is proved.

Similarly the other parts of the figure given above can be explained, establishing Rolle's theorem throughout.

Note : On Rolle's theorem generally two types of problems are formulated.

□ To check the applicability of Rolle's theorem to a given function on a given interval.

□ To verify Rolle's theorem for a given function in a given interval.

In both types of problems we first check whether f(x) satisfies the condition of Rolle's theorem or not.

The following results are very helpful in doing so.

(i) A polynomial function is everywhere continuous and differentiable.

(ii) The exponential function, sine and cosine functions are everywhere continuous and differentiable.

(iii) Logarithmic functions is continuos and differentiable in its domain.

(iv) $\tan x$ is not continuous and differentiable at $x = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \dots$

(v) |x| is not differentiable at x = 0.

(vi) If f'(x) tends to $\pm \infty$ as $x \to K$, then f(x) is not differentiable at x = K.

For example, if $f(x) = (2x - 1)^{1/2}$, then $f'(x) = \frac{1}{\sqrt{2x - 1}}$ is such that as $x \to \left(\frac{1}{2}\right)^+ \Rightarrow f'(x) \to \infty$

So, f(x) is not differentiable at $x = \frac{1}{2}$.

Example: 1 The function $f(x) = x(x+3)e^{-1/2x}$ satisfies all the condition of Rolle's theorem in [- 3, 0]. The value of c is

(a) 0 (b) 1 (c)
$$-2$$
 (d) -3
Solution: (c) To determine 'c' in Rolle's theorem, $f'(c) = 0$

Here
$$f'(x) = (x^2 + 3x)e^{-(1/2)x} \cdot \left(-\frac{1}{2}\right) + (2x + 3)e^{-(1/2)x} = e^{-(1/2)x} \left\{-\frac{1}{2}(x^2 + 3x) + 2x + 3\right\} = -\frac{1}{2}e^{-(x/2)}\left\{x^2 - x - 6\right\}$$

 $\therefore \quad f'(c) = 0 \implies c^2 - c - 6 = 0 \implies c = 3, -2.$
But $c = 3 \notin [-3,0]$, Hence $c = -2.$

(a) a = 11

Example: 2 If the function $f(x) = x^3 - 6x^2 + ax + b$ satisfies Rolle's theorem in the interval [1, 3] and $f'\left(\frac{2\sqrt{3}+1}{\sqrt{3}}\right) = 0$ then

(c) a=6

(b) a = -6

Solution: (a

a)
$$f(x) = x^3 - 6x^2 + ax + b \Rightarrow f'(x) = 3x^2 - 12x + a$$

 $\Rightarrow f'(c) = 0 \Rightarrow f'\left(2 + \frac{1}{\sqrt{3}}\right) = 0 \Rightarrow 3\left(2 + \frac{1}{\sqrt{3}}\right)^2 - 12\left(2 + \frac{1}{\sqrt{3}}\right) + a = 0$
 $\Rightarrow 3\left(4 + \frac{1}{3} + \frac{4}{\sqrt{3}}\right) - 12\left(2 + \frac{1}{\sqrt{3}}\right) + a = 0 \Rightarrow 12 + 1 + 4\sqrt{3} - 24 - 4\sqrt{3} + a = 0$

(d) a=1

Rolle's Theorem

Basic Level

1. Rolle's theorem is true for the function $f(x) = x^2 - 4$ in the interval

(a) [-2, 0] (b) [-2, 2] (c) $\left\lfloor 0, \frac{1}{2} \right\rfloor$ (d) [0, 2]**2.** For which interval, the function $\frac{x^2 - 3x}{x - 1}$ satisfies all the conditions of Rolle's theorem

(a) [0, 3] (b) [-3, 0] (c) [1.5, 3] (d) For no interval **3.** If f(x) satisfies the conditions of Rolle's theorem in [1, 2] and f(x) is continuous in [1, 2] then $\int_{1}^{2} f'(x) dx$ is equal

- to [DCE 2002] (a) 3 (b) 0 (c) 1 (d) 2 4. Consider the function $f(x) = e^{-2x} \sin 2x$ over the interval $\left(0, \frac{\pi}{2}\right)$. A real number $c \in \left(0, \frac{\pi}{2}\right)$, as guaranteed by Roll's theorem, such that f'(c) = 0 is
 - (a) $\frac{\pi}{8}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{3}$
- 5. If the function $f(x) = ax^3 + bx^2 + 11x 6$ satisfies the conditions of Rolle's theorem for the interval [1, 3] and $f'\left(2 + \frac{1}{\sqrt{3}}\right) = 0$, then the values of *a* and *b* are respectively (a) 1, -6 (b) - 2, 1 (c) -1, $\frac{1}{2}$ (d) - 1, 6

6.	Rolle's theorem is not app	licable to the function $f(x)$	x = x defined on [- 1, 1] bec	ause [AISSE 1986;
	MP PET 1994, 95]			
	(a) f is not continuous on	[- 1, 1]	(b)	f is not differentiable on (-
	1, 1)			
	(c) $f(-1) \neq f(1)$		(d) $f(-1) = f(1) \neq 0$	
7.	Let $f(x) = \begin{cases} x^{\alpha} \ln x &, x > 0 \\ 0 &, x = 0 \end{cases}$	Rolle's theorem is applica	able to <i>f</i> for $x \in [0,1]$, if $\alpha =$	[IIT-JEE Screening 2004]
	(a) -2	(b) -1	(c) 0	(d) $\frac{1}{2}$
8.	The value of <i>a</i> for which the	ne equation $x^3 - 3x + a = 0$	has two distinct roots in [0,	1] is given by
	(a) -1	(b) 1	(c) 3	(d) None of these
9.	Let <i>a</i> , be two distinct roots	s of a polynomial $f(x)$. The	en there exists at least one r	oot lying between <i>a</i> and <i>b</i> of the
	polynomial			
	(a) $f(x)$	(b) $f'(x)$	(c) $f''(x)$	(d) None of these
10.	If $\frac{a_0}{n+1} + \frac{a_1}{n} + \frac{a_2}{n-1} + \dots + \frac{a_{n-1}}{2}$	$a_n + a_n = 0$. Then the function	n $f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots$	$+ a_n$ has in (0, 1)
	(a) At least one zero	(b) At most one zero	(c) Only 3 zeros	(d) Only 2 zeros
		ł	***	

Answer Sheet

				Assignme	ent (Basic	and Adva	nce Level)				
Ī	1	2	3	4	5	6	7	8	9	10	
	b	d	b	a	a	b	d	d	b	a	

4.6 Lagrange's Mean Value Theorem

4.6.1 Definition

If a function f(x),

(1) Is continuous in the closed interval [a, b] and

(2) Is differentiable in the open interval (a, b)

Then there is at least one value $c \in (a,b)$, such that; $f'(c) = \frac{f(b) - f(a)}{b - a}$

4.6.2 Analytical Interpretation

First form: Consider the function, $\phi(x) = f(x) - \frac{f(b) - f(a)}{b - a}x$

Since, f(x) is continuous in [a, b]

 $\therefore \phi(x)$ is also continuous in [*a*,*b*]

since, f'(x) exists in (a, b) hence $\phi'(x)$ also exists in (a,b) and $\phi'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$ (i)

Clearly, $\phi(x)$ satisfies all the condition of Rolle's theorem

... There is atleast one value of c of x between a and b such that $\phi'(c) = 0$ substituting x = c in (i) we get,

 $f'(c) = \frac{f(b) - f(a)}{b - a}$ which proves the theorem.

Second form: If we write b = a + h then $a < c < b, c = a + \theta h$ where $0 < \theta < 1$

Thus, the mean value theorem can be stated as follows:

If (i) f(x) is continuous in closed interval [a, a+h]

(ii) f'(x) exists in the open interval (a, a+h) then there exists at least one number $\theta(0 < \theta < 1)$ Such that $f(a+h) = f(a) + hf'(a+\theta h)$.

4.6.3 Geometrical Interpretation

Let f(x) be a function defined on [a, b] and let *APB* be the curve represented by y = f(x). Then co-ordinates of *A* and *B* are (a, f(a)) and (b, f(b)) respectively. Suppose the chord *AB* makes an angle ψ with the axis of *x*. Then from the triangle *ARB*, we have

$$\tan \psi = \frac{BR}{AR} \implies \tan \psi = \frac{f(b) - f(a)}{b - a}$$

By Lagrange's Mean value theorem, we have, $f'(c) = \frac{f(b) - f(a)}{b - a}$: $\tan \psi = f'(c)$

 \Rightarrow slope of the chord *AB* = slope of the tangent at (*c*, *f*(*c*))

In the mean-value theorem $\frac{f(b)-f(a)}{b-a} = f'(c)$, if a = 0, $b = \frac{1}{2}$ and f(x) = x(x-1)(x-2), the value of c is [MP PET 20] Example: 1 (b) $1 + \sqrt{15}$ (c) $1 - \frac{\sqrt{21}}{6}$ (a) $1 - \frac{\sqrt{15}}{6}$ (d) $1 + \sqrt{21}$ From mean value theorem $f'(c) = \frac{f(b) - f(a)}{b - a}$ Solution: (c) $a = 0, f(a) = 0 \implies b = \frac{1}{2}, f(b) = \frac{3}{8}$ f'(x) = (x-1)(x-2) + x(x-2) + x(x-1), $f'(c) = (c-1)(c-2) + c(c-2) + c(c-1) = c^2 - 3c + 2 + c^2 - 2c + c^2 - c, \quad f'(c) = 3c^2 - 6c + 2c^2 - 2c + c^2 - 2c + c^2 - c^2 - 2c + c^2 -$ According to mean value theorem $\Rightarrow f'(c) = \frac{f(b) - f(a)}{b - a} \Rightarrow 3c^2 - 6c + 2 = \frac{\left(\frac{3}{8}\right) - 0}{\left(\frac{1}{2}\right) - 0} = \frac{3}{4} \Rightarrow 3c^2 - 6c + \frac{5}{4} = 0$ $c = \frac{6 \pm \sqrt{36 - 15}}{2 \times 2} = \frac{6 \pm \sqrt{21}}{6} = 1 \pm \frac{\sqrt{21}}{6}$. From mean value theorem $f(b) - f(a) = (b - a)f'(x_1), a < x_1 < b$ if $f(x) = \frac{1}{x}$ then x_1 Example: 2 (d) $\frac{b-a}{b+a}$ (b) $\frac{2ab}{a+b}$ (c) $\frac{a+b}{2}$ (a) \sqrt{ab}

Solution: (a) $f'(x_1) = \frac{-1}{x_1^2}$, $\therefore \frac{-1}{x_1^2} = \frac{1}{b} - \frac{1}{a} = -\frac{1}{ab} \Rightarrow x_1 = \sqrt{ab}$.

Example: 3 The abscissae of the points of the curve $y = x^3$ in the interval [-2, 2], where the slope of the tangent can be obtained by mean value theorem for the interval [- 2, 2] are

(a)
$$\pm \frac{2}{\sqrt{3}}$$
 (b) $\pm \frac{\sqrt{3}}{2}$ (c) $\pm \sqrt{3}$ (d) o

Solution: (a) Given that equation of curve $y = x^3 = f(x)$

So f(2) = 8 and f(-2) = -8

Now
$$f'(x) = 3x^2 \Rightarrow f'(x) = \frac{f(2) - f(-2)}{2 - (-2)} \Rightarrow \frac{8 - (-8)}{4} = 3x^2; \therefore x = \pm \frac{2}{\sqrt{3}}$$
.

Lagrange's Mean Value Theorem

[MP PET 1994]

	Basic I	Level	
If from mean value theore	em, $f'(x_1) = \frac{f(b) - f(a)}{b - a}$, then		[MP PET 1999]
(a) $a < x_1 \le b$	(b) $a \le x_1 < b$	(c) $a < x_1 < b$	(d) $a \le x_1 \le b$
For the function $x + \frac{1}{x}, x \in$	[1,3], the value of c for the m	ean value theorem is	[MP PET 1997]
(a) 1	(b) $\sqrt{3}$	(c) 2	(d) None of these
For the function $f(x) = e^x$,	a = 0, b = 1, the value of c in me	an value theorem will be	[DCE 2002]
(a) log <i>x</i>	(b) log (<i>e</i> – 1)	(c) 0	(d) 1

Advance Level

4. If the function $f(x) = x^3 - 6ax^2 + 5x$ satisfies the conditions of Lagrange's mean value theorem for the interval [1, 2] and the tangent to the curve y = f(x) at $x = \frac{7}{4}$ is parallel to the chord that joins the points of intersection of the curve with the ordinates x = 1 and x = 2. Then the value of a is (a) 35/16 (b) 35/48 (c) 7/16 (d) 5/16

5. If $f(x) = \cos x, 0 \le x \le \frac{\pi}{2}$, then the real number 'c' of the mean value theorem is

- (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\sin^{-1}\left(\frac{2}{\pi}\right)$ (d) $\cos^{-1}\left(\frac{2}{\pi}\right)$
- 6. Let f(x) satisfy all the conditions of mean value theorem in [0, 2]. If f(0) = 0 and $|f'(x)| \le \frac{1}{2}$ for all x in [0, 2], then
 - (a) $f(x) \le 2$ (b) $|f(x)| \le 1$

1.

2.

3.

(c) f(x) = 2x (d) f(x) = 3 for at least one x in [0, 2]

7.	The function $f(x) = (x-3)^2$ where the tangent is paral	satisfies all the conditions of lel to the chord joining (3, 0)	of mean value theorem in [and (4, 1) is	3, 4]. A point on $y = (x-3)^2$,
	(a) $\left(\frac{7}{2},\frac{1}{2}\right)$	(b) $\left(\frac{7}{2},\frac{1}{4}\right)$	(c) (1,4)	(d) (4, 1)
8.	Let $f(x)$ and $g(x)$ are defined	ed and differentiable for $x \ge x$	x_0 and $f(x_0) = g(x_0), f'(x) > g'(x)$	for $x > x_0$, then
	(a) $f(x) < g(x)$ for some $x > $	· <i>x</i> ₀		
	(b) $f(x) = g(x)$ for some $x > $	· <i>x</i> ₀		
	(c) $f(x) > g(x)$ for all $x > x_0$			
	(d) None of these			
9.	Let <i>f</i> be differentiable for a	all x. If $f(1) = -2$ and $f'(x) \ge 2$ f	for all $x \in [1, 6]$ then	
	(a) $f(6) < 8$	(b) $f(6) \ge 8$	(c) $f(6) \ge 5$	(d) $f(6) \le 5$
10.	The value of c in Lagrange	's theorem for the function $ x $	c in the interval [- 1, 1] is	
	(a) 0 interval	(b) 1/2	(c) -1/2	(d) Non-existent in the

\mathcal{A} nswer Sheet

	Assignment (Basic and Advance Level)										
ì	1	2	2	4	-	6	7	Q	0	10	
	1	2	3	4	5	0	/	0	9	10	