
APPENDIX A: TEMPERATURE DEPENDENCE 
OF THE REFLECTION LINES 

. . . I came to the conclusion that the sharpness 
of the interference lines would not suffer but 
that their intensity should diminish with in- 
creasing angle of scattering, the more so the 
higher the temperature. 

P. Debye 

As the temperature of the crystal is increased, the intensity of the Bragg- 
reflected beams decreases, but the angular width of the reflected line does not 
change. Experimental intensities for aluminum are shown in Fig. 1. It is sur- 
prising that we can get a sharp x-ray reflection from atoms undergoing large 
amplitude random thermal motion, with instantaneous nearest-neighbor spac- 
ings differing by 10 perccnt at room temperature. Before the Laue experiment 

Figure 1 The dependence of intensity on temperature for the (hOO) x-ray reflections of 
aluminum. Reflections (hOO) with h odd are iorbidden for an Icc structure. (ACtcr R. M. Nicklow 
and R.  A. Young.) 



was done, but when the proposal was discusscdl in a coffee house in Munich, 
the objection was made that the instantaneous positions of thc atoms in a 
crystal at room temperature are far from a regular periomc array, because of 
the large thermal fluctuation. Therefore, the argument went, one should not 
expect a well-defined diffracted beam. 

But such a beam is found. The reason was given by Debye. Consider the 
radiation amplitude scattered by a crystal: let the position of the atoni nomi- 
nally at rj contain a term u( t )  fluctriating in time: r(t) = rj + u(t). We suppose 
each atom fluctuates independently about its own equilihri~~m position.2 Then 
the thermal average of the structure factor (2.43) contains terms 

f ,  exp(-iG. ?)(exp(-iG. u)) , (1) 

where ( . . . ) denotes thermal average. The series expansion of the exponential is 

(exp(-iG - u)) = 1 -i(G. u) - ; ( ( G .  u ) ~ )  + . .. . (2) 

But (G . u)  = 0, because u is a random thermal displacerrierit uncorrelated 
with the direction of 6. Further. 

The factor arises as the geometrical average of cos2% over a sphere. 
The function 

has the same series expansion as (2) for the first two terms shown here. For a 
harmonic oscillator all terms in the series (2) and (3) can be shown to be iden- 
tical. Then the scattered intensity, which is the square of the amplitude. is 

where I ,  is the scattered intensity from the rigid lattice. The exponential factor 
is the Debye-Waller factor. 

Here (u2) is the mean square displacement of an atom. The thermal aver- 
age potential energy (U) of a classical harmonic oscillator in three dimensions 
is ak,~, whence 

'P P. Ewald, private comm~mication. 
'This is the Einstein model of a solid; it is not a very good model at low temperatures, but it 

works well at high temperatures. 
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where C is the force constant, M is the mass of an atom, and w is the frequency of 
the oscillator. We have used the result w2 = C/M.  Thus the scattered intensity is 

where hkl are the indices of the reciprocal lattice vector G.  This classical result 
is a good approximation at high temperatures. 

For quantum oscillators (u2) does not vanish even at T = 0; there is zero- 
point motion. On the independent harmonic oscillator model the zero-point 
energy is ghw; this is the energy of a three-di~nensional qnantum harmonic 
oscillator in its ground state referred to the classical energy of the same oscilla- 
tor at rest. Half of the oscillator energy is potential energy, so that in the 
ground state 

whence, by (4), 

at absolute zero. If G = 10' cm-l, w = and M = g, the argu- 
ment of the exponential is approximately 0.1, so that 1/1, = 0.9. At absolute 
zero, 90 percent of the beam is elastically scattered and 10 percent is inelasti- 
calIy scattered. 

We see from (6) and from Fig. 1 that the intensity of the diffracted line 
decreases, but not catastrophically, as the temperature is increased. Reflec- 
tions of low G are alfectcd less than reflections of high G. The intensity we 
have calculated is that of the coherent diffraction (or the elastic scattering) in 
the well-defined Bragg directions. The intensity lost from these directions is 
the inelastic scattering and appears as a diffuse hackground. In inelastic scat- 
tering the x-ray photon causes tlie excitation or de-excitation of a lattice vibra- 
tion, and the photon changes direction and energ).. 

At a given temperature thc Debye-Waller factor of a diffraction line de- 
creases with an increase in the magnitude of the reciprocal lattice vector G as- 
sociated with the reflection. The larger IGI is, the weaker the reflection at high 
temperatures. Thc theory we have worked out here for x-ray reflection applies 
equally well to neutron diffraction and to the Mijssbauer effect, tlie recoil- 
less emission of gamma rays by nuclei bound in crystals. 

X-rays can be absorbed in a crystal also by the inelastic processes of photo- 
ionization of electrons and Compton scattering. In the photoeffect the x-ray 
photon is absorbed ancl an electron is ejected from an atom. In the Compton 
effect the photon is scattered inelastically by an electron: the photon loses 
energy ancl the clectron is ejected from an atom. The depth of penetration 
of the x-ray beam depends on the solid and on the photon energy, but 1 cm is 



typical. A diffracted beam in Rragg reflection may rerriove the energy in a 
much shorter distance, perhaps cm in an ideal crystal. 



APPENDIX B: EWALD CALCULATION OF LATTICE SUMS 

The problem is to calcnlate the electrostatic potential experienced by 
one ion in the presence of aU the other ions in the crystal. We consider a lattice 
made up of ions with positive or negative chargcs and shall assume that the 
ions are spherical. 

We compute the total potential cp = cp, + cp2 at an ion as the slim of tsvo dis- 
tinct but rdatcd potentials. The potential cp, is that of a structure with a Gaiissian 
distribution of charge situated at each ion site, with s i p s  the same as those of 
the real ions. According to thc definition of the Madelung constant, the charge 
distribution on the reference point is not considered to contribute to the poten- 
tial or cp, (Fig. la) .  We therefore calculate the potential pl as the difference 

'PI = (Pa - (Ph 

Figure 1 (a) Cliarge distlihution used for computing potential rp,; the potential rpn is cornputcd (it 
incllldes the dashed curve at the reference point), whilc cph is the potential of the dashed curve 
alone. (b) Charge distributio~~ for poterrtial qz. The reference point is denoted by an X. 



of two potentials, p, being the potential of a continuous series of Gaussian dis- 
tributions and a being the potential of the single Gaussian distribution on the 
reference point. 

The potential p2 is that of a lattice of point charges with an additional 
Gaussian distribution of opposite sign superposed upon the point charges 
(Fie. lb) .  

\, 

The point of splitting the problem into the two parts 9, and q2 is that by a 
suitable choice of the parameter determining the width of each Gaussian peak 
we can get very good convergence of both parts at the same time. The Gaussian 
distrihiitions drop out completely on taking the surn of the separate charge 
distributions giving rise to cpl and p,, so that the value of the total potential is 
independent of the width parameter, but the rapidity of convergence depends 
on the value chosen for that parameter. 

\it: calculate first the potential q, of a continuoi~s Gaussim distribution. 
We expand pa and the charge density p  in Fourier series: 

where G is 2 ~ r  tinies a vector in the reciprocal lattice. The Poisson equation is 

so that 

c, = 4 7 7 p , / ~ ~  

We suppose in finding pG that there is associated with each lattice point of 
the Bravais lattice a basis containing ions of charge q, at positions r, relative to 
the lattice point. Each ion point is therefore the center of a Gaussian charge 
distrihution of density 

where the factor in front of the exponential ensures that the total charge associ- 
ated with the ion is q,; the range parameter 7 is to he chosen judiciously to ensure 
rapid convergence of the final result (6), which is in value independent of T .  

L%'e would normally evaluate pG by multiplying both sides of (2) by 
exp(-iG . r) and integrating over the volume A of one cell, so that the charge 
distrihution to be considered is that originating on the ion points within the 
cell and also that of the tails of the distributions originating in all other cells. It 



is easy to see, however, that the integral of the total charge density times 
exp[-(iG . r ) ]  over a single cell is equal to the integral of the charge density 
originating in a s ing l~  cell times exp[-(iG . r)] over all space. 

We have therefore 

= I 2 q , in /~ r "Yexp-~( r  - r . )qexp(-i~ - r )  ib 
111 ' 
space 

This expression is readily evaluated: 

where S(G) = q,exp(-iG rt) is just the structure factor (Chapter 2) in 
appropriate units. Using (1) and (3), 

At the origin r = 0 we have 

4 n  
cpa = S(G)G-2 eV(-G2/49) . 

C 

The potential cp,, at tht: reference ion point i due to thc central Gaussian 
distribution is 

and so 

The potential cp, is to be evaluated at the reference point, and it differs 
from zero because other ions have the tails of their Gaussian distributions 
overlapping the reference point. The potential is due to three contributions 
from each ion point: 



where the terms are from the point charge, frorrl the part of the Gaussian dis- 
tribution lying inside a sphere of radius r, about the lth ion point, and from 
that part lying outside the sphere, respectively. On substituting for p ( r )  and 
carrying out elementary manipulations, we have 

where 

Finally, 

is the desired total potential of the reference ion i in thc field of all the other 
ions in the crystal. I n  the application of the Ewald method the trick is to 
choose TJ such that both sums in (6) converge rapidly. 

Ewald-Kornfeld Method for Lattice Sums for Dipole Arrays 

Kornfeld extended the Ewald method to &polar and quadrupolar arrays. 
We discuss here the field of a dipolc array at a point which is not a lattice 
point. According to (4) and ( 5 )  the potential at a point r in a lattice of positive 
unit point charges is 

where rl is the distance from r to the lattice point 1. 
The first term on the right gives the potential of the charge distribution 

p = ( T J / T ~ ) ~ ! ~  e ~ p ( - ~ ? )  about each lattice point. By a well-known relation in 
electrostatics we obtain the potential of an array of unit dipoles pointing in tlie 
s direction by taking -d/dz of the above potential. The term under discussion 
contributes 

and the s component of the electric field from this term is E,  = @p/az2, or 

The second terrn on the right of (7) after one differentiation gves 



and the z component of this part of the field is 

2 iz;[(3~(firl)/r;) f (6/r-f )(T/T)~' exp(-~r,? 
1 

The total Ez is given by the sum of (8) and (9). The effects of any number of 
lattices may be added. 

APPENDIX C: QUANTIZATION OF ELASTIC WAVES: PHONONS 

Phonor~s were introduced in Chapter 4 as quantized elastic waves. How do 
we quantize an elastic wave? As a simple model of phonons in a crystal, con- 
sider the vibrations of a linear lattice of particles connected by springs. We can 
quantize the particle motion exactly as for a harmonic oscillator or set of cou- 
pled harmonic oscillators. To do this we make a transformation from particle 
coordinates to phonon coordinates, also called wave coordinates because they 
represent a traveling wave. 

Let N particles of mass M be conncctcd by springs of force constant C and 
length a. To fix the boundary conditions, let the particles form a circular ring. 
We consider the tra~lsverse displacements of the particles out of the plane of 
the ring. The displacement of particle s is q, and its momentum is P ,~ .  The 
Hamiltonian of the system is 

The Hamiltonian of a harmonic oscillator is 

and the energy eigcnvalues are, where n = 0 , 1 , 2 , 3 ,  . . . , 

The eigenvalue problem is also exactly solvable for a chain with the diffrrent 
Hamiltonian (1). 

To solve (1) we make a Fourier transformation from the coordinates p,, q, 
to the coordinates Pk, Qk, which arc known as phonon coordinates. 
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Phonon Coordinates 

The transformation from the particle coordinates q, to the phonon coordi- 
nates Qn is used in all periodic lattice problems. We let 

consistent with the inversc transformation 

Qk = N-'/' z q, exp(-iksa) . ( 5 )  

Here the N values of the wavcvector k allowed by the ~er iodic  boundary con- 
dition q, = y,,, are given by: 

1% need the transformation from the particle momentum p, to the momen- 
turn Yk that is canonically conjugate to the coordmate Qk. The transformation is 

This is not quite what onc wonld obtain by the naive substitution of p for y and 
P for Q in (4) and (S), hecause k and -k have been interchanged between (4) 
and (7). 

LVe verify that our choice of P I  and Qk satisfies the quantum commutation 
relation for canonical variables. We lorm the commutator 

Because the operators q, p are conjugate, they satisb the commutation relation 

[q,,p,l = ifiS(r, s) , (9) 

where S(r,s) is the Kronecker delta symbol. 
Thus (8) hecomes 

[Qk,Pk,] = N-I i'z exp[-i(k - kf)ra] = ih3(k, k') , (10) 

so that Q,, Pk also are conjugate variables. Here we have evaluated the summa- 
tion as 

z exp-i(k - k')ml = 2 exp[-i2v(n - nl)rlN] 
(11) 

= N6(n, n' )  = NS(k, k') , 

where we have used (6) and a standard result for the finite series in (11). 



We carry out the transformations (7) and (4) on the hamiltonian (I) ,  and 
make use of the sum~nation (11): 

X exp(ikkss)[exp(ik'a) - 11 = 2 ~ Q ~ Q - ~ ( I  - cos ka) . (13) 
k 

Thus the hamiltonian (1) becomes, in phonon coordinates, 

If we introduce the symbol wk defined by 

wk = ( 2 ~ / ~ ) ~ ' ~ ( 1 -  cos ka)In , 

we have the phonon hamiltonian in the form 

1 
PkP-k + - M6.J: QkQ-k . 

k 2 1 (16) 

The equation or  motion of the phonon coordinate operator Qk is found hy 
the standard prescription of quantum mechanics: 

ifii), = [Q,, H] = ifiP-klhl , (17) 

with H given by (14). Further, using the co~n~nutator (17), 

i h ~ ~  = [ Q ~ ,  H] = M-'[Y-~,H] = ihw:~, , (18) 

so that 

Q~ + wiQk=O . (19) 

This is the equation of motion of a harmonic oscillator with the frequency wk. 
The energy eigenvalues of a quantum harmonic oscillator are 

where the quantum number nk = 0, 1, 2, . . . . The energy of the entire system 
of all phonons is 

o=Z(nk+;)f iy k (21) 

This resnlt demonstrates the quantization of the energy of elastic waves on 
a line. 
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Creation and Aaaihilation Operators 

It is helpful in advanced work to transform the phonon hamiltonian (16) 
into the form of a set of harmonic oscillators: 

Here a:, ak are harmonic oscillator operators, also called creation and destruc- 
tion operators or bosun operators. The transformation is derived below. 

The bosori creation operator a+  which "creates a phonon" is defined by 
the property 

when acting on a harmonic oscillator state of quantum number n, and the boson 
annihilation operator a which "destroys a phonon" is defined by the property 

a j n ) = n m l r ~ - l )  . (24) 

It follows that 

a+aln) = a+nl"ln - 1) = nln) , (25) 

so that In) is an eigenstate of the operator a+u with the integral eigenvalue n, 
called the quantum number or occupancy of the oscillator. When the phonon 
mode k is in the eigenstate labeled by nk, we may say that there are nk phonons 
in the mode. The eigenvalues of (22) are U = Z (nk + ;)nok, in agreement 
with (21). 

Because 

the commutator of the boson wave operators a: and ak satisfies the relation 

[a ,aS]=aa+-a ta= 1 . (27) 

We still have to prove that the hamiltonian (16) can be expressed as (19) in 
terms of the phonon operators a:, uk. This can be done by the transformation 

The inverse relations are 

Qk = (fi/2~@J~)'"(U~+ UZk)  ; 

Pk = i(fiM0~/2)~"(u~- 

By (4), ( 5 ) ,  and (29) the particle position operator becomes 



This equation relates the particle dlsplacemcnt operator to the phonon cre- 
ation and annihilation operators. 

To obtain (29) horn ( 2 8 ) ,  we use the properties 

QIk = Q ,  ; Pkf = P-k ( 3 3 )  

which follow from ( 5 )  and (7) by use of the quantum mechanical requirement 
that y, and p ,  be hermitian operators: 

% = y :  ; p s = p :  . ( 3 4 )  

Then (28 )  follows from the transformations (4), ( 5 ) ,  and (7) .  We verify tlrat the 
commutation relation (33) is satisfied by the operators defined by (28 )  and (29 ) :  

[ak, a i l  = ( 2 f L ) ~ - ' ( ~ ~ k [ ~ k ,  Q - k l  - i[Qk,pkl + i[P-k,Q-kl 

+ [P-k,PkI/MWk) . ( 3 5 )  

By use of [QkrPk'] = ilid(k,k') from (10 )  we have 

[ak,  a;] = 6(k ,  k ' )  . (36 )  

It remains to show that the versions of ( 1 6 )  and (22 )  of thc phonon hamil- 
tonian are identical. Sie note that wk = mk from ( I S ) ,  and we form 

This e h b i t s  thc cqt~ivalence of the two expressions (14 )  and ( 2 2 )  for H .  l i e  
identify wk = (2C/M)'"(l - cos ka)"' in (15) with the classical frequency of 
the oscillator mode of wavevector k. 

The Fermi-Dirac distribution function' may bc derived in several steps by 
use of a modem approach to statistical mechanics. We outline the argument 
here. Thc notation is such that conventional entropy S is related to the funda- 
mental entropy cr by S = k , ~ ,  and the Kelvin temperature T is related to the 
fundamental temperature T by T = kBT, where k B  is the Boltzmann constant 
with the value 1.38066 X 10 2 3  J K. 

The leading quantities are the entropy, the temperature, the Boltzmann fac- 
tor, the che~nical potential, the Gibbs factor, and thc distribution functions. The 

'This appendix follows closely the introduction to C. Kitlel and H. Krue~r~er. T h r m l  
Physics, 2nd ed., Freeman, 1980. 



entropy measures the number of quantum states accessible to a system. A closed 
system might be in any of these quantum states and (we aqsume) with equal prob- 
ability. The fundamental assumption is that quantum states are either accessible 
or inaccessible to the system, and the system is equally likely to be in any onc ac- 
cessible state as in any other accessible state. Given g accessible statcs, the en- 
tropy is defined as a = log g .  The entropy thus defined will be a fimction of the 
energy U, the number of particles N, and the volu~ne V of the system. 

When two systems, each of specified energy, are bronght into thermal 
contact, they may transfer energy; their total energy remains constant, but the 
constraints on their individual energies are lifted. A transfer of energy in one 
direction, or perhaps in the other, may increase the product g,g, that measures 
the number of accessible states of the combined systems. \%'hat wc call the 
fundamental assumption biases the outcome in favor of that allocation of the 
total energy that maximizes the number of accessible states: more is better, 
and more likely. This statement is the kernel of the law of increase of entropy, 
which is the general expression of the second law of thermodynamics. 

We have brought two systems into thermal contact so that they may trans- 
fer energy. What is the most probable outcomc of the encounter? One system 
will gain energy at the expense of the other, and meanwhile the total entropy 
of the two systems will increase. Eventually the entropy will reach a maxim~lm 
for the given total energy. It is not difficult to show that the maximum is at- 
tained when the value of ( a ~ / a U ) ~ , ,  for one syste~n is equal to the value of the 
same quantity for the second system. This equality property for two systems in 
thermal contact is the property we expect of the temperature. Accordingly, the 
fundamental temperature T is defined by the relation 

The use of 117 assures that energy will flow from high T to low T; no more com- 
plicated relation is needed. 

Now consider a ver)r simple example of the Boltzmann factor. Let a small 
system with only two states, one at energy 0 and one at energy E ,  be placed in 
thermal contact with a large system that we call the reservoir. The total energy 
of the combined systems is U,; when the small system is in thc state of energy 
0, the reservoir has energy U,, and will have g(U,) states accessible to it. When 
the srriall system is in the state of energy E ,  the reservoir d l  have energy 
Un - E and will have g(UU - E) states accessible to it. By the funda~rlental as- 
sumption, the ratio of the probability of finding the small system with energy 
to the probability of finding it with energy 0 is 



The reservoir entropy a may be expanded in a Taylor series: 

u(uO - E )  = u ( u ~ )  - E ( ~ U / ~ U ~ )  = a ( u O )  - E/T , (3) 

by the definition ( 1 )  of the temperature. Higher order terms in the expansion 
may be dropped. Cancellation of the term exp[u(li,)], which occurs in the nu- 
merator and denominator of (2) after the substitution of (3), leaves us with 

P ( e ) / P ( O )  = e x p ( - € 1 7 )  . ( 4 )  

This is Boltzmann's result. To show its use, we calculate the thermal aver- 
age energy ( E )  of the two-state system in thermal contact with a reservoir at 
temperature T:  

where we have imposed the normalization condition on the sum of the 
probabilities: 

p ( 0 )  + P ( E )  = 1 . (6) 

The argument can be generalized immediately to find the average energy of a 
harmonic oscillator at temperature T ,  as in the Planck law. 

The most important extension of the theory is to systems that can transfer 
particles as well as energy with the reservoir. For two systems in diffilsive and 
thermal contact, the entropy will be a mawi~rlum with respect to the transfer of 
particles as well as to thc transfer or energ).. Not only must ( a ~ / a U ) , ~  be equal 
for the two systems, hut ( d u / d N ) U , v  must also be equal, where N refers to the 
number of particles of a given species. The new equality condition is the occa- 
sion for the introduction2 of the chemical potential p: 

For two systems in thermal and diffusive contact, T ,  = T ,  and p1 = p2. The 
sign in (7) is chosen to ensure that the direction of particle flow is f ro~n high 
chemical potential to low chemical potential as equilibrium is approached. 

The Gibbs factor is an extension of the Boltzmann factor ( 4 )  and allows us 
to treat systems that can transfer particles. The simplest example is a system 
with two states, one with 0 particles and 0 energy, and one with 1 particle and 
energy E .  The system is in contact with a resemoir at temperature T and chem- 
ical potential p. \Ve extcnd ( 3 )  for the reservoir entropy: 

'TP Chapter 5 has a careful treatment of the chemical potential. 



By analogy with (4), we have the Gibbs factor 

P(l,~)IPi0,0) = exp[(y -*)/TI , 

for the ratio of the probability that the system is occupied by 1  particle at 
energy- E to the probability that the system is unoccupied, with energy 0.  The 
rrsnlt ( 9 )  after normalization is readily expressed as 

This is the Ferrrri-Dirac distribution function. 

APPENDIX E: DERIVATION OF THE dk/dt EQUATION 

Thc simple and rigorous derivation that follows is due to Kroemer. In 
quantnm mechanics, for any operator A we have 

where H is the l~anriltonian. See also C. L. Cook, American J. Yhys. 55, 953 
(1987). 

We let A be the lattice translation operator T defined by 

where a is a basis vector, here in one dimension. For a Bloch function 

Thic resnlt is usually written for one band, hnt it holds even if +hk is a linear 
combination of Bloch states from any nnmher of bands, but having the identi- 
cal wavevector k in the reduced zone scheme. 

The crystal hamiltonian No commutes with the lattice translation operator 
T, so that [Ho,T] = 0. If we add a uniform external force F, then 

and 

[H,  TI = FaT . 

From ( 1 )  and ( 5 ) ,  

d(T)/dt = ( i / f i )(Fa)(T) . 



From (6) we form 

(T)*d(T)/dt = (iFaIfi) l(T)I2 ; 

On addition, 

This is the equation of a circle in the complex plane. The coordinate axes 
in the plane arc the real and imaginary parts of the eigenvalue exp(ika). If (T) 
is initially on the unit circle, it will remain on the unit circle. 

For II/S that satisfy periodic houndaly conditions, (T) can lie on the unit 
circle only if (I,k is a single Bloch function or a s~lperposition of Bloch functions 
from different bands, but with the same reduced k. 

As (T) moves around the unit circle, the wavevector k changes exactly at 
the same rate for the co~nponents of & in all bands. With (T) = exp(ika), we 
have from (6) that 

an exact result. 
This does not mean that interhand mixing (such as Zener tunneling) does 

not occur under the influence of applied electric fields. It just means that k 
evolves at a constant rate for every component of a wave packet. The result is 
easily extended to three dimensions. 

APPENDIX F: BOLTZMANN TRANSPORT EQUATION 

The classical theory of transport processes is bascd on the Boltzmann trans- 
port equation. We work in the six-dimensional space of Cartesian coordinatcs r 
and velocity v. The classical distribution function f(r,v) is defined by the relation 

f(r,v)drdv = number of particles in drdv . (1) 

The Boltzlnann equation is derived by the following argument. L7e con- 
sider the effcct of a time displacement dt on the distribution function. The 
Liouville theorem of classical mechanics tells us that if we follow a volume 
element along a flowline the distrihntion is conscrvcd: 

f(t + dt,r + dr,v + dv) = f(t,r,v) , (2 )  



in the absence of collisions. With collisions 

Thus 

dt(dflat) + dr - grad, f + d v  grad, f = dt(?flflat)mu . (4) 

Let a denote the acceleration dv/dt; then 

This is the Boltzmann transport equation. 
In many problems the collision term (af/at),,,l may be treated by the intro- 

duction of a relaxation time r,(r,v), defined by the equation 

Here f ,  is the distribution function in thermal equilibrium. Do not confuse T, 
for relaxation time with T for temperature. Suppose that a nonequilihrium dis- 
tribution of velocities is set up hy external forces which are suddenly removed. 
The decay of the distribution towards eqiiilihrium is then obtained from (6) as 

a ( f - f o ) -  f - f o  
at TC ' 

if we note that dfdat  = 0 by definition of the eqnilihrinm distribution. This 
equation has the solution 

It is riot excluded that T, may be a function of r and v. 
We combine (I), ( S ) ,  and ( 6 )  to obtain the Boltzmann transport equation 

in the relaxation time approximation: 

In the steady state aflat = 0 by definition. 

Particle DifPusion 

Consider an isothermal system with a gradient of the particle concentra- 
tion. The steady-state Roltzmann transport equation in the relaxation time ap- 
proximation becomes 



where the nonequilibrium distribution function f  varies along the x direction. 
Wc may write (10) to first order as 

fi = f o  - uXrcdf2dx , (11) 

where we have replaced &'ax by dfddx. We can iterate to obtain higher order 
solutions when dcsired. Thus the second order solution is 

fZ = fO - o,rJf1/dx = f o  - u,~&f~/dx  + vf<d?fO/dxZ . (12) 

The iteration may be used in the trcatment of nonlinear effects. 

Clarsical Distribution 

Let fO be the distribution function in the classical limit: 

We are at liberty to take whatever normalization for the distribution fi~nction 
is most convenient because the transport equation is linear in f  and f,. We can 
take the normalization as in ( 1  3 )  rather than as in (1).  Then 

and the first order solution (11)  for the nonequilibrium distrihiltion becomes 

f = fa - (cx7z fo /~) (dddx)  . (15) 

The particle flux density in the x direction is 

where D(6) is the density of electron states per unit volume per unit energy 
range: 

Thus 

The first integral vanishes because c,  is an odd function and.fo is an even func- 
tion of 0,. This confirms that the net particle flux vanishes for the equilihriltm 
distribution f,. The second integral will not vanish. 

Before evaluating the second integral, we have an opportunity to make use 
of what we may know about the velocity dependence of the relaxation time 7,. 

Only for the sake of example we assume that T,  is constant, independent of ve- 
locity; T, may then be taken out of the integral: 
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The integral rriay be written as 

because the integral is just thc kinetic energy density gnr of the particles. IIere 
j&D(~)de = n is the concentration. The particle flux density is 

J:, = - (nr,/M)(dgldx) = - ( ~ , ~ / M ) ( d n / d x )  , (21) 

because 

p = T log n + constant . (22) 

The result (21) is of the form of the diffusion equation with the diffusivity 

Another possible assumption about the relaxation time is that it is in- 
versely proportional to the velocity, as in T, = I / ( ; ,  where the mean free path 1 is 
constant. Instead of (19) we have 

and rlow the integral may he written as 

i lufuD(.)& = bii 

where c is the average speed. Thus 

J: = - $ ( ~ C V L / T ) ( ~ ~ / & )  = -$l~(dnldx) , (26) 

and the diffusivity is 

D, = i1c . (27) 

Fermi-Dirac Distribution 

The distribution function is 

To form dfn/dx as in (14) we need the derivative &Idp. We argue below 
that 

4fn/dk = S ( E  - p)  , (29) 



at low temperatures T < p.  Here 6 is the Dirac delta function, which has the 
property for a general function F ( E )  that 

Now consider the integral I," F(e)(dfO/dp)de At low temperatures &/dp is very 
large for E - p and is sinall elsewhere. Unless the function F(E) is very rapidly 
varying near p, we may take F(E) outside the integral, with the value F(p):  

where we have used dfo/dp = -clfdcle. We have also used f, = 0 for E = m. At 
low temperatures f(0)  = 1; thus the right-hand side of (31) is just F(p) ,  consis- 
tent with the delta function approximation. Thus 

The particle flux density is, from (16), 

where T, is the relaxation time at thc surface E = p of the Fer~ni  sphere. The 
integral has the value 

$$(3n/2~,)  = n/rn , (34) 

by use of D ( p )  = 3n/2eF at absolute x r o ,  where E ,  = :mu; defines the velocity 
UF on the Fermi surface. Thus 

At absolute zero p(0)  = (fi2/2m)(3?j.n)2'3, whence 

so that (33)  bccomes 

1; = - ( 2 ~ , / 3 m ) e ~  drddx = -$;T, dnldx . (37)  

The diffusivity is the coefficient of dn/dx: 

closely similar in form to the result (23) for the classical distribution of veloci- 
ties. In (38) the relaxation tirne is to be taken at the Fermi energy. 
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We see we can solve transport problems where the Fermi-Dirac distribu- 
tion applies, as in metals, as easily as where the classical approximation 
applies. 

Electrical Conductivity 

The isothermal electrical conductivity u follows from the result for the 
particle diffusivity when we multiply the particle flux density by the particle 
charge q and replace the gradient d d d x  of the chemical potential by the gra- 
dient qdpldx = -qE, of the external potential, where E, is the x component of 
the electric field intensity. The electric current density follows from (21): 

for a classical gas with relaxation time 7,. For the Fermi-Dirac distribution, 
from (35) ,  

APPENDIX G: VECTOR POTENTIAL, FIELD MOMENTUM, 
AND GAUGE TRANSFORMATIONS 

This section is included because it is hard to find the magnetic vector po- 
tential A discusscd thoroughly in one place, and we need the vector potential 
in suprrcondnctivity. I t  may seem mysterious that the ha~niltonian of a particle 
in a magnetic field has the form derived in (18) below: 

where Q is the charge; hl is the mass; A is the vector potential; and 9 is 
the electrostatic potential. This expression is valid in classical mechanics and 
in quantu~n mechanics. Because the kinetic energy of a particle is not clranged 
by a static magnetic field, it is perhaps unexpected that the vector potential 
of the magnetic field enters the hamiltonian. As we shall see, the key is the 
observation that the momentum p is the sum of two parts, the kinetic 
momentum 

which is fa~rliliar to us, and the potential momentum or field momentum 



The total momentum is 

C 

and the kinetic energy is 

The vector is related to the magnetic field by 

B = curlA . (6) 

We assume that we work in nonmagnetic material so that H and B are trcated 
as identical. 

Lagrangian Equations of Motion 

To find the Hamiltonian, the prescription of classical mechanics is clear: we 
must first find the Lagrangian. The Lagrangian in generalized coordinates is 

This is correct because it leads to the correct equation of motion of a charge in 
combined electric and magnetic fields, as we now show. 

In Cartesian coordinates the Lagrange equation of motion is 

and similarly for y and z .  From (7) we form 

Thus (8) becomes 

'For an elementary treatment of the vector potential see E M. Pnrcell. Electricity und 
mngdinm, 2nd ed., McGrdw-Hill, 1984. 
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d2x Q M = QE, + - [v XB], , 
dr? c 

with 

B  = curl A . (15) 

Equation (13) is the Lorentz force equation. This confirms that (7) is correct. 
We note in (14) that E has one contribution from the electrostatic potential p 

and another from the time derivative of the magnetic vector potential A. 

Derivation of the Hamiltonian 

The momentunl p is defined in terms of the Lagrangian as 

in agreemcnt with (4). The hamiltonian H(p,q) is defined by 

Field Momentum 

The momentum in the electromagnetic field that accompanies a particle 
moving in a magnetic field is given by the volume integral of the Poynting vec- 
tor, so that 

I ~ V E X B .  Pfield = (19) 

We work in the nonrelativistic approximation with v 4 c, where v is the veloc- 
ity of the particle. At low values of vlc we consider B to arise from an external 
source alone, but E arises from the charge on the particle. For a charge Q 
at r', 

E  = -Vp ; VZp = -4mQS(r - r') . (20) 

Thus 

dV V p  X curl A . 
4mc 



By a vector relation we have 

$ dV Vcp X curl A = -$ dV [ A  X curl ( V q )  - A div V q  - (Vcp) &v A] . (22)  

But curl (Acp) = 0, and we can always choose the gauge such that div A = 0. 
This is the transverse gauge. 

Thus, we have 

This is the interpretation of the field contribution to the total momentlim 
p = Mv + QAlc. 

GAUGE TRANSFORMATION 

Suppose H* = E*, where 

Let us make a gauge transformation to A', where 

where x is a scalar. Now B = curl A = curl A', because curl ( O X )  = 0. The 
Schrodinger equation hecomes 

What +' satisfies 

with the same E as for +? Equation (27)  is equivalent to 

We try 

Now 

so that 
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Thus +' = exp(iQx/fic)+ satisfies the Schrijdinger equation after the 
gauge transformation (25). The energy E is invariant under the transformation. 

The gauge transforniation on A merely changes the local phase of the 
wavefunction. N7e see that 

so that the charge density is invariant under a gauge transformation. 

Gauge in the London Equation 

Because of the equation of continuity in the flow of electric charge we 
require that in a superconductor 

divj = 0 , 

so that the vector potential in the London equation j = -cA/4~rhZ must satisfy 

divA = O . (32) 

Further, there is no current flow through a vacuum/superconductor interface. 
The normal component of the current across the interface must vanish: j ,  = 0, 
so that the vector potential in the London equation must satisfy 

A,, = 0 . (33) 

The gauge of the vector potential in the London equation of superconductivity 
is to be choscn so that (32) and (33) are satisfied. 

APPENDIX H: COOPER PAIRS 

For a co~nplete set of states of a two-electron system that satisfy periodic 
boundary conditions in a cube of unit volume, we take plane wave product 
functions 

We assurrie that the electrons are of opposite spin. 



We introduce center-of-mass and relative coordinates: 

K = k,  + k, ; k = i(k1 - k,) , (3) 

so that 

k , - r l + k 2 - r , = K - R + k - r .  (4) 

Thus (1 )  becomes 

p(K,k;R,r) = exp(iK . R) exp(ik . r) , ( 5 )  

and the kinetic energy of the two-electron system is 

eg + Ek = (f i2/m)(;P + k') . (6 )  

We give special attention to the product functions for which the center-of- 
mass wavevector K = 0 ,  so that k,  = -k2. With an interaction H I  between the 
two electrons, we set up the eigenvalue ~ rob lem in terms of the expansion 

~ ( r )  = Xgk exp(ik . r )  . ( 7 )  

The Schrodinger equation is 

(H,,  + H I  - €)x(r)  = 0 = zk, [ (EL,  - e)gkr + H1gk,]exp(ikl . r )  , (8) 

where H ,  is the interaction energy of the two electrons. Here is the eigenvalue. 
We take the scalar product with exp(ik - r )  to obtain 

the secular equation of the problem. 
Now transform the sum to an integral: 

( E  - e ) g ( E )  + JdE' g(E1)HI(E,E')N(E') = 0 , (10) 

where N(E1) is the number of two electron states with total momentum K = 0 
and with kinetic energy in dE' at E'. 

Now consider the matrix elements H 1 ( E , E 1 )  = (klHllkf). Studies of these by 
Bardeen suggest that they are important when the two electrons are confined to 
a thin energy shell near the Fermi surface-within a shell of thickness fiw, 
above E,, where w, is the Debye phonon cutoff frequency. We assume that 

for E,E' within the shell and zero otherwise. Here V is assumed to be positive. 
Thus (10) becomes 

with E ,  = eF + fiw,. Here C is a constant, independent of E 
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From (12) we have 
C 

g(E) = 

and 

\t7ith N(Ef)  approximately constant and equal to N ,  over the small energy 
range between 2e, and 2cF, we take it out of the integral to obtain 

Let tlie eige~ivalue c of (15) be written as 

which defines the binding energy A of the electron pair, relative to two free 
electrons at the Fermi surface. Then (15) becomes 

2c,, - 2~~ + A 2hwD + A 
1 = NFV log 

A 
= AI;V log 

A ' (17) 

This result for the binding energy of a Cooper pair may be written as 

For V positive (attractive interaction) the energy of the system is lowered hy 
excitation of a pair of electrons above the Fermi level. Therefore the Fermi 
gas is unstable in an important way. The binding energy (19) is closely related 
to the superconducting energy gap Eg. The BCS calculations show that a high 
density of Cooper pairs may form in a metal. 

APPENDIX 1: GINZBURG-LANDAU EQUATION 

We owe to Ginzburg and Landau an elegant theory of the phenomenology 
ofthe snpercondlicting state and of the spatial variation of the order parameter 
in that state. An extension of the theory by Abrikosov describes the structure 
of the vortex state which is exploited technologically in superconducting mag- 
nets. The attractior~s of the GL theory are the natural introduction of the 



coherence length and of the wavefunction used in the theory of the Josephson 
effects in Chapter 12. 

We introduce the order parameter $(r) with the property that 

$*(r)$(r) = ns(r) , (1) 

the local concentration of superconducting electrons. The mathematical for- 
mulation of the definition of the fiinction $(r) will come out of the BCS the- 
ory. We first set lip a form for the free energy density Fs(r) in a superconduc- 
tor as a function of the order parameter. We assume that in the general vicinity 
of the transition temperature 

with the phenomenological positive constants a, P, and m, of which more will 
be said. Here: 

1. FN is the free energy density of the normal state. 
2. -aI$I" $ $ P I $ I ~  is a typical Landau form for the expansion of the free 

energy in terms of an order parameter that vanishes at a second-order phase 
transition. This term may be viewed as -ans + ifin: and by itselc is a mini- 
mum with respect tons when ns(T) = alb 

3. The term i11 lgrad $I2 represents an increase in encrgy caused by a spa- 
tial variation of the order parameter. I t  has the form of the kinetic energy in 
quantum mechanics.' The kinetic momentum -ifiV is accompanied by the 
field momentum -qNc to enslire the gauge invariance of the free energy, as 
in Appendix G. Here q = -2e for an electron pair. 

4. The term -$M . dB,, with the fictitious magnetization M = (B - Ba)/4.rr, 
represents the increase in the superconductir~g free energy caused by the ex- 
pulsion of magnetic flux from the superconductor. 

The separate terms in (2) will be illustrated by examples as we progress 
further. First let us derive the GL equation (6). We minimize the total free en- 
ergy JdV Fs(r) with respect to variations in the function $(r). We have 

We integrate by parts to obtain 

if 89" vanishes on the boundaries. It follows that 

SJdVF, = JdVS$*[-a$ + P1$12$ + (1/2m)(-ifiV - q ~ l c ) ~ $ ]  + C.C. ( 5 )  

'A oo~~tribution of the form IVMI2, where M is the magnetization, was introduced hy Landau 
and Lifshitz to represent the exchange energy density in a fcrromagnet; see QTS, p. 65. 
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This integral is zero if the term in brackets is zero: 

This is the Ginzburg-Landau equation; it resembles a Schrvdinger equation 
for $. 

By minimizing (2) with respect to SA we obtain a gauge-invariant expres- 
sion for the supercurrent flux: 

At a frcr surface of the specimen we must choose the gauge to satisfy the 
hoi~ndary condition that no current flows out of the superconductor into the 
vacuum: ii . js = 0, where ii is the surface normal. 

Coherence Length. The intrinsic coherence length 5 may be defined from 
(6). Let A = 0 and suppose that /3l+l2 may be neglected in comparison with a. 
In one dimension the GL equation (6) reduces to 

This has a wavelike solution of the form exp(ix/(), where &is defined by 

5 = (fi2/2ma)'" . (9) 

A more interesting special solution is obtained if we retain the nonlinear 
term p1$I2 in (6). Let us look for a solution with I+!I = 0 at x = 0 and with II, + I$, 
as x + m. This situation represents a boundary between normal and supercon- 
ducting states. Such states can coexist if there is a magnetic field H ,  in the nor- 
mal regon. For the moment we neglect the penetration of the field into the 
si~perconducting region: we take the field penetration depth h < 5, which de- 
fines an extreme type I superconductor. 

The solution of 

subject to our boundary conditions, is 

$(x) = ( a / / 3 ) l f 2 t a n h ( d ~ )  . (11) 

This may be verified by dlrect substitution. Deep inside the superconductor 
we have Go = as follows from the minimization of the terms -a1+l2 + 
ipl$14 in the free energy. We see from (11) that 5 marks the extent of the co- 
herence of the superconducting wavefunction into the normal region. 

We have seen that deep inside the superconductor the free energy is a 
minimum when 1$,1" a/P, SO that 



by definition of the thermodynamic critical field H,  as the stabilization free 
energy density of the superconducting state. It follows that the critical field is 
related to a and P by 

H, = (4m2/p)'" . (13) 

Consider the penetration depth of a weak magnetic field (B  < H,) into a 
superconductor. We assume that 1 + 1 2  in the superconductor is equal to II)~~', 
the value in the absence of a field. Then the equation for the supercurrent flux 
reduces to 

js(r) = - (q2 /~) l I )012A , (14)  

which is just the London equation js(r) = -(c/4.rrh2)A, with the penetration 
depth 

The dimensionless ratio K = A/[ of the two characteristic lengths is an 
important para~neter in the theory of superconductivity. From (9) and (15) 
we find 

We now show that the value K = 1 / f i  divides type I superconductors 
( K  < 1 / f i )  from type I1 superconductors ( K  > 1 / f i ) .  

Calculation of the Upper Critical Field. Superconducting regions nucle- 
ate spontaneously within a normal conductor when the applied magnetic field 
is decreased below a value denoted by H,,. At the onset of superconductivity 
I+I is small and we linearize thc GL equation ( 6 )  to obtain 

The magnetic field in a snperconducting region at the onset of superconduc- 
tivity is just the applied field, so that A = B(O,x,O) and (17) becomes 

This is of the same form as the Schrodinger equation of a free particle in a 
magnetic field. 

We look for a solution in the form exp[i(kyy + kzz)]p(x) and find 
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this is the equation for an harmonic oscillator, if we set E = a - (h2/2m) 
( k t  + k:) as thc eigenvalne of 

The term linear in x can be transformed away by a shift of the origin from 
0 to x, = hkyqB/2mc, so that ( 2 0 )  hecomes, with X = x - x,, 

The largcst valiie of the magnetic field B for which solutions of ( 2 1 )  exist is 
given by the lowest eigenvalue, which is 

fhw = fiqB,,/2n~ = a - fi2k:/2m , ( 2 2 )  

where w is the oscillator frequency yB/mc. With k ,  set equal to zero, 

B,, = H,  = 2amclqh . (23 )  

This result may be expressed by (13) and ( 1 6 )  in terms of the thermody- 
rianiic critical field H ,  and the GL pararnetcr K = A/(: 

When A/( > l / f i ,  a superconductor has H,, > H, and is said to be of type 11. 
It is helpful to write H,, in terms of the flux quantum @, = 27rfic/q and 

E2 = h2/2ma: 

This tells us that at the upper critical field the flux density HC2 in the material 
is equal to one flux quantum per area 2n%, consistent with a fluxoid lattice 
spacing of the order of (. 

APPENDIX 1: ELECTRON-PHONON COLLISIONS 

Phonons distort the local crystal structure and hence distort the local band 
structure. This distortion is sensed by the conduction electrons. The important 
effects of the co~ipling of electrons with phonons are 

Electrons are scattered from one state k to another state k', leading to elec- 
trical resistivity. 



Phonons can be absorbed in the scattering event, leading to the attenuation 
of ultrasonic waves. 
An electron will carry with it a crystal distortion, and the effective mass of 
the electron is thereby increased. 
A crystal distortion associated with one electron can be sensed by a second 
electron, thereby causing the electron-electron interaction that enters the 
theory of superconductivity. 

The deformation potential approximation is that the electron energy ~ ( k )  
is coupled to the crystal dilation A(r) or fractional volume change by 

~ ( k , r )  = ~,,(k) + CA(r) , (1) 

where C is a constant. The approximation is useful for spherical band edges 
c0(k) at long phonon wavelengths and low electron concentrations. The 
dilation may be expressed in terms of the phonon operators uq, a: of 
Appendix C by 

A(r) =i C, ( f i / 2 ~ o , ) ' ~  Iq l[agexp(ig - r) - a;exp(-iq . r)] . (2) 
9 

as in QTS, p. 23. Here M is the mass of the crystal. The result (2) also follows 
from (C.32) on formingq, - q,?-, in the limit k * 1. 

In the Born approximation for the scattering we are concerned with the 
matrix elements of CA(r) between the one-electron Bloch states Ik) and Ik'), 
with Ik) = exp(ik . r )uk ( r )  In the wave field representation the matrix ele- 
ment is 

= icC, cGck2 (~5/2Mw~)"~1qI(a,J d3x U ~ - U L ~ " ~ - ~ + ~ ) "  
k'k q 

(3) 

where 

where ct ,  ck are the fermion creation and annihilation operators. The product 
ui..(r)uk(r) involves the periodic parts of the Rloch filnctinns and is itself peri- 
odic in the lattice; thus the integral in (3) vanishes unless 

k - k ' * q =  vector in the reciprocal lattice. (" 
In semiconductors at low temperatures only the possibility zero (N proccsses) 
may be allowed energetically. 
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Let 11s limit orirselves to N processes, and for convenience we approximate 
J d3x uk.uk by unity. Then the deformation potential perturbation is 

Relaxation Time. In the presence of the electron-phonon interaction 
the wavevector k is not a constant of the motion for the electron alone, but 
the sum of the wavevectors of the electron and virtual phonon is conserved. 
Suppose an electron is iliitially in the state Ik); how long will it stay in that 
state? 

We calculate first the probability w per unit time that the electron in k will 
emit a phonon q. If n, is the initial population of the phonon state, 

by time-dependent perturbation theory. Here 

The total collision rate W of an electron in the state Ik) with a phonon sys- 
tem at absolute zero is, with nq = 0, 

where p is t l ~ e  Inass density. 
The argunient of the delta function is 

where y,, = 2hm' c,, with c, the velocity of sound. The minimum value of k for 
which the argument can be zero is k,,, = i(q + q,), which for q = 0 reduces to 
k .  ,,, = '  ,q, = m'c,lh. For this value of k thc clcctron group velocityug = k,,/m' 

is cqual to the velocity of soilnd. Thus the threshold for the emission of 
phonons by electrons in a crystal is that the electron group velocity should ex- 
ceed the acoustic velocity. This requirement resembles the Cerenkov thresh- 
old for the emission of photons in crystals by fast electrons. The electron 
energy at the threshold is im'c; - - 10" - 10-Ifi erg - 1 K. An electron 
of energ). below this threshold will not be slowed down in a perfect crystal at 
ahsolutc zero, even by higher order electron-phonon interactions, at least in 
the harmonic approximation for the phonons. 

Fork % q, we may neglect the qq, term in (9). The integrals in (8) become 



and the phonon emission rate is 

directly proportional to the electron energy ek. The loss of the component of 
wavevector parallel to the original direction of the electron when a phonon is 
emitted at an angle 8 to k is given by cj cos 8. The fractional rate of loss of k ,  is 
given by the transition rate integral with the extra factor ( q / k )  cos 0 in the inte- 
grand. Instead of ( lo) ,  we have 

so that the fractional rate of decrease of k,  is 

W(k,) = 4C2m'k2/5~pcSfi2 . 

This quantity enters into the electrical resistivity. 
The above results apply to absolute zero. At a temperature k,T % Ac,k the 

integrated phonon emission rate is 

For electrons in thermal equilibrium at not too low temperatures the required 
inequality is easily satisfied for the rms value of k.  If we take C = lo-'' erg; 
m* = g; k = 10' cm-I; c, = 3 X 10; cm s-I; p = 5 g ~ m - ~ ;  then W - 1012 s-'. 
At absolute zero (13) gives W = 5 x 10lOs-I with these same parameters. 
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