APPENDIX A: TEMPERATURE DEPENDENCE
OF THE REFLECTION LINES

... I came to the conclusion that the sharpness
of the interference lines would not suffer but
that their intensity should diminish with in-
creasing angle of scattering, the more so the
higher the temperature.

P. Debye

As the temperature of the crystal is increased, the intensity of the Bragg-
reflected beams decreases, but the angular width of the reflected line does not
change. Experimental intensities for aluminum are shown in Fig. 1. It is sur-
prising that we can get a sharp x-ray reflection from atoms undergoing large
amplitude random thermal motion, with instantaneous nearest-neighbor spac-
ings differing by 10 percent at room temperature. Before the Laue experiment
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Figure 1 The dependence of intensity on temperature for the (h00) x-ray reflections of
aluminum. Reflections (h00) with h odd are forbidden for an fce structure. (Alter R. M. Nicklow
and R. A. Young.)
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was done, but when the proposal was discussed! in a coffee house in Munich,
the objection was made that the instantaneous positions of the atoms in a
crystal at room temperature are far from a regular periodic array, because of
the large thermal fluctuation. Therefore, the argument went, one should not
cxpect a well-defined diffracted beam.

But such a beam is found. The reason was given by Debye. Consider the
radiation amplitude scattered by a crystal: let the position of the atom nomi-
nally at r; contain a term u(t) fluctuating in time: r(t) = r; + u(f). We suppose
each atom fluctuates independently about its own equilibrium position.® Then
the thermal average of the structure factor (2.43) contains terms

£, exp(—iG * ){exp(—iG - u)) , (1)
where (- - - ) denotes thermal average. The series expansion of the exponential is
(exp(=iG-u)) =1 —i{G - u) — ;((G-w)?) +--- . (2)

But (G * u) = 0, because u is a random thermal displacement uncorrelated
with the direction of G. Further,

(G - w?) = GHu"){cos0) = +(u)G* .

The factor 7 arises as the geometrical average of cos? over a sphere.
The function

exp(—é(u2> GH=1- é<u2>02 - (3)

has the same serics expansion as (2) for the first two terms shown here. For a
harmonic oscillator all terms in the series (2) and (3) can be shown to be iden-
tical. Then the scattered intensity, which is the square of the amplitude, is

=1, exp(—%(uZ)Cﬁ) , (4)

where 1, is the scattered intensity from the rigid lattice. The exponential factor
is the Debye-Waller factor.

Here (u?) is the mean square displacement of an atom. The thermal aver-
age potential energy (U) of a classical harmonic oscillator in three dimensions
is kT, whence

A 1 2\ 1 2/ 9\ _ 3
(U) = 50(u?) = ; MoX(u®) = k,T | (5)
1P P. Ewald, private communication.

¥This is the Einstein model of a solid; it is not a very good model at low temperatures, but it
works well at high temperatures.



Appendix

where C is the force constant, M is the mass of an atom, and o is the frequency of
the oscillator. We have used the result @®* = C/M. Thus the scattered intensity is

I(hkl) = I, exp{—kzTGYMw?) | (6)

where hkl are the indices of the reciprocal lattice vector G. This classical result
is a good approximation at high temperatures.

For quantum oscillators (u*) does not vanish even at T = 0; there is zero-
point motion. On the independent harmonic oscillator model the zero-point
energy is ;hw; this is the energy of a three-dimensional quantum harmonic
oscillator in its ground state referred to the classical energy of the same oscilla-
tor at rest. Half of the oscillator energy is potential energy, so that in the
ground state

(U) = %Mw2<u2> = %ﬁw ; (u®) = 3h2Mo , (7)
whence, by (4),
I(hkl) = 1, exp(~hG*2Mw) (8)

at absolute zero. If G = 10° em™, w = 10" s7!, and M = 107% g, the argu-
ment of the exponential is approximately 0.1, so that I/I; = 0.9. At absolute
zero, 90 percent of the beam is elastically scattered and 10 percent is inelasti-
cally scattered.

We see from (6) and from Fig. 1 that the intensity of the diffracted line
decreases, but not catastrophically, as the temperature is increased. Reflec-
tions of low G are affected less than reflections of high G. The intensity we
have calculated is that of the coherent diffraction (or the elastic scattering) in
the well-defined Bragg directions. The intensity lost from these directions is
the inelastic scattering and appears as a diffuse background. In inelastic scat-
tering the x-ray photon causes the excitation or de-excitation of a lattice vibra-
tion, and the photon changes direction and energy.

At a given temperature thec Debye-Waller factor of a diffraction line de-
creases with an increase in the magnitude of the reciprocal lattice vector G as-
sociated with the reflection. The larger |Gl is, the weaker the reflection at high
temperatures. The theory we have worked out here for x-ray reflection applies
equally well to neutron diffraction and to the Mssbauer effect, the recoil-
less emission of gamma rays by nuclei bound in crystals.

X-rays can be absorbed in a crystal also by the inelastic processes of photo-
ionization of electrons and Compton scattering. In the photoeffect the x-ray
photon is absorbed and an electron is ejected from an atom. In the Compton
effect the photon is scattered inelastically by an electron: the photon loses
energy and the clectron is ejected from an atom. The depth of penetration
of the x-ray beam depends on the solid and on the photon energy, but 1 cm is
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typical. A diffracted beam in Bragg reflection may remove the energy in a
much shorter distance, perhaps 1072 em in an ideal crystal.
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APPENDIX B: EWALD CALCULATION OF LATTICE SUMS
[ e e S L s

The problem is to calculate the electrostatic potential experienced by
one ion in the presence of all the other ions in the crystal. We consider a lattice
made up of jons with positive or negative charges and shall assume that the
ions are spherical.

We compute the total potential ¢ = ¢, + ¢, at an ion as the sum of two dis-
tinct but related potentials. The potential ¢, is that of a structure with a Gaussian
distribution of charge situated at each ion site, with signs the same as those of
the real ions. According to the definition of the Madelung constant, the charge
distribution on the reference point is not considered to contribute to the poten-
tial ¢; or @, (Fig. 1a). We therefore calculate the potential ¢, as the difference

PL=Ps— %

A A _A
7 A\
(a)

AN ANGEVANGN EAN
VAR v

(b)

Figure 1 (a) Charge distribution used for computing potential ¢; the potential ¢, is computed (it
inclndes the dashed curve at the reference point), while ¢, is the potential of the dashed curve
alone. (b) Charge distribution for potential ¢,. The reference point is denoted by an X.
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of two potentials, ¢, being the potential of a continuous series of Gaussian dis-
tributions and ¢, being the potential of the single Gaussian distribution on the
reference point.

The potential ¢, is that of a lattice of point charges with an additional
Gaussian distribution of opposite sign superposed upon the point charges
(Fig. 1b).

The point of splitting the problem into the two parts ¢, and @, is that by a
suitable choice of the parameter determining the width of each Gaussian peak
we can get very good convergence of both parts at the same time. The Gaussian
distributions drop out completely on taking the sum of the separate charge
distributions giving rise to ¢, and ¢s, so that the value of the total potential ¢ is
independent of the width parameter, but the rapidity of convergence depends
on the value chosen for that parameter.

We calculate first the potential ¢, of a continuous Gaussian distribution.
We expand ¢, and the charge density p in Fourier series:

@ =§,ccexp(iG'r) ; (1)
p= ;pcexmic ‘1), (2)

where G is 27 times a vector in the reciprocal lattice. The Poisson equation is
Vi, = —4mp ,
or
2 Gcexp(iG - 1) = 47 = peexp(iG 1) ,
so that
cg = 4mpg/G* . (3)

We suppose in finding pg that there is associated with each lattice point of
the Bravais lattice a basis containing ions of charge g, at positions r, relative to
the lattice point. Each ion point is therefore the center of a Gaussian charge
distribution of density

p(r) = g(n/m)%exp(—nr?) |

where the factor in front of the exponential ensures that the total charge associ-
ated with the ion is g,; the range parameter 7 is to be chosen judiciously to ensure
rapid convergence of the final result (6), which is in value independent of 7.

We would normally evaluate pe by multiplying both sides of (2) by
exp(—iG - r) and integrating over the volume A of one cell, so that the charge
distribution to be considered is that originating on the ion points within the
cell and also that of the tails of the distributions originating in all other cells. It
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is easy to see, however, that the integral of the total charge density times
exp[—(iG - r)] over a single cell is equal to the integral of the charge density
originating in a single cell times exp[—(iG - r)] over all space.

We have therefore

e jexp(z’G ‘rlexp(—iG - r) dr = pcA
el

= j > qt(n/ﬂf)a/zexP[—n('r — r)lexp(—iG - r) dr .

all

space

This expression is readily evaluated:

poh = 3 gespl—iG r) (aim*® [ expl—(1G -+ )] d

all

spam

- (2 Grexp(—iG - ft>> exp(—G”/4m) = S(G)exp(—G%4n) ,

where S(G) = 2 g:exp(—iG - r,) is just the structure factor (Chapter 2) in
appropriate units. Using (1) and (3),
o, = ‘%’ S S(G)G2 expliG - — G¥A7) . (4)
c
At the origin r = 0 we have

o = 4{ 3. S(G)C™ exp(~GYan)

The potential ¢, at the reference ion point i due to the central Gaussian
distribution is

o= fo (4mr® dr)(p/r) = 2q(m/m)"*
and so
i) = %’T 3 S(G)G ™% exp(—G¥4n) — 2g,(n/m)2 .
G

The potential ¢, is to be evaluated at the reference point, and it differs
from zero because other ions have the tails of their Gaussian distributions
overlapping the reference point. The potential is due to three contributions
from each ion point:
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where the terms are from the point charge, from the part of the Gaussian dis-
tribution lying inside a sphere of radius 7; about the Ilth ion point, and from
that part lying outside the sphere, respectively. On substituting for p(r) and
carrying out elementary manipulations, we have

er= 3 7 Fn'"r) (5)
where

F) = @) [ expl—s?)ds .

X

Finally,
oli) = %ﬂ g S(G)G 2 exp(—G¥4n) — 2q,(n/m)"* + Zl} %’ F(n'*n)  (6)

is the desired total potential of the reference ion i in the field of all the other
ions in the crystal. In the application of the Ewald method the trick is to
choose 7 such that both sums in (6) converge rapidly.

Ewald-Kornfeld Method for Lattice Sums for Dipole Arrays

Kornfeld extended the Ewald method to dipolar and quadrupolar arrays.
We discuss here the field of a dipole array at a point which is not a lattice
point. According to (4) and (5) the potential at a point r in a lattice of positive
unit point charges is

@ ={4m/A) D, S(G)G 2 expliG - v — G¥4n] + 3, F(V g iy (7)
G 1

where r; is the distance from r to the lattice point L.

The first term on the right gives the potential of the charge distribution
p = (n/m)** exp(—nr®) about each lattice point. By a well-known relation in
electrostatics we obtain the potential of an array of unit dipoles pointing in the
z direction by taking —d/dz of the above potential. The term under discussion
contributes

—(4mi/A) g S(G)(G./G?) expliG * v — G¥4n)] ,
and the z component of the electric field from this term is E, = 8%¢/9z%, or
—(4m/A) g‘, S(G)G2/G?) expliG  r — G¥4n)] . (8)
The second term on the right of (7) after one differentiation gives

- ; L(E(V i) + Qo)) exp(—nrd)]
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and the z component of this part of the field is

; Z(BF(Vn)ir]) + (6/rf)(m/m)Y2 exp(—nrd)

+ (/)P rm)VE exp(—mrP)] = (F(Vgr)/rf) ©)
+ (2/r))(n/m) 2 exp(—nrD)]) .

The total E_ is given by the sum of (8) and (9). The effects of any number of
lattices may be added.

APPENDIX C: QUANTIZATION OF ELASTIC WAVES: PHONONS
o e S e e e

Phonons were introduced in Chapter 4 as quantized elastic waves. How do
we quantize an elastic wave? As a simple model of phonons in a crystal, con-
sider the vibrations of a linear lattice of particles connected by springs. We can
quantize the particle motion exactly as for a harmonic oscillator or set of cou-
pled harmonic oscillators. To do this we make a transformation from particle
coordinates to phonon coordinates, also called wave coordinates because they
represent a traveling wave.

Let N particles of mass M be connected by springs of force constant C and
length a. To fix the boundary conditions, let the particles form a circular ring.
We consider the transverse displacements of the particles out of the plane of
the ring. The displacement of particle s is g, and its momentum is p,. The
Hamiltonian of the system is

)L a1 e
H - ; {2M ps + 2 C(qs+l qs) } - (1)
The Hamiltonian of a harmonic oscillator is

=1 ey leoe
H 2Mp+2Cx, (2)

and the energy eigenvalues are, wheren = 0,1, 2,3, .. .,

€ = (n + %)ﬁw . 3)

The eigenvalue problem is also exactly solvable for a chain with the ditferent
Hamiltonian (1).

To solve (1) we make a Fourier transformation from the coordinates p;, g,
to the coordinates Py, Q;, which arc known as phonon coordinates.
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Phonon Coordinates

The transformation from the particle coordinates g, to the phonon coordi-
nates . is used in all periodic lattice problems. We let

g, = N2 Ek Q. expliksa) | (4)

consistent with the inverse transformation

Q,=N"123Y q. exp(—iksa) . (5)
Here the N values of the wavevector k allowed by the periodic boundary con-

dition g, = ¢, are given by:

k = 2mn/Na ;n:0,+l,t2,..k‘i(%N—l),;N, (6)

We need the transformation from the particle momentum p; to the momen-
tum P, that is canonically conjugate to the coordinate Q,. The transformation is

p, = N2 P exp(—iksa); Po=N Y23 p, expliksa) . (7)
k %

This is not quite what anc would obtain by the naive substitution of p for ¢ and
P for Q in (4) and (5), because k and —k have been interchanged between (4)
and (7).

We verify that our choice of P and Qy satisfies the quantum commutation
relation for canonical variables. We form the commutator

[QnPr] =N"1 l:E g, exp(—ikra), > exp(ik’sa)]
=N~} E E (g..p,] exp[—ilkr — k's)a] .
Because the operators g, p are conjugate, they satisfy the commutation relation

lg,.ps] = ikd(r,s) , (9)

where 8(r,s) is the Kronecker delta symbol.
Thus (8) becomes

(8)

(0Pl = N~ il S, expl—itk — k'ra] = ihib(k, k') | (10)

so that Q. P, also are conjugate variables. Here we have evaluated the summa-
tion as

2 exp[—itk — k")ra] = > exp[—i2m(n — n’)r/N]
r r (11)
= Nb&(n,n') = N8k, k') ,

where we have used (6) and a standard result for the finite series in (11).
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We carry out the transformations (7) and (4) on the hamiltonian (1), and
make use of the summation (11):

zps = N—lE E E PkPk' exp[—‘i(k + k')sa]
s s kK

Z;;Pkpk'g(_k,k’)=;PkP,k N

(g1 —q)*=N"1Y ; ; QxQy expliksa)[explika) — 1]

X exp(ik'sa)lexp(ik'a) — 1] = 2 D040 _1(1 — coska) . (13)
3
Thus the hamiltonian (1) becomes, in phonon coordinates,
H= ; {ﬁ PP_; + COQ_4(1 — cos ka)} : (14)

If we introduce the symbol w; defined by
w, = (2C/M)**(1 — cos ka)'"” | (15)

we have the phonon hamiltonian in the form

H=3 {ﬁ PP, + %wa Qk()_k} : (16)

The equation of motion of the phonon coordinate operator Qy is found by
the standard prescription of quantum mechanics:

ihQy = [Qr, H] = ihP_, /M | (17)
with H given by (14). Further, using the commutator (17),
ihQu=[Qu H] = M™ '[P, H] = i} Qs , (18)
so that
O + Q=0 . (19)

This is the equation of motion of a harmonic oscillator with the frequency ;.
The energy eigenvalues of a quantum harmonic oscillator are

€ = (nk + %)hwk N (20)
where the quantum numbern; =0,1,2, .. .. The energy of the entire system
of all phonons is

U= E (nk + %)ﬁwk . (21)
k

This result demonstrates the quantization of the energy of elastic waves on
a line.
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Creation and Annihilation Operators

It is helpful in advanced work to transform the phonon hamiltonian (16)
into the form of a set of harmonic oscillators:

H=Y, ﬁwk(a,fak + %) i (22)
P

Here a}, a; are harmonic oscillator operators, also called creation and destruc-
tion operators or boson operators. The transformation is derived below.

The boson creation operator a* which “creates a phonon” is defined by
the property

a+|n) =(n+ 1)"n + l> , (23)
when acting on a harmonic oscillator state of quantum number n, and the boson
annihilation operator g which “destroys a phonon” is defined by the property

aln) =nn - 1) . (24)
Tt follows that
a*alny =a*n?In — Ly =n|n) , (25)

so that |n) is an eigenstate of the operator a”a with the integral eigenvalue n,
called the quantum number or occupancy of the oscillator. When the phonon
mode k is in the eigenstate labeled by n;, we may say that there are n; phonons
in the mode. The eigenvalues of (22) are U = X (n;, + Dhwy, in agreement
with (21).
Because

aa*ln>=d(n +1)“Z]n+l>=(n+ l)!n> , (26)

the commutator of the boson wave operators a7 and g, satisfies the relation

(a,a"1=aa* —ata=1. 27

We still have to prove that the hamiltonian (16) can be expressed as (19) in
terms of the phonon operators af, a;. This can be done by the transformation

ap = 2R) V(Mo 2 Q_ — i(Mawy) 2P ; (28)
a;\. = (2ﬁ)71/2[(ka)l/2Qk + i(ka)_mP_k] . (29)
The inverse relations are
Or = (h/2Mw) (@ + aty) ; (30)
P, =i(hMw/2) (0 — a_,) . (31)

By (4), (5), and (29) the particle position operator becomes

g, = 3, (B2NMay) " a; expliks) + o exp(—iks)] . (32)
T
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This equation relates the particle displacement operator to the phonon cre-
ation and annihilation operators.
To obtain (29) {rom (28), we use the properties

QL= Qx5 Pi=P, (33)

which follow from (5) and (7) by use of the quantum mechanical requirement
that ¢, and p, be hermitian operators:

=97 5  ps=ps - (34)

Then (28) follows from the transformations (4), (5), and (7). We verify that the
commutation relation (33) is satisfied by the operators defined by (28) and (29):

(@, a1 = (28) Mo [Qy, Q] — ilQuPi] +ilP_1,Q 4]

+ [P_k,Pk]/M(JJk) . (35)
By use of [Q;,Py] = ih8(k,k’) from (10) we have
lay, ait] = 8(k, k') . (36)

It remains to show that the versions of (16) and (22) of the phonon hamil-
tonian are identical. We note that w, = w_; from (15), and we form

hoaia +ala_y) = ﬁ (PP +P_(P) + % Mo(QiQ—x + Q00 -

This exhibits the equivalence of the two expressions (14) and (22) for H. We
identify w; = (2C/M)"%(1 — cos ka)"* in (15) with the classical frequency of
the oscillator mode of wavevector k.

APPENDIX D: FERMI-DIRAC DISTRIBUTION FUNCTION'
B e e

The Fermi-Dirac distribution function! may be derived in several steps by
use of a modern approach to statistical mechanics. We outline the argument
here. The notation is such that conventional entropy § is related to the funda-
mental entropy o by S = ko, and the Kelvin temperature T is related to the
fundamental temperature T by 7 = kgT, where kg is the Boltzmann constant
with the value 1.38066 X 10" * J K.

The leading quantities are the entropy, the temperature, the Boltzmann fac-
tor, the chemical potential, the Gibbs factor, and the distribution functions. The

"This appendix follows closely the introduction to C. Kittel and H. Kroemer, Thermal
Physics, 2nd ed., Freeman, 1980.
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entropy measures the number of quantum states accessible to a system. A closed
system might be in any of these quantum states and (we assume) with equal prob-
ability. The fundamental assumption is that quantum states are either accessible
or inaccessible to the system, and the system is equally likely to be in any onc ac-
cessible state as in any other accessible state. Given g accessible statcs, the en-
tropy is defined as o = log g. The entropy thus defined will be a function of the
energy U, the number of particles N, and the volume V of the system.

When two systems, each of specified energy, are brought into thermal
contact, they may transfer energy; their total energy remains constant, but the
constraints on their individual energies are lifted. A transfer of energy in one
direction, or perhaps in the other, may increase the product g,g, that measures
the number of accessible states of the combined systems. What we call the
fundamental assumption biases the outcome in favor of that allocation of the
total energy that maximizes the number of accessible states: more is better,
and more likely. This statement is the kernel of the law of increase of entropy,
which is the general expression of the second law of thermodynamics.

We have brought two systems into thermal contact so that they may trans-
fer energy. What is the most probable outcome of the encounter? One system
will gain encrgy at the expense of the other, and meanwhile the total entropy
of the two systems will increase. Eventually the entropy will reach a maximum
for the given total energy. It is not difficult to show that the maximum is at-
tained when the value of (3a70U)y,y for one system is equal to the value of the
same quantity for the second system. This equality property for two systems in
thermal contact is the property we expect of the temperature. Accordingly, the
fundamental temperature 7 is defined by the relation

1_{odo
T (m)N,V . (1)

The use of 1/7 assures that energy will flow from high 7 to low 7; no more com-
plicated relation is needed.

Now consider a very simple example of the Boltzmann factor. Let a small
system with only two states, one at encrgy 0 and one at energy €, be placed in
thermal contact with a large system that we call the reservoir. The total energy
of the combined systems is Uy; when the small system is in the state of energy
0, the reservoir has energy U, and will have g(U,) states accessible to it. When
the small system is in the state of energy €, the reservoir will have energy
Uy — € and will have g(U, — €) states accessible to it. By the fundamental as-
sumption, the ratio of the probability of finding the small system with energy e
to the probability of finding it with energy 0 is

Ple) _gUn—€) _expla(U;—e)]
P(O)  g(Uy) expla(Uy)]
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The reservoir entropy o may be expanded in a Taylor series:
o(U, — €) = o(U,) — €(85/8U,) = a(U,) — /7 , (3)

by the definition (1) of the temperature. Higher order terms in the expansion
may be dropped. Canccllation of the term exp[o(U,)], which occurs in the nu-
merator and denominator of (2) after the substitution of (3), leaves us with

P(e)/P(0) = exp(—e/T) . (4)

This is Boltzmann’s result. To show its use, we calculate the thermal aver-
age energy (€) of the two-state system in thermal contact with a reservoir at
temperature T

<€> = 2 €Ple) = 0+ P(0) + eP(e) = € eXp(—e/T)

T+ exp(—e/T) ’ (5)

where we have imposed the normalization condition on the sum of the
probabilities:

PO)+ Ple)=1 . (6)

The argument can be generalized immediately to find the average energy of a
harmonic oscillator at temperature 7, as in the Planck law.

The most important extension of the theory is to systems that can transfer
particles as well as energy with the reservoir. For two systems in diffusive and
thermal contact, the entropy will be a maximum with respect to the transfer of
particles as well as to the transfer of energy. Not only must (8070U)y v be equal
for the two systems, but (do/0N)y  must also be equal, where N refers to the
number of particles of a given species. The new equality condition is the occa-
sion for the introduction® of the chemical potential p:

p_ oo -
T (aN)U‘V ' (M

For two systems in thermal and diffusive contact, 7, = 7, and p; = uy. The
sign in (7) is chosen to ensure that the direction of particle flow is from high
chemical potential to low chemical potential as equilibrium is approached.

The Gibbs factor is an extension of the Boltzmann factor (4) and allows us
to treat systems that can transfer particles. The simplest example is a system
with two states, one with 0 particles and 0 energy, and one with 1 particle and
energy €. The system is in contact with a reservoir at temperature T and chem-
ical potential . We extend (3) for the reservoir entropy:

O'(Uo - G;NG - 1) = O'(LIO;N()) - E(BO’/GUO) -1- (BU/BNO)
= O'(UO;N()) —€/T+ [L/T .

(8)

TP Chapter 5 has a careful treatment of the chemical potential.
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By analogy with (4), we have the Gibbs factor
P(1,€)/P(0,0) = exp[(n —€)/7] , (9)

for the ratio of the probability that the system is occupied by 1 particle at
energy € to the probability that the system is unoccupied, with energy 0. The
result (9) after normalization is readily expressed as

1

PLe) = exple —p)/r] +1°

(10)

This is the Fermi-Dirac distribution function.

APPENDIX E: DERIVATION OF THE dk/dt EQUATION

The simple and rigorous derivation that follows is due to Kroemer. In
quantum mechanics, for any operator A we have

d{Aydt = (i/h)([H, A]) , (1)

where H is the hamiltonian. See also C. L. Cook, American J. Phys. 55, 953
(1987).
We let A be the lattice translation operator T defined by

Tfx) = fix + a) , (2)
where « is a basis vector, here in one dimension. For a Bloch function
Ty (x) = exp(ika)fn(x) . 3)

This result is usually written for one band, but it holds even if y; is a linear
combination of Bloch states from any number of bands, but having the identi-
cal wavevector k in the reduced zone scheme.

The crystal hamiltonian H, commutes with the lattice translation operator
T, so that [H,,T| = 0. If we add a uniform external force F, then

H=H,— Fr , (4)
and
[H,T] = FaT . (5)
From (1) and (5),
d(TYdt = (i/h)(Fa)XT) . (6)
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From (6) we form
{TY*d(TY/dt = (iFa/k)(T)P ;
(T)Yd(T*Ydt = —(iFa/h) (T} .
On addition,
d|(T)dt =0 . (7)

This is the equation of a circle in the complex plane. The coordinate axes
in the plane are the real and imaginary parts of the eigenvalue exp(ika). If (T)
is initially on the unit circle, it will remain on the unit circle.

For s that satisfy periodic boundary conditions, (T can lie on the unit
circle only if ¢4 is a single Bloch function or a superposition of Bloch functions
from different bands, but with the same reduced k.

As (T) moves around the unit circle, the wavevector k changes exactly at
the same rate for the components of ¢ in all bands. With (T) = exp(ika), we
have from (6) that

ia dk/dt = iFa/h | (8)
or

dk/dt = Fit | (9)

an exact result.

This does not mean that interband mixing (such as Zener tunneling) does
not occur under the influence of applied electric fields. Tt just means that &
evolves at a constant rate for every component of a wave packet. The result is
easily extended to three dimensions.

APPENDIX F: BOLTZMANN TRANSPORT EQUATION
o e s ]

The classical theory of transport processes is based on the Boltzmann trans-
port equation. We work in the six-dimensional space of Cartesian coordinates r
and velocity v. The classical distribution function f(r,v) is defined by the relation

fir,v)drdv = number of particles in drdv . (1)

The Boltzmann equation is derived by the following argument. We con-
sider the effect of a time displacement d¢ on the distribution function. The
Liouville theorem of classical mechanics tells us that if we follow a volume
element along a flowline the distribution is conserved:

fit +dtxr +dry +dv) =fltry) , (2)
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in the absence of collisions. With collisions
fit + dt,x +dryv +dv) — fit,rv) = dHoflot) - (3)
Thus
dr(3f/at) + dr - grad, f + dv - grad, f = dt(3f/ot) .y . (4)

Let a denote the acceleration dv/dt; then

offot + v - grad, f + e - grad, f = (8f/ot).q (5)

This is the Boltzmann transport equation.
In many problems the collision term (8f/3t).,n may be treated by the intro-
duction of a relaxation time 7,(r,v), defined by the equation

(0fl0t)eon = —(f — foV7. - (6)

Here fj is the distribution function in thermal equilibrium. Do not confuse T,
for relaxation time with 7 for temperature. Supposc that a nonequilibrium dis-
tribution of velocities is set up by external forces which are suddenly removed.
The decay of the distribution towards equilibrium is then obtained from (6) as

a—f)_ f—fo

at T

(7)

if we note that dfy/dt = 0 by definition of the equilibrium distribution. This
equation has the solution

=Sy = (f = fomo exp(—t/,) . (8)

It is not excluded that 7, may be a function of r and v.
We combine (1), (5), and (6) to obtain the Boltzmann transport equation
in the relaxation time approximation:

T wgmafivguig=-0 ©

In the steady state df/at = 0 by definition.

Particle Diffusion

Consider an isothermal system with a gradient of the particle concentra-
tion. The steady-state Boltzmann transport equation in the relaxation time ap-
proximation becomes

v dfldx = — (f — fV7. (10)
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where the nonequilibrium distribution function f varies along the x direction.
We may write (10) to first order as

fi =fo — v dfpldx (11)

where we have replaced 3f/dx by dfy/dx. We can iterate to obtain higher order
solutions when desired. Thus the second order solution is

f2 = fo — e dfy/dx = fy — v dfy/dx + vied o /dx (12)
The iteration may be used in the treatment of nonlinear effects.

Classical Distribution

Let f; be the distribution function in the classical limit:
fo=expllp — eyl . (13)

We are at liberty to take whatever normalization for the distribution function
is most convenient because the transport equation is linear in f and f,. We can
take the normalization as in (13) rather than as in (1). Then

dfy/dx = (dfp/dp)(du/dx) = (fy/r)(du/dx) | (14)
and the first order solution (11) for the nonequilibrium distribution becomes
f=fo— (o fo/niduds) . (15)

The particle flux density in the x direction is

T =jij(e)de , (16)

where D(e) is the density of electron states per unit volume per unit energy
range:

_ 1 (2M)* e
Dee) 2ﬂj<ﬁ2) e (17)
Thus

= J’ v, foD(e)de — (du/dx) J (i1, fo/T)D(€)de . (18)

The first integral vanishes because v, is an odd function and f is an even func-
tion of v,. This confirms that the net particle flux vanishes for the equilibrium
distribution f;. The sccond integral will not vanish.

Before evaluating the second integral, we have an opportunity to make use
of what we may know about the velocity dependence of the relaxation time 7,.
Only for the sake of example we assume that 7, is constant, independent of ve-
locity; 7, may then be taken out of the integral:

Ji = —(dpidx)(7,/7) f v2fD(e)de . (19)
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The integral may be written as
%Ju%ﬁ,D(e)de = %J@Mﬂ%f@(e)dé =nt/M , (20)

because the integral is just the kinetic energy density 3n7 of the particles. Iere
[fuD(€)de = n is the concentration. The particle flux density is

* = —(n7 /M) du/dx) = —(r,7/M)(dn/dx) , (21)
because
p = 7logn + constant . (22)
The result (21) is of the form of the diffusion equation with the diffusivity

D, = 7.0/M = 3(v¥7, . (23)

Another possible assumption about the relaxation time is that it is in-
versely proportional to the velocity, as in 7, = I/v, where the mean free path [ is
constant. Instead of (19) we have

J5 = —(duldx)l/r) f(uz/oyou(e)ds , (24)

and now the integral may he written as

%fvfoD(e)dE =1inc , (25)
where ¢ is the average speed. Thus
Ji = —sllen/m)(dw/dx) = —3lc(dn/dx) | (26)
and the diffusivity is
D, =35 . (27)

Fermi-Dirac Distribution

The distribution function is

_ 1
B explle —u)r] + 1~

fo (28)

To form dfy/dx as in (14) we need the derivative dfy/dp. We argue below
that

dfo/dp = 8(e — p) , (29)
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at low temperatures 7 <€ p. Here 8 is the Dirac delta function, which has the
property for a general function F(e) that

| Ferste - wide = Fip) (30)

Now consider the integral [¢ F(€)(df,/du)de. At low temperatures dfy/du is very
large for € = u and is small elsewhere. Unless the function F(e) is very rapidly
varying near u, we may take F(e) outside the integral, with the value F(u):

IOWF(G)(dfO/du)dezF(p) f:(dfo/du)de - Flu) J'Om(dfo/de)de

= —F(u)[fo(e)l5 = F(u)fp(0) ,

where we have used df,/du = —dfy/de. We have also used f, = 0 for € = . At
low temperatures f(0) = 1; thus the right-hand side of (31) is just F(u), consis-
tent with the delta function approximation. Thus

dfy/dx = 8le — pwdp/dx . (32)

(31)

The particle flux density is, from (16),
i = ~(dusdyr, [ o28(e — mD(e)de . (33)

where 7, is the relaxation time at the surface € = p of the Fermi sphere. The
integral has the value

20%(3n/%,) = n/m | (34)

by use of D(u1) = 3n/2¢; at absolute 7cro, where e; = smv7 defines the velocity
vp on the Fermi surface. Thus

Ji = —(nt/m)dusdx . (35)
At absolute zero w(0) = (A%2m)(37°n)**, whence

du/dx = [Z#22m)(373 Y i dn /dx

s (36)
= 3ep/n)dn/dx |
so that (33) becomes
J: = —(27./3m)ep dn/dx = —30 7, dnidx . (37)
The diffusivity is the coefficient of dn/dx:
D, = jv37,. | (38)

closely similar in form to the result (23) for the classical distribution of veloci-
ties. In (38) the relaxation time is to be taken at the Fermi energy.
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We see we can solve transport problems where the Fermi-Dirac distribu-
tion applies, as in metals, as easily as where the classical approximation
applies.

Electrical Conductivity

The isothermal electrical conductivity o follows from the result for the
particle diffusivity when we multiply the particle flux density by the particle
charge ¢ and replace the gradient du/dx of the chemical potential by the gra-
dient gdg/dx = —qE, of the external potential, where E, is the x component of
the electric field intensity. The electric current density follows from (21):

J, = (ng’r/m)E ; o =ng*r/m , (39)

for a classical gas with relaxation time 7,. For the Fermi-Dirac distribution,
from (35),

J, = (ng*r./m)E ; o =ng’t,/m . (40)

APPENDIX G: VECTOR POTENTIAL, FIELD MOMENTUM,
AND GAUGE TRANSFORMATIONS

This section is included because it is hard to find the magnetic vector po-
tential A discusscd thoroughly in one place, and we need the vector potential
in superconductivity. It may seem mysterious that the hamiltonian of a particle
in a magnetic field has the form derived in (18) below:

2
H= 2§4 (p— —gA) + Q¢ , (1)

where Q is the charge; M is the mass; A is the vector potential; and ¢ is
the electrostatic potential. This expression is valid in classical mechanics and
in quantum mechanics. Becausc the kinetic energy of a particle is not changed
by a static magnetic ficld, it is perhaps unexpected that the vector potential
of the magnetic field enters the hamiltonian. As we shall see, the key is the
observation that the momentum p is the sum of two parts, the kinetic
momentum

Pun = Mv (2)

which is familiar to us, and the potential momentum or field momentum

Phield = gA - (3)
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The total momentum is

P=Pldn+Pﬁcld=Mv+%A, (4)

“and the kinetic energy is

Ly = Loy = L (p-2af
g MV =gy (MOF” =5y (P ¢ A) (5)
The vector potential' is related to the magnetic field by

B=curl A . (6)

We assume that we work in nonmagnetic material so that H and B are treated
as identical.

Lagrangian Equations of Motion

To find the Hamiltonian, the prescription of classical mechanics is clear: we
must first find the Lagrangian. The Lagrangian in generalized coordinates is

L =%Mz‘f—(?qo(q) +g<§| FAlg) )

This is correct because it leads to the correct equation of motion of a charge in
combined electric and magnetic fields, as we now show.
In Cartesian coordinates the Lagrange equation of motion is

L _ e  Qf.0A,  0A,  9A
n an c(xax a—er“ax ’ (9)
L _ e+ 24, (10)
ox c
. dA . 0A 0A 0A JA
i%=Mx+—Q— "=Mx+2(—‘ ti—+gyg—+z ) (11)
dt ax c dt o Ay 0z

Thus (8) becomes

dA, A A
Mi+Q6£+g[aA‘+y( *— y)+‘z(a”—aA1)]—0, (12)

o c | ot dy o 9z ax

'For an elementary treatment of the vector potential see E. M. Purcell, Electricity and
magnetism, 2nd ed., McGraw-Hill, 1984.
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or
d* Q
M=== + —[v XB 13
T or, + v xB], (13)
with
__% _ 104
E = x ¢ at (14)
B=curlA . (15)

Equation (13) is the Lorentz force equation. This confirms that (7) is correct.
We note in (14) that E has one contribution from the electrostatic potential ¢
and another from the time derivative of the magnetic vector potential A.
Derivation of the Hamiltonian

The momentum p is defined in terms of the Lagrangian as

oL .
=%C - Mq + Z4A 16
P e . (16)

in agrecment with (4). The hamiltonian H(p,q) is defined by

Hpq=p-q—-L, (17)
or
2, Q. 1,y Q. 1 Q.Y
= 24 S A A = 2 — Z A= — - X
H=M{"+ -4 A= M@+ Qp—_—q-A=g |\p—_A] +Q¢, (18)
asin (1).

Field Momentum

The momentum in the electromagnetic field that accompanies a particle
moving in a magnetic field is given by the volume integral of the Poynting vec-
tor, so that

Prea = 4—7176deE XB . (19)

We work in the nonrelativistic approximation with » < ¢, where v is the veloc-
ity of the particle. At low values of »/c we consider B to arise from an external
source alone, but E arises from the charge on the particle. For a charge Q
atr’,

E=-Vo . Vip=—47Q8(r — r') . (20)
Thus

pr= —ﬁde Ve X curl A . (21)
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By a vector relation we have
JdVVe X curlA = —[dV[A X curl (Vo) — AdivVep — (V) divA] . (22)

But curl (Ag) = 0, and we can always choose the gauge such that div A = 0.
This is the transverse gauge.
Thus, we have

1 1 N _ @
b= 1| VAV =L avaQan v =A@

This is the interpretation of the field contribution to the total momentum
P = Mv + QA/.
GAUGE TRANSFORMATION
Suppose Hyy = eifs, where

L (p-2aY)
H= g <p A) . (24)

Let us make a gauge transformation to A’, where
A=A+ Vy, (25)

where y is a scalar. Now B = curl A = curl A’, because curl (Vy) = 0. The
Schrédinger equation becomes

2}\4 (P_S A’ +% V)()2 U=ep . (26)
What ¢’ satisfies
o7 (p—-g A')zt/x’ =e (27)
with the same € as for /P Equation (27) is equivalent to
it (p—gA - %VX)Z W= el . (28)
We try
&' = expliQx/he)y . (29)
Now
P’ = expliQxelpib + ¢ (VexpliQxe
so that

(p— %Vx)tﬁ' = exp(iQx/fic)py
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and

° 2
ﬁ-(p _%A—gv)() /4 =eXP(lQX/ﬁC)2—1M(p —__A) W

= exp(iQx/hc)e .

(30)

Thus ¢’ = exp(iQx/fic)y satisfies the Schridinger equation after the
gauge transformation (25). The energy € is invariant under the transformation.

The gauge transformation on A merely changes the local phase of the
wavefunction. We see that

Y =gty (3D
so that the charge density is invariant under a gauge transformation.

Gauge in the London Equation

Because of the equation of continuity in the flow of electric charge we
require that in a superconductor

divi=0,
so that the vector potential in the London equation j = —cA/4mA? must satisfy
divA =0 . (32)

Further, there is no current flow through a vacuum/superconductor interface.
The normal component of the current across the interface must vanish: j, = 0,
so that the vector potential in the London equation must satisfy

A,=0. (33)

The gauge of the vector potential in the London equation of superconductivity
is to be chosen so that (32} and (33) are satisfied.

APPENDIX H: COOPER PAIRS
R Rl

For a complete set of states of a two-electron system that satisfy periodic
boundary conditions in a cube of unit volume, we take plane wave product
functions

ok kyrry) = explitk; -, + ky - 1y)] . (1

We assume that the electrons are of opposite spin.
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We introduce center-of-mass and relative coordinates:

R=3r+rn); r=r-n; (2)
K=k +k;; k=3 — k), 3)
so that
k rm+k r,=K-R+k-r. (4)
Thus (1) becomes
o(KKkR,r) = exp(iK - R) exp(ik - r) | (5)

and the kinetic energy of the two-electron system is
eg + E, = (B2m)GK® + k?) . (6)
We give special attention to the product functions for which the center-of-

mass wavevector K = 0, so that k; = —k,. With an interaction H, between the
two electrons, we set up the eigenvalue problem in terms of the expansion

x(r) = Zgy exp(ik - 1) . (7)
The Schrodinger equation is
(Hy + Hy — €)x(r) = 0 = 2, [(Ey — €)ge + Hygyolexp(ik’ - r) | (8)
where H| is the interaction energy of the two electrons. Here € is the eigenvalue.
We take the scalar product with exp(ik - r) to obtain
(Ex — €)gi + g k|H k) =0, (9)

the secular equation of the problem.
Now transform the sum to an integral:

(E — €)g(E) + [dE' g(E")H\(E,E')N(E') =0 , (10)

where N(E') is the number of two electron states with total momentum K = 0
and with kinetic energy in dE’ at E'.

Now consider the matrix elements H,(E,E’) = (kIH,lk’). Studies of these hy
Bardeen suggest that they are important when the two electrons are confined to
a thin encrgy shell near the Fermi surface—within a shell of thickness %wy,
above Ep, where wp, is the Debye phonon cutoff frequency. We assume that

H(EE')=-V (11)

for E,E’ within the shell and zero otherwise. Here V is assumed to be positive.
Thus (10) becomes

(E— €)g(E) =V “ B g(E"N(E") = C |, (12)

9%,

with €,, = €z + fiw),. Here C is a constant, independent of E.
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From (12) we have

o) = 5 (13)
and
2, N(E'
1=v [ ap NED (14)
2¢n E' €

With N(E’) approximately constant and equal to N, over the small energy
range between 2¢,, and 2¢;, we take it out of the integral to obtain

2
. oo, 1 e, — €
L= NV | R = NeVlog (15)
Let the eigenvalue € of (15) be written as
€=2— A, (16)

which defines the binding energy A of the electron pair, relative to two free
electrons at the Fermi surface. Then (15) becomes

1=NV logw = valog%"iﬂ%ié , (17)
or
NGV = log(1 + 2ap/A) . (18)
This result for the binding energy of a Cooper pair may be written as
2hawp (19)

T exp(UNV) -1

For V positive (attractive interaction) the energy of the system is lowered by
excitation of a pair of electrons above the Fermi level. Therefore the Fermi
gas is unstable in an important way. The binding energy (19) is closely related
to the superconducting energy gap E,. The BCS calculations show that a high
density of Cooper pairs may form in a metal.

APPENDIX I: GINZBURG-LANDAU EQUATION
oo e s L e S s e e B e e e ]

We owe to Ginzburg and Landau an elegant theory of the phenomenology
of the superconducting state and of the spatial variation of the order parameter
in that state. An extension of the theory by Abrikosov describes the structure
of the vortex state which is exploited technologically in superconducting mag-
nets. The attractions of the GL theory are the natural introduction of the
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coherence length and of the wavefunction used in the theory of the Josephson
effects in Chapter 12.
We introduce the order parameter y(r) with the property that

FHE(r) = ng(r) , (1)

the local concentration of superconducting electrons. The mathematical for-
mulation of the definition of the function ¥(r) will come out of the BCS the-
ory. We first set up a form for the free energy density Fy(r) in a superconduc-
tor as a function of the order parameter. We assume that in the general vicinity
of the transition temperature

Fy(r) =Fy—a|yf + éBM/\“ + (1/2m)|(—ihV—qA/e)p|* — J;Ba M-dB, , (2)

with the phenomenological positive constants a, B, and m, of which more will
be said. Here:

1. Fyis the free energy density of the normal state.

2. —alyl® + 381pl* is a typical Landau form for the expansion of the free
energy in terms of an order parameter that vanishes at a second-order phase
transition. This term may be viewed as —ang + iBn% and by itself is a mini-
mum with respect to ng when ny(T) = a/B.

3. The term in Igrad ¢I” represents an increase in encrgy caused by a spa-
tial variation of the order parameter. It has the form of the kinetic energy in
guantum mechanics.! The kinetic momentum —i#V is accompanied by the
field momentum —gA/c to ensure the gauge invariance of the free energy, as
in Appendix G. Here ¢ = —2e for an electron pair.

4. The term — /M - dB,, with the fictitious magnetization M = (B — B,)/4m,
represents the increase in the superconducting free energy caused by the ex-
pulsion of magnetic flux from the superconductor.

The separate terms in (2) will be illustrated by cxamples as we progress
further. First let us derive the GL equation (6). We minimize the total free en-
ergy JdV Fg(r) with respect to variations in the function y(r). We have

8F(r) = [—ay + By + (12m)(—ihV — gA/chp - (iAV — gA/c)8y* + c.c] (3)

We integrate by parts to obtain
JdV (Vi) (Véy*) = — [dV (Vdy* (4)

if 8¢ vanishes on the boundaries. It follows that
8JdV Fg = [dV 8¢*[—ay + Bl [y + (1/2m)(—ikiV —gA/c) Y] +ce. (5)

'A contribution of the form IVMI%, where M is the magnetization, was introduced hy Landau
and Lifshitz to represent the exchange energy density in a ferromagnet; see QTS, p. 65.
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This integral is zero if the term in brackets is zero:

[(1/2m)(—ihV — qgA/c)* — a + BlYly =0 . (6)

This is the Ginzburg-Landau equation; it resembles a Schrodinger equation
for .

By minimizing (2) with respect to A we obtain a gauge-invariant expres-
sion for the supercurrent flux:

Js(r) = = (iqh/2m)(p*Vip —pVP*) — (@*/me)p*PA . (7)

At a free surface of the specimen we must choose the gauge to satisfy the
boundary condition that no current flows out of the superconductor into the
vacuum: f + jg = 0, where fi is the surface normal.

Coherence Length. The intrinsic coherence length £ may be defined from
(6). Let A = 0 and suppose that BlyI* may be neglected in comparison with «.
In one dimension the GL equation (6) reduces to

A dy
B 8
Im dx® ay ®)
This has a wavelike solution of the form exp(ix/£), where £ is defined by
¢ = (A¥2ma)'? . (9)

A more interesting special solution is obtained if we retain the nonlinear
term Blyl? in (6). Let us look for a solution with ¢ = 0 atx = 0 and with iy — ¢,
as x —> co. This situation represents a boundary between normal and supercon-
ducting states. Such states can coexist if there is a magnetic field H, in the nor-
mal region. For the moment we neglect the penetration of the field into the
superconducting region: we take the ficld penetration depth A < £, which de-
fines an extreme type I superconductor.

The solution of

2 2
L oy By =0, (10)
subject to our boundary conditions, is
Y(x) = (a/B)“tanh(x/V'2£) . (1)

This may be verified by direct substitution. Deep inside the superconductor
we have ¢, = (a@/B)"?, as follows from the minimization of the terms —alyl®> +
sBly* in the free energy. We see from (11) that £ marks the extent of the co-
herence of the superconducting wavefunction into the normal region.

We have scen that deep inside the superconductor the free energy is a
minimum when lyl? = a/B, so that

Fy=Fy— o¥2B = Fyy — HY87 | (12)
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by definition of the thermodynamic critical field H, as the stabilization free
energy density of the superconducting state. It follows that the critical field is
related to a and B3 by

H_ = (47a¥B)"? . (13)

Consider the penetration depth of a weak magnetic field (B < H,) into a
superconductor. We assume that |g!* in the superconductor is equal to Iyl
the value in the absence of a field. Then the equation for the supercurrent flux
reduces to

Js(e) = —(@*/me)o A (14)
which is just the London equation jg(r) = —(c/4mA®)A, with the penetration
depth

s \1m 20 \ 12
v ()= () 15
47rq” by [ dmqa

The dimensionless ratio k = A/£ of the two characteristic lengths is an
important parameter in the theory of superconductivity. From (9) and (15)
we find

me (B
We now show that the value x = 1/V2 divides type I superconductors
(k < 1/V/2) from type II superconductors (x > 1/V2).

Calculation of the Upper Critical Field. Superconducting regions nucle-
ate spontaneously within a normal conductor when the applied magnetic field
is decreased below a value denoted by H,,. At the onset of superconductivity
[yl is small and we linearize the GL equation (6) to obtain

LtV - qAp = . (17)

2m

The magnetic ficld in a superconducting region at the onset of superconduc-
tivity is just the applied field, so that A = B(0,x,0) and (17) becomes

5 (& az) 1(. o 9B )2
N N S = e 18
o2m <3x2 322 4 am\ ¢ o A (18)

This is of the same form as the Schrédinger equation of a free particle in a
magnetic field.
We look for a solution in the form expli(k,y + k,z)]¢(x) and find

(12m)[—#2d¥d:® + BAE + (hk, — qBx/cfle = ap | (19)
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this is the equation for an harmonic oscillator, if we set E = @ — (#%/2m)
(k% + k2) as the eigenvalue of

(12m) —#°d*dx” + (¢"B*c*\® — (2RkgBlc)x]e = Eg . (20)

The term linear in x can be transformed away by a shift of the origin from
Otoxy, = hkqu/QmC, so that (20) becomes, with X = x — x,,

_[ﬁ j_; + %m(qB/rrw)zX'q‘](p = (E + R’k/2m)ep . (21)
The largest value of the magnetic field B for which solutions of (21) exist is
given by the lowest eigenvalue, which is
sho = hgB, . /2me = a — i%Yom | (22)
where w is the oscillator frequency ¢B/me. With k, set equal to zero,
B = Hyy = 20mc/gh . (23)

This result may be expressed by (13) and (16) in terms of the thermody-
namic critical field H, and the GL parameter k = A/&:

_ 2ame | H, _ me E —
Ha =<3 (417(12/3)1/2—\/5 ” \/2: H,=V2kH, . (24)

When ME > 1/V2, a superconductor has H,, > H, and is said to be of type IL
It is helpful to write H,; in terms of the flux quantum ®, = 2wfic/q and

£ = i2ma:

_2mea 9P 82 _ Py
gh  2whe 2mad®  2mE

This tells us that at the upper critical field the flux density H,, in the material

is equal to one flux quantum per area 2m¢?, consistent with a fluxoid lattice
spacing of the order of £.

Hr:i (25)

APPENDIX J: ELECTRON-PHONON COLLISIONS
R e e R R T ey

Phonons distort the local crystal structure and hence distort the local band
structure. This distortion is sensed by the conduction electrons. The important
effects of the coupling of electrons with phonons are

* FElectrons are scattered from one state k to another state k’, leading to elec-
trical resistivity.
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* Phonons can be absorbed in the scattering event, leading to the attenuation
of ultrasonic waves.

* An electron will carry with it a crystal distortion, and the effective mass of
the electron is thereby increased.

* A crystal distortion associated with one electron can be sensed by a second
electron, thereby causing the electron-electron interaction that enters the
theory of superconductivity.

The deformation potential approximation is that the electron energy e(k)
is coupled to the crystal dilation A(r) or fractional volume change by

elkr) = g,(k) + CAlr) , (1)

where C is a constant. The approximation is useful for spherical band edges
€y(k) at long phonon wavelengths and low electron concentrations. The
dilation may be expressed in terms of the phonon operators g, a7 of
Appendix C by

Alr) =i, (h/2Mwy)"|q|lagexpliq - r) — agexp(—iq ' 1)] . (2)
q

as in QTS, p. 23. Here M is the mass of the crystal. The result (2) also follows
from (C.32) on forming g, — ¢, in the limit k < 1.

In the Born approximation for the scattering we are concerned with the
matrix elements of CA(r) between the one-electron Bloch states |k) and |k’),
with [k) = exp(ik * r)uy(r). In the wave field representation the matrix ele-
ment is

H' = [ d ¢ (r)CAY(r) = 3, ey (k' |CA |k>
ik
=iCY, ey 3 (i2Mwy)|ql(ag) d upane™ 0 (3)
kx a
- aq [ dx uju g9y |

where
Y(r) = % crpi(r) = % cpexp(ik « vy r) | (4)

where ¢, ¢ are the fermion creation and annihilation operators. The product
ui (r)uy(r) involves the periodic parts of the Bloch functions and is itself peri-
odic in the lattice; thus the integral in (3) vanishes unless

k—-k tq= 0 . . .
vector in the reciprocal lattice.

In semiconductors at low temperatures only the possibility zero (N processes)
may be allowed energetically.



Appendix

Let us limit ourselves to N processes, and for convenience we approximate
J dc uytty, by unity. Then the deformation potential perturbation is

=iC kE (h12Mw o)V |q (2 gt — aqck-gti) - (5)
q

Relaxation Time. In the presence of the electron-phonon interaction
the wavevector k is not a constant of the mation for the electron alone, but
the sum of the wavevectors of the electron and virtual phonon is conserved.
Suppose an electron is initially in the state |k); how long will it stay in that
state?

We calculate first the probability @ per unit time that the electron in k will
emit a phonon q. If ng is the initial population of the phonon state,

wk — q;ng P 8le — fiwg — &)  (6)

o = (2mh) Kk — qng + 1H'

by time-dependent perturbation theory. Here
|k — qing -i-lIH’|k;nq>|2 = [Cgfiq/ZMcs(nq +1)] . (7)

The total collision rate W of an electron in the state |k) with a phonon sys-
tem at absolute zero is, with ng =0,

47Tp(,5 f_ d(cos 6 )J dy ¢°8(e —q Ty, (8)

where p is the mass density.
The argument of the delta function is

2
o 2k 9= ¢°) ~fieg = ;’L (2k-q-g"~gq.) , ©
where g, = 2fim* ¢, with ¢, the velocity of sound. The minimum value of k for
which the argument can be zero is k,;, = 5(q + g,), which for ¢ = 0 reduces to
Kpin = 59. = m*c,/h. For this value of k tho clectran group velocity 0, = kin/m*
is cqual to the velocity of sound. Thus the threshold for the emission of
phonons by electrons in a crystal is that the electron group velocity should ex-
ceed the acoustic velocity. This requirement resembles the Cerenkov thresh-
old for the emission of photons in crystals by fast electrons. The electron
energy at the threshold is gm*c? ~ 10727 - 10" ~ 107 "% erg ~ 1 K. An electron
of energy below this threshold will not be slowed down in a perfect crystal at
absolute zero, even by higher order electron-phonon interactions, at least in
the harmonic approximation for the phonons.

For k > g, we may neglect the gq, term in (9). The integrals in (8) become

1 1
f du | dg g*(2m*/h*q)8(2kw — g) = (8m*/h%) f du kKu? = 8mk¥3%% , (10)
-1 [}]
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and the phonon emission rate is

2C*mk?
3mpch?

W(emission) = (11)
directly proportional to the electron energy €. The loss of the component of
wavevector parallel to the original direction of the electron when a phonon is
emitted at an angle 6 to k is given by g cos 6. The fractional rate of loss of k; is
given by the transition rate integral with the extra factor (g/k) cos ¢ in the inte-
grand. Instead of (10), we have

1
(2m*/h%k) f du 8k3ut = 16m*k¥58% | (12)
0

so that the fractional rate of decrease of k_ is
Wi(k,) = 4C*m*k*/5mpch® . (13)

This quantity enters into the electrical resistivity.
The above results apply to absolute zero. At a temperature kT > fick the
integrated phonon emission rate is

C*mrkkgT

mct ph® (14

W(emission) =
For electrons in thermal equilibrium at not too low temperatures the required
inequality is easily satisfied for the rms value of k. If we take C = 1072 erg;
m*=10"% gk= 107em ™Y e, =3 X 10°cms ™ p=5 g em % then W= 101271
At absolute zero (13) gives W = 5 X 10' 57! with these same parameters.
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