2.1 Limit

2.1.1 Definition

A number A is said to be limit of a function f(x) at x = a if for any arbitrarily chosen positive integer €,
however small but not zero there exist a corresponding number & greater than zero such that:
| f(x)— A | < € for all values of x for whichO< | x—a | < &where lx — al means the absolute value of (x — a) without
any regard to sign. '

2.1.2 Right and Left Hand Limits
If x approaches a from the right, thatis, from larger value of x than a, the limit of fas defined before is called
the right hand limit of f(x) and is written as:
Lt fx)or fla+0)or Lt fx)

x—a+0 - a

Working rule for finding right hand limitis, put a + hforxin f(x) and make h approach zero.

In short, we have, fla+0) = thOf(a + h)

Similarly if x approaches a from left, that is from smaller values of x than a, the limit of fis called the left hand
limit and is written as:

Lt f(x) or fla-0)or Lt fx)

x—a-0 x> a

In this case, we have, fla-0) = Lto fla-h)

h—

If both right hand and left hand limit of £, as x — a exist and are equal in value, their common value,
evidently, will be the limit of fas x — a. If however, either or both of these limits do not exist, the limit of fasx— a
does not exist. Even if both these limits exist but are not equal in value then also the limit of fas x — a does not
exist.

. when Lt fx) = Lt f(x)
r—=a x> a

then Lt fx) = Lt fx) = Lt fx)
x—a v at x—a

Limit of a function can be any real number, « or — . It an sometimes be e or —o, which are also allowed
values for limit of a function.

2.1.3 Various Formulae

These formulae are sometimes useful while taking limits.
nin - sz + i = n = 2) 2t
2! 31

(1+x)" = T+nx+

i




(T-xy" = Tx+x2+3+ ...

2 3
a* = 1+xloga+ %(Ioga)2 + %l-(loga)3 o,
)C2 JC3
e* = ‘1+x+—27+"§?+ .....
3 5
Sinx = )C“§!*+€!-"“ .....
X2 X4
CosSx = 1——~2~!+H— ......
tanx = x+£+-2~x5+
= TR
2 3 4
log (1 +x) = x*%+}3——%+ ..... | x k<l
,‘C2 1_3 4
log(1-x) = - x+—2~+'—3~+'~4-—+ ..... | Fx I<]
3 8’65
sintx = x+—é—+Z’O——+ .....
B35
tan™'x = x-—é—+€— .....
. 3 XS
sin hx = x+_§T+~5~!+‘,""
2 4
pa X
cos hx = 1+—2—!+Z~!+ .....
Remember: log 1 = 0; log e = 1;10g o = oo} log 0 = —oo
2.1.4 Some Useful Results
: ] ' 1
1 g™ =1 2. U cosx =1 3. L Ly 4 U (e =e
_1_ -I\)C X
5 Lo (1+m) =e" 8. éLN(HU =e 7. i’_m(nﬁ) = e°
x X,

2.1.5 Indeterminate Forms

Afraction whose numerator and denominator both tend to zero asx — ais an example of an indet
form written as 0/0. It has no definite values. Other indcterminate forms are: wofor, w — v, O K oo, 1%
(Indeterminate form are not any definite number and hence are not acceptable as limits. To find limit in suc
we use the L'hospital’s rule)

0w
2.1.5.1 Indeterminate Form-{ (7; or —)
U oo J




L'Hospital Rule: If f(x) and ¢(x) be two functions of x and if,

Limf(x) = 0 and Lirr;q>(x) =0
x—>a x—

or if Limf(x) = e« and Limo(x) = oo
xX—a X4

then 1 &) ¢ P

= [
a0t T Sav)

provided, the latter limit exists, finite or infinite.

Working Rule: If the limit of 7(x)/¢(x) as x — atakes the form 0/0, differentiate the numerator and denominator
separately with respect to x and obtain a new function F(x)/¢(x). Now as x — a if it again takes the form 0/0,
differentiate the numerator and denominator again with respect to x and repeat the above process, until the
indeterminate form is removed and we get either a real number, = or — e as a limit.

Caution: Before applying L'Hospital’s rule at any stage, be sure that the form is 0/0. Do not go on applying
this rule, if the form is not 0/0. '

2.1.5.2 Indeterminate Form-lf (0 x co)
This form can be easily reduced to the form 0/0 or to the form eofee, and then L'Hospital's rule may be
applied.

Let Limit f(x) = Oand Limit ¢(x) = oo.

X->»a X -3 a

i

Then we can write

- o f(x) o 0x)
l;ximat fx) - o(x) = Elin;t o0 [form 0/0] or t;fin;t ) [form oofeo]

Thus Limit f(x) - ¢(x) is reduced to the form 0/0 or eofes which can now be evaluated by L Hospital rule.
x> a

2.1.5.3 Indeterminate Form-ili {0° or 1~ or e09)

Suppose Limit [f(x)]*(x) takes any one of these three forms.
xX—4a

X—a

Then let y = Limit [F(x)]%x)

Taking log on both sides, we get

It

log y = Limit ¢(x) - log f(x).
x—a

Now in any of these above cases log ytakes the form 0 x e which is changed to the form 0/0 or o/ then it
can be evaluated by previous methods.

2.2 Continuity

2.2.1 Definition
A function f(x) is defined for x = a is said to be continuous atx = gif;
1. f(a)ie, the value of f(x) at x = ais a definite number and
2. the limit of the function f(x) as x — a exists and is equal to the value of f(x) atx = a.




Note: On comparing the definitions of limit and continuity we find that a function f(x) is continuous atx = g

Limit f(x) = f(a)

x—a
Thus f(x) is continuous at x = a if we have f(a + 0) = f(a - 0) = f(a), otherwise it is discontinuous at
x=a '
2.2,2 Continuity from Left and Continuity from Right
Let fbe a function defined on an open interval I and let a be any point in 1. We say that fis continuous from

the left at a, if Limit f(x) exists and is equal to f(a). Similarly fis said to be continuous from the right at 4, if

x—>a-0

Limit f(x) exists and is equal to f(a).

x-a+0

-~ A function f(x)is continuous at x = g, if itis continuous from left as well as continuous from right.

2.2.3 Continuity in an Open Interval

A function fis said to be continuous in open interval (a, b), if it is continuous at each point of open interval,

2.2.4 Continuity in a Closed Interval
| et fbe a function defined on the closed interval (a, b) fis said to be continuous on the closed interval
[a, b)ifitis:
1. continuous from the right at aand
2. continuous from the left at b and

3. continuous on the open interval (a, b).

2.3 Differentiability

Derivative at a point: Let-I denote the open interval (a, b) in R and let x, € I. Then a functi
f:I— Ris said to be differentiable at x,, if: ' '

i [Teo D= Umh{foc)'— f(xo)J

h-0 X = Xp

X— ¥y

exist (finitely) and is denoted by f(x,).

2.3.1 Progressive and Regressive Derivatives

The progressive derivative of f (or right derivative of f) atx = x, is given by

Limit f(xg + h) = fxp)

Limit . h> 0 and is denoted by Rf’(x,) or by f'(x, + 0) or by (x,*).
5

The regressive derivative of f(or left derivative of f) at x = x, is given by

%im(i)t Mﬁ)ﬁ:—f@@l , h > 0 and is denoted by Lf(x,) or by '(x,-0) or by '(x). ’
5 _
2.3.2 Differentiability in an Open Interval

A function fis said to be differentiable in an open interval (a, b), if it is differentiable at each point 0
openinterval. ' : .



2.3.3 Differentiability in a Closed Interval
Afunction f: [a, b] = Ris said to be differentiable in closed interval [a, b] if it is
1. differentiable from right a ta [i.e. A f'(a) exists] and
2. differentiable from left at b [i.e. L f/(a) exists] and
3. differentiable in the open interval (a, b).

2;3,4 Relationship between Differentiability and Continuity

Theorem: If a function is differentiable at any point, then it is necessarily continuous at that point, proof of
this theorem follows from definitions of differentiability and continuity.

Note: The converse of this theorem not true.

i.e. Continuity is a necessary but not a sufficient condition for the existence of a finite derivative
(differentiability).

i.e. differentiability = continuity

But continuity >¢ differentiability
2.4 Mean Value Theorems

24.1 Rolle’s Theorem
If a function f{x) is such that:
1. f(x) is continuous in the closed interval a<x< b and
2. f'(x) exists for every point in the open interval a < x < b and
3. fla)= f(b),
then there exists at least one value of x, say ¢ where a < ¢ < bsuch that f/(¢) = 0.
Note: Rolle’s theorem will not hold good.
1. If f(x) is discontinuous at some point in the interval a< x < b
2. If f/(x) does not exist at some point in the interval a < x < b or
3. If f(a)# f(b)

24.2 Geometrical Interpretation

Let A, B be the points on the curve y = f(x) corresponding to the real numbers a, b, respectively.

Since f(x) is continuous in [a, b], the curve y = f(x) has a tangent at each point between A and B. Also as
f(a) = f(b) the ordinates of the points A and Bare equal i.e. MA = NB [See Figure (a)].
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(a) (b)
Then Rolle’s theorem asserts that there is atleast one point lying between A and B such that the tangent at

which is parallel to x-axis i.e. there exists atleast one real number ¢ in (a, b) such that f(c) = 0. [see figure (a)
above]



There may exist more than one point between A and B, the tangents at which are parallel to x-axis [ag
shown in Figure (b)] i.e. there exists more than one real number c in (a, b) such that f'(c) = 0. Rolle’s theorem
ensures the existence of atleast one real number cin(a, b) such that f{c) = 0.

Remarks:
1. Rolle’s theorem fails even if one of the three conditions is not satisfied by the function.

2. The converse of Rolle's theorem is not true, since, (x) may be zero at a pointin (a, b) without satisfying
all the three conditions of Rolie’s theorem.

Example 1.
Verify Rolle’s theorem for the following functions:
(@) f(x)=x°+x-6in[-3, 2]
(L) flx)=(x~-1)(x-272in[1, 2]
©) flx)= (-1 (x-2)in[-1, 2]

Solution: _
(a) Given f(x)=x°+x-6 , ‘ ()
(i) As f(x)is a polynomial function, it is continuous in [~ 3, 2].
(ii) f(x) being a polynomial function is derivable in (- 3, 2)
(i) f(-3)=(3)°~3-6=0,f(2)=22+2-6=0=f(-3)=f(2)
Thus, all the three conditions of Rolle’s theorem are satisfied, therefore, there exists atleast one real
number cin (-3, 2) such that f(x) = 2x + 1. '
Differentiating (i) w.r.t. x, we get f(x) = 2x + 1.

Now 7(c) = 0= 2c+ 1= 0= ¢ = %.

So there exists ~% €(-3, 2) such that 'f’(~%) =0

Hence, Rolle's theorem is verified.
(b) Given f(x) = (x~1) (x~2)? '
(i) Since f(x) is a polynomial function, itis continuous is [1, 2].

(i) f(x) being a polynomial function is derivable in (1, 2).

(i) f()=(1-1)(1-2°=0,f2)=2-1)(2-22=0= f(v12') = f(2) '
Thus, all the three conditions of Roll's theorem are satisfied, therefore, there exists atleast one rea
number cin (1, 2) such that f(¢) = 0. '
Differentiating (i) w.r.t.x, we get ,
(x=1)2(x-2). 1+ (x-2)21

Flx) =
= (x-2) (-2 +x-2)
= (x-2)(3x-4)
Now flcy = 0
= (c~2)(Bc-4) = 0
= : c = 2,4/3

Butce (1, 2),vtherefore, c = 4/3. »

So, there exists (4/3)e (1, 2) such that F(4/3) = 0
Hence, Rolle's theorem is verified.



(c) Given f(x) = (x* - 1) (x-2) (D
(i) Since f(x) is a polynomial function, it is continuous in [-1, 2].
(i) f(x) being a polynomial function is derivable in (-1, 2).
(i) f(-H=(1-1H01-2)=0,f(2)=(4-1)(2-2) = 0= f(-1) = f(2)
Thus, all the three conditions of Rolle’s theorem are satisfied, therefore, there exists atleast one real
number cin (-1, 2) such that f(¢) = 0.

Differentiating (i) w.r.t. x, we get
flx) = (x"=1). T+ (x-2)- 2x =3x2 - 4x - 1.

Now flc) = 0=3c°-4¢c-1=0
4+ [16-43-1) 2x47
= C = =
2.3 3
Also -1 < 2-V7 < 2+3ﬁ<2 = 2~3ﬁ and 2+3ﬁ both lie in (-1, 2).

So there exist two real numbers

2_3\/? and 2+7 in (-1, 2) such that

3

f(Mj - 0and f’[ngﬁJ =0
. 3 3 p

Hence, Rolle’s theorem is verified.

Example 2, .
Verify Rolle’s theorem for the following functions and find point (or points) where the derivative vanishes:

' 7
f(x) = sinx+ cosxin [O, §i|
Solution: o - v _
Given: flx) = sinx + cosx - : o : L)

|

(b) f(x)is derivablein {O, g} and

(a) f(x)is continuous in [O,

Nl s

(©) f(0)=sin0+cos0=0+1=1,

T oo n o 75
f-—- = § — e - = — .
( ) in 5 + COS 5 1+0=1= f0) f(Z)

Thus, all the three conditions of Rolle's theorem are satisfied, therefore, there exists atleast one real

7
{

number ¢ in LO%) such that f(¢) = 0.
Diﬁ‘erentiatmg (i) w.rt. x, we get o

f'(x) = cosx-sinx . :
Now - | f(c) = 0= cosc~sinc=0=Cc=1

. | o nBt9n 3 A
= : ' c = E,ﬂyi,_l,;.bu’[c\e'[ogj:>c-,:

N




So there exists ~ in (O,E) such that f’(ﬁj =0.
S 4 2 4

. . i
Hence, Rolle’s theorem is verified and ¢ = Z .

Example 3.
Discuss the applicability of Rolle’s theorem for the function f(x) = | x | in [-2, 2].

Solution:
Given: fx) = |xl,xe [-2, 2] NG
the graph of flx) = |x[in[-2, 2] y

is shown in figure

(@) f(x)is continuous is [-2, 2]
(b) Differentiating (1) w.rt. x, we get

Flx) = = x#0

+

= the derivative of f(x) does not existatx = 0 )
= f(x) is not derivable in (~ 2, 2)

Thus, the condition (if) of Rolle’s theorem is not satisfied, therefore, Rolle's theorem is not applicabie o -
the function f(x) = |x| in [-2, 2].

Moreover, f(-2) = | -2 | = 2and /(2) = |2] = 2 = f(-2) = {(2), s0 the condition (iii) of Rolle’s theorem is
satisfied.

Further, it is clear from the graph that there is not point of the cure y = | x| i (-2, 2) at which the tangent
is parallel to x-axis.

24.3 Lagrange’s Mean Value Theorem

if a function f(x) is:

1. Continuous in closed interval a<x < b and

2. Differentiable in open interval (a, b) i.e., a<x < b,

then there exist at least one value ¢ of x lying in the apen interval a < x < hsuch that

f(b)-f(a

. o - 1021

24.4 Geometrical interprétation '

Let A, Bbe the points on the curve y = f(x) corrésponding to the real numbers a, b respectively.

~Since f(x) is continuous in la, b], the g’raphj of the curve y = f(x) is continuous from A to B. Again, as f(x),
derivable in (a, b) the curve y = f(x) has a tangent at cach point between A and B. Also a

a# b, the slope of the chord AB exists and the slope of the chord AB = -f—(%):j@ 4
- a
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Then Lagrange’s Mean Value Theorem asserts that there is atleast one point lying between A and Bsuch that
the tangent at which is parallel to the chord AB. There may exist more than one point between A and Bthe tangents
at which are parallelto the chord AB[as shown in Figure (b)]. Lagrange’s mean value theorem ensures the existence

of atleast one real number cin (a, b) such that f/(c) = Mf_(b) ~(a) .

b-a
Remarks:
1. Lagrange's mean value theorem fails for the function which does not satisty even one of the two
conditions.

2. The converse of Lagrange's mean value theorem may not be true, for, f'(c) may be equal to ~f—<[2~—~—f—(£)
~-a

atapoint cin (a, b) without satisfying both the conditions of Lagrange’s mean value theorem.

Example 1.
Verify Lagrange's mean value theorem for the following functions in the given interval and find ‘c’ of this
theorem.
(@) f(x) =x2+ 2x+ 3in[4, 6] (b) f(x)=px2+ gx+rp=0.in|a b
Solution:
(@) Given f(x) =x°+ 2x + 3
(i) f(x) being a polynomial function is continuous in [4, 6]. ()

(ii) f(x) being a polynomial function is derivable in (4,6).
Thus, both the conditions of Lagrange's mean value theorem are satisfied, therefore, there exists
atleast one real number cin (4, 6) such that
, f6)-(4)
fle) = =52
f6) = 62+26+3=51f(4)=424+24+3=07"
Differentiating (i) w.rt. x, we get
flx) = 2x+ 2= F(c)=2c+ 2

y . f(6)~f(4) 51-27

flc) = 64 20+ 2= 5 =20+ 2=12
= 2 =10=c=5
. ‘ ' : . f(6) - (4
Thus, there exists ¢ = 5in (4, 6) such that ff(5) = i_g_“?f.l

Henbe, Lagrange’s mean value theorem is verified and ¢ = 5.
(b) Given f(x) = px®+ qx +r, p=0 A ‘
(i) fbeing a polynomial function is continuous in la, b] -
(i) fbeing a polynomial function is derivable in(a, b). ) »
Thus, both the conditions of Lagrange’s meéh value tﬁedrém are satisfied. therefore, there exists
| 1) - f(a)
b-a
f(b) = pb?+ gb+r, f(a)=pa+ ga+r.
Differentiating (1) w.r.t. x, we get :
flx) = 2px + g= f(c) = 2pc + q.

f(b)~f

atleast one real numbe} cin(a, b) suchthat f/(x) =




(PE” + gb+ 1) - (P + ga+ 1)

2 =
= pc+q b A
. 2pc+q = p(b2+vaz)+q(b~a)
b-a
= 2pc = p(a+b)
a+b a+b
= C = "*é‘* and 5 {a, b)
b -
Thus, there exist ¢ = 13:21—* in (&, b) such that (c) = Mf(tz fla) ,
~3
at+b

Hence Lagrange’s mean value theorem is verified and ¢ =

Example 2.
Find a point on the graph of y = x3 where the tangent is parallel to the chord | joining (1, 1) and (3, 27).

Solution:
fx) = x3intheinterval [1, 3]
(a) f(x) being a polynomial is continuous in (1, 3].
(b) f(x) being a polynomial is derivable in (1, 3).

Thus, both the conditions of Lagrange’s mean value thearem are sa atisfied by the function (xyin {1, 3],
therefore, there exists atleast one real number cin(1, 3) such that

, f(3) - ()

flc) = 31

, f3) = 3=27and f(1) =13 = 1.
Differentiating (1) w.r.t. x, we get
: Flx) = 3x2= f(c) = 362

R o = @), 7t
NOW_ . flc) = 377 = 3¢ 37 =3¢ =13
o 1399
= ~ 39
= C = i_@
3
CBut ce(1,3) = C= \/gé :
When o x= @',fromﬁ)y:ﬁ@ '
» : - 3 ; 3
Hence, there eXlStS a point [ 35/'" on the given curve y:-x_3 where the tangent is parallel to th

" chordj Jommg the pomts(1 1)and (3, 27)

Examp!eB : S , . T
Does the Lagranges mean value theorem appfy to flx) = x", “1 <x < 1?7 What conclusions can
drawm : : ' ' : : '




‘solution:

Given, flx) = x xe [~1, 1] ()
(@) f(x)is continuous in [~ 1, 1]

(b) Differentiating (1) w.r.t. x, we get

fx) = %x"m - ?ﬁ?x #0 ()
= The derivative of f(x) does not exist atx = 0
= f(x) is not derivable in (-1, 1).
Thus, the condition (i) of lagrange’s mean value theorem is not satisfied by the function f(x) = x'3 in
[-1, 1]and hence Lagrange’s mean value theorem is not applicable to the given function f(x) = x"®in [~ 1, 1]

and hence Lagrange's mean value theorem is not applicable to the given function f(x) = x'"3 in [-1, 1].

Conclusion. However, from (2), '(¢) = —3—«127370 # 0
c

Also f(=1) = (-1)"® = -1, f(1) = 113 = 1 (we have taken only real values)

o) = L0

- (-1
~ T 1~(—1):§:1
3?7 1-(-0) 2
1 1 1
a4 = 2o _L. =
= o 320 57 C _3\/§

As —~1 <~ <l=c= +mbothhem 1, 1
553 N e

() - (1
Thus, we find that there exist two real numbers ¢ = iT in( ) such that f(¢) = L)—-(*—)

1= {~1
If follows that the converse of Lagrange’s mean value theorem may not be true. -
245 Some applications of Lagrange’s Mean Value theorem
1. If a function f(x) is
(a) continuousin [a, b]
(b) derivablein(a, b) and
(¢) f'(x)>O0forallxin(a, b), then f(x)is strictly increasing function in [a, b].
Proof. Let x,, x, be any two members of [a, b] such that a < x; < x, < bthen f(x) satisfied both the

conditions of Lagrange’s mean value theorem in [x,. x_], therefore, there exists atleast one real number
cin (x,, x,) such that

Flo) = f(«‘z)“f()ﬁl
Xy~ Xy
= (x-xy) F(C) = fx,) - flx,)
But 7(x) > Ofor all x in (a, b) = f(¢) > 0 for all ¢in (xy, x,). Also x, < x, lie. Xy x>0
= (x,-x)f(c)>0
= fxy)~flx;) >0
= f(x,) > f(x,), for all x,, xysuchthata<x, <x,<b.
Hence, f(x) is strictly increasing in [a, b]



2. Ifatunction f(x) is
(&) continuousin[a, b]
(b) derivable in (a, b)
(¢) f(x)<Oforallxin(a, b), then f{x) is strictly decreasing function in [a, b].
(For the proof, proceed as abbve)

24.6 Somelmportant Deductions from Mean Value Theorems

1. Ifafunction f(x) be such that f(x) is zero throughout the interval, then f(x) must be constant throughout
the interval.

2. It f(x) and o(x) be two functions such that F{x) = ¢’(x) throughout the interval (a, b), then f(x) and $(x)
differ only by a constant.
30 ) is:
(a) continuous in closed interval [a, D]
(b) differentiable in open interval (a, b) .
(¢) f(x)is-veina<x<b, then f(x) is monotonically decreasing function in the closed interval la, b]

and f'(x)is positive in a < x < b, then f(x)is monotonically increasing function in the closed interval
[a, b].

2.4.7 Some Standard Results on Continuity and Differentiability of Commonly used Function

&
SRR BT At

Itis important to remember the following facts regarding common functions while checking applicability of
Rolle's and Lagrange's mean value theorems:

1. Constant function is differentiable everywhere [f'(x) = 0, Vx].
Any polynomial function is continuous and differentiable everywhere,

The exponential function (&%, a* etc), sin x, as well as cos x are also continuous and differentiable
everywhere.

w ™

log function, trigonometric and inverse trigonometric functions are differentiable within their domains.
tan x is discontinuous atx = + n/2, +3n/2.. ...
lxl'is continuous but not differentiable at x = 0.

It F(x) = £ = asx— k then that function is not differentiable at x = k.

Sum, difference, product, quotient and compositions of continuous and differentiable functions are
continuous and differentiable.

N o~

2.5 Computing the Derivative
Rules of Differentiation:
(f+gy = '+ g (Sumrul
(f-gy = F-g (Difference rule
o)y = fg’ + of (Product rule

—

’

LLJ _ 9l (Quotientrule
g &

1 af dg :
—(f(g(5 = .2 Chainrule
o’x( {9(x))) G o (

Using the above five rules, we can differentiate most of the cases where yis an explicit function of x.

The following is the table of derivatives of commonly occurring functions:



f(x) fx) f(x) £(x)
¥ Nyt cos h x sinh x
1
Inx - sin”' x !
X 1 x°
1
_ -1
log, x ( x}loga e cos 1
x X 1- X2
e g 1
i d tan™! x
@ | o
SiNx COS x 1
COS x —sinx cosec™ x| - -
5 xx© =1
tan x Sec” x 1
-1
Sec x secxtanx sec —
[
COSEeC x | —COSEC x Cot x Xx© =1
N 1
cot x —-cosec? x cot™x .
: 1+ x
sinhx coshx ]
[l L (x#0)
x|

Most explicit functions can be differentiated by using above table along with the five rules of differentiation.
For more complicates cases, we have to resort to more advanced methods of differentiation as given below:

1. Differentiation by substitution
2. Implicit differentiation

3. Logarithmic differentiation

4. Parametric differentiation

2.5.1 Differentiation by Substitution
There are no hard and fast rules for making suitable substitutions. It is the experience which guides us for
the selection of a proper substitution. However, some useful suggestions are given below:
If the function contains an expression of the form
1. & ~x° putx=asintorx=acost
2. @ +x° putx=atantorx=acott
x° - &% putx = asectorx=acosec t

ST o[BS oute=acos t
a+x a-x

acosx+ bsinx, puta=rcos0andb=rsing, r> 0.

Example:
Differentiate the following functions (by suitable substitutions) w.r.t. x.
2 IRV R
(&) sin T2 (b) tan ' e

X
-1

(c) cos™! (x — xqj (d) tan-! (\ﬁ:;? + x)

xtx

Solution:

(a) Let y = sin”‘(%} ] putx =tan@ie. 6 =tan"x,
+x




sin”(——z«tﬁﬁj = sin~! (sin (20)) = 20

i

then y =
1+tan®0
= 2tan™' x, differentiating w.rt. x, we get
o, 1
dx 1425 1+a°
(b) Let y = ( T+x HJ putx =tan 0i.e. 0 =tan~' x,
then y = tan [ 1+ tan 8+1J
tan®
[
/ N N
B -1 secB+ 1y . 1 cos@
= tan L tand )_ an siné
cos6
: 200829
[ 1+cos® tar! 2
= —— | = lan )
sind 2sinzcos
L <
= tan™ cotg) = tan™'| tan qun
2, 2 2)
T 0 n 1, ) .
= —~-==———tan ‘ ,
5757575 x, differentiating w.rt. x, we get
a1 1
dx 7 2 q144f 21+ x°)
1 S x—~1 ' 2
(©) Let y = cos”’ x_x_1 = cos” X1 = cos™ 36—2———1
: x+x _ x+1 ' x°+1
r) :
put x = tanBie 0 =tan 'y,
tan? 6—1 [ —1-1an?e
then y = Cos” Cos” | ———
‘ tan®o + 1 14+ tan“8
= c0s™! (- cos 20) = cos™'(cos (1 - 26))
= n—-20=7n-2tan" x, differentiating w.r.t. x, we get
d
2o o2
dx T+ x° T+ x
(d) Let y = tan”(v1+x2+gd
put x = cotBie 0=cot'x
then y = tan“(\hvr» cot26+oote)

tan™' (cosec 8 + cot 8)

. 1 cosh)
an | —+———r
Lsind  sing




20

_1f 1+ cos® 2C0s°
tan”" ——2 el 2 = -1 9
( Sino ) tan A 5 tan (cot2

2Sin—Ccos—

2 2
tan”(tan(zﬂ——?—)) .9
2 2 2 2

T 1
57 ECOt 1x, differentiating w.r.t. x, we get

i

i

i

i

dy 1 1 1
& =05tz s ]
dx 2\ 1+x 2(1+ x%)
2.5.2 Implicit Differentiation

If y be a function of x defined by an equation such as

y o= Tx*=5x3 4+ 11x2 + 2y -3 - (D)

yis said to be defined explicitly in terms of x and we write y = f(x) where

flx) = 7x*=5x3 4+ 11x2 + f2x -3
However, if x and y are connected by an equation of the form
x4y3 - 385+ 7yP-8x24+9 = 0 (i)
i.e. fx, y) = 0, then y cannot be expressed explicitly in terms of x. But, still the value of y depends upon

that of x and there may exist one or more functions ‘f’ connecting ywith x so as to satisty equation (ii) or there may
not exist any of the functions satisfying equation (ii).

For example, consider the equations
X%+ y2-25 = 0 .. (iii)
and X2+ y2425 =0 .. (iv)

In equation (i), y may be expressed explicitly in terms of x, but yis not a function of x. Here we have two
functions of x (or two functions of y if y were considered to be independent variable) f, and f, defined by

) = V25 - %% and f(x) = ~J/25 — x® which satisfy equation (ii).

In equation (iv), there are no real values of x that can satisfy it.

In cases (ii), (iii) and (iv), we say that y is an implicit function of x (or x is an implicit function of y) and in all
such cases, we find the derivative of ywith regard to x (or the derivative of x with regard to y) by the process called
implication differentiation. Of course, wherever we differentiate implicitly an equation that defines one variable as

: an implicit function of another variable, we shall assume that the function is differentiable.

Example 1.

d
Find a% when x? + xy + v2 -2 100.

Solution:
Given, x? +xy+ y? = 100
Keeping in mind that y is a function of x, differentiating both sides w.r.t. x, we get
dy dy
2x+|x =+ y-1+2
x ( Yiy j v

X P

0



d
= ()C“i-zy)’c‘j‘}xi = ~—2x_y
dy _Zxty
- dx ~ x+2y
Example 2.
If x2B 4 y2/3 = a%B find g_.}i
dx
Solution:
Given, X3y 2B o g2

Differentiating both sides of (i) w.rt. x, regarding y as a function of x, we get
2 v, 2 s Y

+= =
3 3 Y dx 0
1 1 dy
= [ERV T 0
13
famsce] g*}*/‘ = .,.—L = -3 —'}i
dx XV3 X
Example3.
If sin® v + cos xy = =, find ﬂ
dx
Solution:
Given, sinfy+cosxy = n
Differentiating both sides of (i w.rt. x, regarding y as function of x, we get
2(siny)'cosy-g-— sinxy-(xg}i+y- 1) =0
dx dx

= (2sinycosy -xsin xy)%)i: y sin xy
X

= (sin2y — x sin xy)g)i = ysinxy
dx
ay ysinxy
= - = — .
dx Sin2y — x sinxy
Example 4,
ay
Ify= \/COSx+ \/COSer JCOS x +...t0 e , prove that (1 - 2y) —— = sin x.
dx
Solution:
Given, y = JCcosx+y
= y? = cosx+y
= y2-y = cosx
differentiating w.r.t. x, we get
ay oy »
2y———-—" = —gin
ydx dx sin x
= (1~2y)9’—}i = Sin x

dx




2.5.3 Logaé‘ithmic Differentiation

In order to simplify the differentiation of some functions, we first take logarithms and then differentiate.
Such a process is called logarithmic differentiation. This is usually done in two types of problems.

1. Whenthe given function is a product of some functions, then the logarithm converts the productinto a
sum and this facilitates the differentiation.

2. When the variable occurs in the exponent i.e. the given function is of the form [F()] ¢(x).
Derivative of u¥where v, vare differentiable functions of x
Let y = uY taking logarithm of both sides, we get
log y = vlog u, differentiating w.r.t. x, we get

1 ady o
e T E;(vlog u)
d d d
= E/% = ya-;(v logu) = uv a—;(\/ log u)
Example 1.
Differentiate the following functions w.r.t. x;
(a) x¥
(b) cos (x%).
Solution:
(a) Let y = x%
Taking logarithm of both sides, we get
logy = xlogx,
Differentiating w.r.t. x, we get
1 g
e 4 = x~1+logx-1
y dx x
= ay = y(1 +logx)=x*(1+logx)
dx
(b) Let y = cos (x¥), differentiating w.r.t. x, we get
dy H X __d_ X
ol sin(x") dx(x)
d, . : , ‘
Now a—;(x' ) has been obtained preciously in part (a).
S _ql - i SXY L \1 '
0, g = —sin (%) x*(1 + log x)
Example 2,
dy log x

If x¥ = e*7, prove that = = ‘
* P dx  (1+logx)?

Solution:
Given, xV

i

e*, taking logarithm of both sides, we get

ylogx = (x~y)loge=(x-y) 1=x-y
= y+ylogx = x
= (1+logx)y = x




= y = -—J—C——7 differentiating w.r.t. x, we get

1+ logx
1
ay (1+|ng)'1~x'(0+;~J _ I+logx-1  logx
dx (1+ logx)? © (+logxf  (1+logx)?

2.54 Derivatives of Functions in Parametric forms

Ifx and y are two variables such that both are explicitly expressed in terms of a third variable, say t i.e. if
x = f(f) and y = g(t) then such functions are called parametric functions and the third variable is called the
parameter.

In order to find the derivative of a function in parametric form, we use chain rule.

ay _ dy dx
at ~ dx dt
dy
dy at ( o dx j
D rovide = % 0
OR dx dx P at
at
Example 1.
Ifx=a(t+sint), y=a(l-cos t), find ﬂ/-at t= z
*= = S
Solution:
Given, x = a(t+sint)and y=a(1-cos t)
Differentiating both w.rt. t, we get
g—{ = g(t+cost
gr - a(tFcost)
d
and X a(0-(-sint))=asint
at
dy
ay at
We know that = E_;
at
i t t
dy asint SIHECOSE t
o = = tanm,
dx a1+ cost) 20052 L 2
2
d
(-—ZJ = tanzE =1,
dx),.m 4
2
Example 2.
3
Differentiate w.rt, x5,
1~ %3
Solution:
3 d
Let Yy = —* and z=x3 so that AN wanted.

1 i3 dz




Differentiating both w.rt. x, we get
dy (1-x%).8x% = x% . (0~ 3+9) G

dx (1—«x3)2 - (1-x3)2'
az
Yo a2
and o = 3x-,
dy
dy  dx
We know that Pl %
dx
ay 3x? 1 1

- x
az (1___ x3)2 X 3x2 (1 _x3)2 X #

2.6 Applications of Derivatives
There are two areas where derivatives are used
1. Increasing and Decreasing Functions
2. Maxima and Minima
(a) Relative maxima and minima
(b) Absolute maxima and minima
3. Taylor's and Maclaurin’s Series Expansion of Functions
4. Slope determination of line

26.1 Increasing and Decreasing Functions

Let fbe a real valued function defined in an interval D (a subset of R), then fis called an increasing function
inan interval D,(a subset of D) f

for all Xy, x, € D,

Xy < x, = fx,) < fx,)
and fis called a strict increasing function (or monotonically increasing function) in D, it
for all xq, x, € D,

Xy <x, = f(x)) < flx,).

1
1
i
t
[}
t
1
1
i

1
1
! ' ) e TR
i /-;:i & : ! RO
LB E REESE-S
i H i WX H ! ! ! X
/O 5
Dy e Dy
Increasing in D, Strict increasing in D,

(a) (b)

Analogously, fis called a decreasing function in an interval D, (a subset of Dy if

for all Xy X, € D2'

Xq <Xy = flx;) 2 fx,)
and fis called a strict decreasing function (or monotonically decreasing function) in D, if -
for all X1, %, € D,

x5 < xp = flx;) > f(x,)




.

i
]
I
I
1
1
i
|
|
I
i
£

: I 1l : 1
13 CisiE
= 1= | w0
! i x 1 1 1 X
0 fe——D,—=] 0 par— D, i}
Decreasing in D, Strict decreasing in D,
(@ (b)

2.6.1.1 Conditions for an Increasing or a Decreasing Function
Now we shall see how to use derivative of a function to determine where it is increasing and where it is
decreasing.

We know that the derivative (if it exists) at a point £ of a curve represents the slope of the tangent to the
curve at P.

y
%
—p
\ ! !
: Ly X
0 b Dy ] 0 fe—D,—>]

(a) (b)

Intuitively, from above fig. (i) we see that if fis a strict increasing function in D, (a subset of D)), then the

tangent to the curve y = f(x) at every point of D, makes an acute angle y with the positive direction of x-axis,
therefore tany > 0 = f(x) > Ofor allx e D;.

Analogously, from above figure (ii) we see that if fis a strict decreasing function in D, (a subset of ,), then 1
the tangent to the curve y = f(x) at every point of D, makes obtuse angle y with the positive direction of x-axis, f“
therefore, tanyw < 0 = F(x) < Oforallxe D,

But this intuition may fail, for example, consider the function f(x) = x3, D,=R.

Y
A portion of its graph is shown in figure. It is a strict increasing function.
However, here f'(x) = 3x2 and atx = 0, f(0) = 0, so the slope of the tangent at
x =0 is not positive, it is zero.
In fact, we have: 0 ”
1. Ifafunction fisincreasing in D,(asubset of D,), then F(x) > O for all x /
eD,.
2. Ifafunction fis decreasing in D, (a subset of D)), then f'(x) < O for all
xe D,

Conversely, common sense tells us that a function is increasing when its rate of change (derivative) |
positive and decreasing when its rate of change is negative. We state these results as follows:

Theorem 1:If a function fis continuous is [a, b], and derivable in (a, b)and

1. Flx)z0forallxe (a b), then fis increasing in [a, b]

2. flx)>0forallxe (a b) then fis strict increasin

< (a b), gin|



Theorem 2:1f a function fis continuous in [a, b}, and derivable in (a, b) and
1. f(x)<0forallxin (a, b), then f(x) is decreasing in [a, b].
2. f{x)<Oforallxe (a b), then f(x) is strict decreasing in [a, b].
Remark: The formal proofs of these theorems are based on Lagrange’s Mean value Theorem.
Corollary. If a function f(x) is continuous in [a, b], derivable in (a, b) and
1. f(x)>0forallxin (a, b) except for a finite number of points where f'(x) = 0, then f(x) is strict increasing
in[a, b].
2. [(x)<Oforallxe (a, b)exceptforafinite number of points where (x) = 0, then f(x) is strict decreasing
in[a, b).
Example 1.
Prove that the function f(x) = ax + b /s strictly increasing if a > 0.
Solution:
Given: flx) = ax+ b, D, = R.
Note that fis continuous and differentiable for allxe R.
Differentiating the given function w.r.t. x, we get f'(x) = a.
Now the given function is strictly increasing if f(x) > 0i.e.ifa> 0.
Hence, the given function is strictly increasing for allxe Rif a> 0.

Example 2.
Prove that the function e is strictly increasing on R.

Solution:
Let flx) = ¥ D,=R.

Differentiating w.r.t. x, we get
flx) = e-2>0forallxe R
= f(x) is strictly increasing on R.

Example 3,

2
Prove that " +5 s a strictly decreasing function

Solution:
2
Let fx) = —=+5,D,=R-[0].
x
o , 5 2
Dif. itwrt. x,wegetf(x)=2-(-1"x%)+0= -5
X
Since x> > Oforallxe R x=#0, therefore,
fl(x) < Oforallxe H,x=0, e, forallxe D,
= the given function is strictly decreasing.
Example 4.
Prove that the function f(x) = x3 - 6x? + 15x — 18 is strictly increasing on R.
Solution:
Given, flx) = x*—-6x2 + 15x~ 18, D, = R.
Dif. it w.r.t. we get flx) = 3x°-6.2x+ 1561 =3(x2 - 4x + 5)

i

3[(x-2P2+1]=23 (- (x-2)2=0foralxe R)
= f(x) > Oforallxe R.
= f(x) is strictly increasing function for all xe R.




Example 5.
Find the intervals in which the following functions are strictly increasing or strictly decreasing

(@)

(b)

(c)
Solution:

(@)

f(x) = 10 ~ 6x — 2x°
f(x) = x° - 12%° + 36x + 17
fx) = —2x% — W2 - 12x + 1

Given, fx) = 10-6x-242 D,= R,
Differentiating it w.r.t. x, we get

fix) = 0-6.1-2. ?_x=-6-4x=—4(x+g-).

i + —
Putting, F(x) = 0, we get 20+ 420 156 -0
= X+— =0
3
= X = e
2
. . , 3
So there is only one critical point which is x = 5

So the critical point divides the real number line into two regions which are x e (ngj and

()

Now we find (0) = -6 which is negative and so the region x (——g,oo) (which contains x = 0)isthegt
region where the function is strictly decreasing.
Therefore in the other regioni.e.xe [ —oo~—g—J is the region in which the function is strictly increasing;

This is shown in the following diagram with the sign of f/(x) in each region of the number line.

+ —

3
2
Given, f(x) = x%~12x2 + 36x + 17, D;=R.
Differentiating w.r.t. x, we get .
F(x) = 3x?—24x + 36 = 3(x2 - 8x + 12)
= 3(x-2) (x - 6).
Putting, f(x) =0i.e. 3(x-2) (x-6) = 0

= (x-2)(x-6) = 0 i
= _ x = 20rx=6are the two critical points g



Plotting these critical points on the number line we get the following picture

o o .

2 6
So the critical point divides the real number line into three regions which are x € (o, 2) and
x€e (2,6)andxe (6, «). ‘
Now we find #(0) = 3(0 - 2) (0 - 6) = +36 which is positive and so in the region x € (e, 2) (which
contains x = 0), the function is strictly increasing.

Therefore in the next region i.e. x € (2, 6), the function is strictly decreasing and in the next region
x € (6, «), the function is again strictly increasing. This is shown in the following diagram with the
sign of f'(x) in each region of the number line.

+ - +

PN

2 6

So the final region in which the function strictly increasing is x € (—eo, 2) U (6, ) and the region in
which the function is strictly decreasing is x e (2,6).

(c) Given, fx) = ~2x3-9x2-12x+1,D,= R
Differentiating w.rt. x, we get
f(x) = ~6x% - 18x - 12 ’y:
= 6 (x*+3x+2) A >
= ~6(x + 2) (x + 1), 2
Putting, flx) = 0ie.=B(x+2)(x+ 1) =0
= x+2)(x+1) =0
= x = —2and x = -1 are the critical points

Plotting these critical points on the number line we get the following picture

8
A 4

2 -1
So the critical point divides the real number line into three regions which are x € (oo, ~2) and
xe(-2,-1)andx e (~1, ).

Now we find f/(0) = = 6(0 + 2) (0 + 1) = —12 which s negative and so in the region x € (=1, o). (which
contains x = 0), the function is strictly decreasing.

Therefore in the next adjacent region on the leftie. x e (=2, ~1), the function is strictly increasing and
in the next adjacent region on the left x € (-, ~2), the function is again strictly decreasing. This is
shown in the following diagram with the sign of f(x) in each region of the number line.

— o+ -

& 7Y
A 4 @

-2 -1
So the final region in which the function strictly increasing isx e (-2, -1) andthe region in which the

function is strictly decreasing is x & (oo, ~2) U (-1, o) .

2.6.2 Relative or Local Maxima and Minima (of function of a single independent variable)

Definitions: A function f(x) is said to be a local or relative maximum at x = a, if there exist a positive number
& such that f(a + 8) < f(a) for all values of § other than zero, inthe interval (-8, §).

A function f(x) is said to be a local or relative minimum atx = a, if there exists a positive number & such that
f(a+ 8) > f(a) for all values of 8, other than zero, in the interval (-3, 8).



Maximum and Minimum values of a function are together also called extreme values or turning values and
the points at which they are attained are called points of maxima and minima.

The points at which a function has extreme values are called Turning Points.

2.6.2.1 Properties of Relative Maxima and Minima

1. Atleast one maximum or one minimum must lie between two equal values of a function.
Maximum and minimum values must occur alternatively.
There may be several maximum or minimum values of same function.
Afunction y = f(x) is maximum atx = a, if dy/dx changes sign from +ve to —ve as x passes through a.
A function y = f(x) is minimum at x = a, if dy/dx changes sign from -ve and +ve as x passes through a.
If the sign of dy/dx does not change while x passes through a, then yis neither maximum nor minimum
atx = a.

SRS NN

2.6.2.2 Conditions for Maximum or Minimum Values
The necessary condition that f(x) should have a maximum or a minimum at x = a is that f/(a) = 0.
2.6.2.3 Definition of Stationary Values
A function f(x) is said to be stationary atx = aif f(a) = 0.
Thus for a function f(x) to be a maximum or minimum at x = & it must be stationary at x = a.
2.6.2.4 Sufficient Conditions of Maximum or Minimum Values
There is a maximum of f(x) at x = aif f(a) = 0 and f”(a) is negative.
Similarly there is a minimum of f(x) atx = aif f(a) = O.and f“(a) is positive.
Note: If /“(a) is also equal to zero, then we can show that for a maximum or a minimum of f(x) at

x = a, we must have 7(a) = 0. Then, if (&) is negative, there will be a maximum atx = a and if f*(a) is positive
there will be minimum atx = a. ‘

Ingeneral if, f'(a) = "(a) = f"(a) = ... f"~'(a) = 0 and (a) = 0 then n must an even integer for maximum
or minimum. Also for a maximum f7(a) must be negative and for a minimum (a) must be positive.
2.6.2.5 Working rule for Maxima and Minima of f(x)

1. Find f'(x) and equate to zero.

2. Solve the resulting equation for x. Let its roots be a,, a,, ...... Then f(x) is stationary atx = a,, a,,
............. Thusx = a,, a,, .......... are the only points at which f(x) can be maximum or a minimum.
3. Find f”(x) and substitute initby termsx = a,, @y, .............. wherever (x) is x we have a maximum and

wherever f/(x) is +ve, we have a minimum.

4. Iff"(a;) =0, find F(x) putx = a, in it. If f(a,) # 0, there is neither a maximum nor a minimum atx = a,.
If f7(a,) = 0, find f¥(x) and putx = a, in it. If fV(a,) is -ve, we have maximum at x = a,, ifitis positive
there is aminimum atx = a,. If fiV(aT) is zero, we must find f¥(x), and so on. Repeat the above process
for each root of the equation (x) = 0.

2.6.3 Working Rules for Finding (Absolute) Maximum and Minimum in Range [a, b]

If a function f is differentiable in [a, b] except (possibly) at finitely many points, then to find (absolute)
maximum and minimum values adopt the following procedure:
1. Evaluate f(x) at the points where f'(x) = 0.

Evaluate f(x) at the points where derivative fail

2
3. Find f(a) and f(b).

a tn aviat
O W TAISL.




Then the maximum of these values is the absolute maximum of the given function fand the minimum
of these values is the absolute minimum of the given function f.

Example 1.
Find the absolute maximum and minimum values of:
(@ f(x) =23~ + 12x~51n [0, 3] '
(b) flx) =12 x" —6x"8 xe [-1, 1]
Also find points of maxima and minima.
Solution:
(a) Given f(x) =2x° - %%+ 12x -5 ()
It is differentiable for all x in [0, 3], since it is a polynomial
Differentiating (i) w.r.t. x, we get
flx) = 2-3x°~9-2x + 12 = 6(x2 - 3x +2)

Now, fflx) =0
= B6(x°-3x+2) =0
= ¥-3x+2 =0
= -1 (x-2) = 0
= x = 1,2

Also 1, 2 both are in [0, 3], therefore 1 and 2 both are stationary points or turning points.
1

Further, f(1) = 2-1%-9.124+12.-1-5=22-9+12-5=0
f(2) = 2.-25-9.22412.2-5=16-36+24-5=—1
AO) = -5

and f3) = 2-33-9.33+12.3-5=54-81+36-5=4

Therefore, the absolute maximum value = 4 and the absolute minimum value = ~ 5. The point of
maxima is 3 and the point of minima is 0.

(b) Given, flx) = 12x*8 - 6x"3 x e [-1, 1]
Differentiating (i) w.rt. x, we get

y 4 13 1 ~-2/3 2 2(8x _ 1)
fle) = 12:5 BRI R G 7 Y:
Now, fx) = 0
2(8x —1)
= NYE =0
X
_ 1
= X = g

1 1
As 3 e [-1, 1], 3 is a critical point.

Also we note that fis not differentiable atx = 0,

1 1 4/3 1-1/3 1 4 1
fl~ 1202 -6[=] -19=] -6~
B - 5] os) -3 o

f2.L3.3_5_.°%
16 4 4

12.0-6.0=0
= 12(-1)%-6(~1)B = 121 - 6.(-1) = 18
1214 _6/1% =121-6.1=6

il

i
"
]
l

=
= 7T =
-t — (@)
e N SN
i | i




Therefore, the absolute maximum value = 18 and the absolute minimum value = —% . The point of

1
maxima is ~1 and the point of minima is 3

Example 2, |
It is given that at x = 1, the function x* - 62x2 + ar + 9 attains its maximum value in the interval
[0, 2]. Find the value of a.

Solution:
Let fix) = x*-62x2+ ax + 9 ()
It is differentiable for all x in [0, 2].
Differentiating (i) w.r.t. x, we get
' f(x) = 4x3-124x + a
(1) = 413-1241+a=2a-120
Given that at x = 1, the function (i) has maximum value, therefore, x = 1is a point of maxima

i

= x = 1isa critical point
= (1) = 0

=5 a-120 = 0

= a = 120

2.6.4 Taylor's and Maclaurin's Series Expansion of Functions

2.6.4.1 Taylor's Series

If (i)f(x) and its first (n— 1) derivatives be continuous in [a, a + h], and (i) f"(x) exists for every value of x in
(a, a+ h), then there is at least one number 8(0 < 8 < 1), such that

'

mf”(a+ 0h) (i)

fla+ h) = f(a) + hf'(a) + ngf"(a)+...+

which is called Taylor's theorem with Lagrange’s form of remainder, the remainder R, being %an” (a+6h).

A YA o\
Consider the function 00 = f(x) + (a+ h-x) Fx) + (—?—-““—";_'—if”(x) ot (—ai%fiK
where Kis defined by
a+h) = f(a) + hf(a) + %er”(a)+ ....+%n~'-K (D)
1. Since f(x), f'(x), ...... ™1 (x) are continuous in [a, a + h), therefore o(x) is also continuous in [a, a + ],
, (@a+h-x""' .
3 / I e f - K
2. ¢'(x) exists and T [F"(x) ~ K]
3. Also ¥a) = o(a+ h) [By (ii)]

Hence ¢(x) satisfies all the conditions of Rolle’s theorem, and therefore, there exists at least one number
0(0 <0 < 1), suchthat¢’(a+68h) =0ie. K= f(a+ oN{0<b<1)

Substituting this value of Kin (2), we get (1).

LS s




Cor. 1. Taking n = 1in(1), Taylor's theorem reduces to Lagrange’s Mean-value theorem.
Cor.2. Putting a=0and h=xin (1), we get

n
fx) = f(0) + xF(0)+ f”(O) ........ + 1,‘7—,1"”(0) ... (i)
whichis known as Maclaurin's theorem with Lagrange’s form of remainder.
Example
If f(x) = fog(1 + x), x> 0, using Taylor's theorem, show that for 0 < 9 < 1,
2 3
X X
log(1+x) = x—" 4 —F
91 +) 2 3(1+6x)°
Solution:
x2 x3
Deduce that log (1 +x) < x - —2~+ 3 forx > 0.

By Maclaurin’s theorem with remainder R, we have

2 Jc
f(x) = £(0) + x(0) + ;__!f”(O) + §Tf"'( ) ()
Here fx) = log(1+x), f0)=0
1 /
f'(x):m, f(0) = 1
74 —“1 V4
(x) = (14 X2 (0) = ~ 1
d f/// 2 fl// 2
an (X) = (—H_x)3 ! (ex) (_‘ + 9}()3
2 3
oy A .
Substituting in (i), we get log (1 + x) = x 5 3(1+9x)3 (i)
Sincex>0and 8> 0,08x>0
3 A
o (1+6x)°>1 x.e.(1+ex)3 < 1
2 . 33 N o N 3
X=X = = X b e
2 31+ 6x) 2
X2 763
Hence log(1+x) < x4+ [by (ii)]
2 3
2.64.2 Maclaurin's Series
If f(x) can be expanded as an infinite series, then
f(x) = f(0) + xF(0) + f”(O) + ~§-|-f”’(0) ..... o0 ()

If f(x) possesses derivatives of all orders and the remainder R, in (3) on page 154 tends to zero as
f1— <o, then the Maclaurin's theorem becomes the Maclaurin's ser ies (1).



Example:
Using Maclaurin’s series, expand tan x upto the term containing x°.

Solution: :,
Let flx) = tanx f0)=0
F(x) = séc?x =1 + tanx 7(0) = 1
f(x) = 2tanxsec?x=2tanx (1 + tanx) ‘
= 2tanx+ 2tandx 0y =0
" (0) = 2sec?®x + 6 tan’x sec? x
= 2(1 + tan%) + 6 tan® x(1 + tan® x)
= 2+ 8tanx +6tan‘y (0) = 2
7(0) = 16tanxsec?x + 24 tan®x sec? x
= 16tanx (1 +tanx) + 24 tan®x(1 + tan® x)
= 16tanx + 40tandx + 24 tan® x (0) = 0
f7(0) = 16 sec?x + 120tan®x sec? x + 120 tan* x sec? x) |
f(0) = 16
and so on.

Substituting the values of A0), (0}, etc. in the Maclaurin's series, we get

3
fanx = O+xx1+0- 2+ .2+4% .0+5 .16...

2.6.4.3 Expansion by Use of Known Series i

When the expansion of a function is required only upto first few terms, it is often convenient to employ the
following well-known series i

. ° 8° o . 8 o° ¢
1. snn6=9—§T+—é~!—7l—+ ....... 2. S|nh6=6+—§+~§+ﬁ+ .......
02 ot of 62 gt gf
3. cosG='1——2—!+m+—é—!+ ....... 4, cosh6=1+—2—!+2—!—+~6~!+ ...... :
0 0 5 PEE
5, fan8= 0+ —+—0"4........ 6. tan'x= x~"—+—— ...
n AT an'x= x 318
2 3 4 > 3 4
- ror L x N
7. ef=1+x+§+§+m+ .......... 8. log(1 +x) = x 2+ 8+ 4+ ..........
2 3 4 .
9. ’09(1“X):~(X+L+L+L+ .......... j 10. (Hx)n:1__mx+n(n—1)x2+n(n~1)(n—2)x3+ .......
_ 2 3 4 21 31 L

Example:
Expand es"* by Maclaurin's series or otherwise upto the term containing x4.

Solution:

Ry 3 e\
(sinx) +(sm,x) +(smx) .
2! 3! 4

Wehave, eS™ = { +sinx+




R I o s [ RS
= T+{x—"+..., | X =t (" = )= )
6 6 24
1 X2 X4 ’
= T4+ x+ = 5 o

Otherwise, let flx) = gsinx f(O) = 1
: fx) = ™ cosx fx) cosx, f(0) = 1

f(x) = F(x) cos x - f(x) sin x, f(0) = 1

f(x) = (x) cos x - 2f (x) sin x — f(x} cos x, 7(0) = 0

f7(x) = (x) cos x - 3f(x) sin x — 3f(x) cos x f(x) sinx, #(0) = 0
and soon
substituting the values of #(0), (0) etc., in the Maclaurin’s series, we obtain

2 3 4
R 1+i;—!'1+';—!-0+ Z! (=3)+.....
.\‘2 .\’4
= T+x+ == g + o,

2.6.5 SlopeDetermination of Line

1. Thisis used to determine slope of straight line inxy plane. For example y =x + 3is a line its slope is

; ay
venby 2L~ 1
gi y o

X
2. lftwolines are perpendicular then product of their slopes is —1.
For example let m, be the slope of first line and m, is the slope of second line. If both lines are
perpendicular then ‘

my-m, = -1
3. The derivatives are also used to find slope of tangent on any curve,
For example y = f(x)is a curve in x-y plane
dy

T = f’(.\‘)t(

. is the slope the tangent at point (¥ ¥g)

N5 Vo)

2.7 Partial Derivatives

2.7.1 Definition of Partial Derivative

If a derivative of a function of several independent variables be found with respect to any one of them,
keeping the others as constants, it is said to be a partial derivative. The operation of finding the partial derivative
of a function of more than one independent variables is called Partial Differentiation.

The symbols d/0x, 9/dy etc., are used to denote such differentiations and the expressions du/ox,
dufdy etc., are respectively called partial differential coefficients of 4 with respecttoxandy.

fu=1(x, y, z) the partial differential coefficient of u with respecttoxi.e., du/ox is obtained by differentiating
uwith respect to x keeping y and z as constants.

2.7.2 Second order partial differential coefficients

If u=f(x, y)then du/ox or f and dujdyor fy are themselves function of x and y and can be again differentiated
partially.




d(d d(d) of d 00 . -
We call 5;(5;) 3;[—5);} 5;(5;) 5}7(5;) as second order partial derivatives of u and these are

Pu U Pu W
ax2 ' 9y? ' oxdy ' dyox”

Note: If u = f(x, ¥) and its partial derivatives are continuous, the order of differentiation is immaterial i.e.,

respectively denoted by

Pu  u
oxdy  Oydx

2.7.3 Homogenous Functions

An expression in which every term is of the same degree is called homogenous function. Thus,
apx+ax’" ly+ax"2y?+ . +a, ,xy"'+ay"isahomogenous function of x and y of degree n. This can also

be written as,
2 n-1 n
,v”{ao+a1[x)+a2(zj +...+an_1[—y—J +an(z~) }
X X : X X

or x”f(x) . where f(xj is some function of L )
X X X

Note: To test whether a given function f(x, y) is homogenous or not we put tx for x and ty for yin it.

if we get f(tx, ty) = t" f(x, y) the function f(x, y) is homogenous of degree n otherwise f(x, y) is not a
homogenous function.

Note: If uis a homogenous function of x and y of degree n then du/dx and du/dy are also homogenous
function of x and y each being of degree (n-1).

2.7.4 Euler’s Theorem on homogenous runctions
If uis a homogenous function of x and y of degree n, then.

ou Ju
—_— Y
ox }/ay
Note: Euler's theorem can be extended to a homogenous function of any number of variables. Thus

x = nu

of
f(xy, x, ... x,) be a homogenous function of x, x,, ... x, of degree n then, xg—f— + xgaif— T ta, o= nf
X4 X "

Example:
Show that u = x3 + y3 + 3xy? is a homogenous function of degree 3.

Solution:

N Y a4 3y2and

ow, s + 3y
ou
o 3)2 + Bxy

. ou odu ’ o 2
Now, X——+y-— = x(3x% + 3y%) + y(3y° + 6xy)
X ox

= 3(x3 + y3 + 3xy?)
= 3u
So, Euler’s theorem says that uis a homogenous function of degree 3.



2.8 Total Derivatives

If u

f(x, y), where x = o(t) and y = ,(f),

du Ju dx dU dy

o =y 22 2L

then, a at Ty o

~

. - 4 , au _
Here %% is called the total differential coefficient of u with respect to t while %L—l- and —a; are partial
: X
derivatives of u.

In the same way if u = f(x, y, z) where x, y, z are all functions of some variable I, when

au Ju dx du Say du dz

ot T ot Yoy ar tarar
This result can be extended to any number of variables.
Corollary 1: If ube a function of x and y, where yis a function of x, then

v v dy
dx  ax 9y dx
Corollary 2: If u = f(x, y) and x = f.(t, t)andy = f, (t,, t,), then

. au ax  ou ay

a  ax oy oy ot
au du dx  dU Oy

o A, oy oy

Corollary 3: If x and y are connected by an equation of the form flx, ) = 0, then
dy  of/ox

dx — 9f/ay

and

2.9 Maxima and Minima (of Function of Two Independent Variables)

29.1 Definitions

Let f(x, y) be any function of two independent variables x and ysupposed to be continuous for all values of
these variables in the neighbourhood of their values a and b respectively.

Then, f(a, b) is said to be maximum and a minimum value of f(x, y) according as f(a + h, b + k) is less or

greater than f(a, b) for all sufficiently small independent values of h and k, positive or negative, provided both of
them are not equal to zero.

2.9.2 Necessary Conditions

The necessary conditions that f(x, y) should have a maximum or minimum atx=a y=bisthat

29.3 Sufficient Condition for Maxima or Minima

Letr= ﬁ 1S = 182]( (b= __Qiz_‘_
Tl aw? c=a dxdy - 8y2 x
y=b y

x=4a
y=b

a

Case 1: f(x, y) will have a maximum or a minimum at x = a, y= b, ifrt>s2. Further, f(x, y) is maximum or
Minimum according as rin negative or positive.




Case 2: f(x, y) will have neither maximum or minimum at x = a, y=bifrt<s2 ie x=a, y=Dbisasadd|
point.

Case 3: If rt = s? this case is doubtful case and further advanced investigation is needed to determin

whether f(x, y) is a maximum or minimum atx = a, y = bor not. For gate problems case 3 will not apply. Check on
case 1orcase 2.

2.10 Theorems of Integral Calculus

1. Theintegral of the product of a constant and a function is equal to be product of the constant and the
integral of function.

Thus if A is constant, then [ Af(x)dx = A [ f(x)dx.

2. The integral of a sum of or difference of a finite number of functions is equal to sum or difference of
integrals. Symbolically

j [F(x) + ) & f(x) £ £ £ (x)]ce = J“ f,(x)dx + J“ f,(x)dx + f flx)de £ .. % f

2.10.1 Fundamental Formulae

n+1

1. er” dx = ;+1 2. j%dx:l@gx
3. [sinxdx=cosx 4. [cosxdr =sinx
5. [sec?xdx =tanx 6. [cosec?x dr =-cotx
7. [secxtanx=secx 8. [cosecxcotx=—cosec x
9. f 1 dx =sin! x 10. f 5 dx =tan x
N 1+ X
|

M [ —————dx=sec ' x 12. | cos hx = sin hx
J x\/xz -1 f
13, J'sin hx dx = cos hx

2.10.2 Useful Trigonometric Identities

o | R E T3,

6 | 4|3 | 2 2
sinolml»\/§~—10~10

2 12| 2
0081[3~~1—~1—O—10—1

2 |2l 2

1
tanO-—1\@ooO—ooO

J3

sin(—=x) = —sinx

COs{—x) = Cosx

sin(x + y) = sinx cosy + cosx siny
sin(x — y) = sinx cosy — cosx siny

Cos{x + y) = cosx COSy — sinx siny

I O I

Cos(x — y¥) = cosx Cosy + sinx siny




10.

11,

12,

13.

14,

15.

16.

17.

18.

19.

20.
21,

T .
cos| — — = Sinx
(2 J
sin(zE - x)
5 = COSx

(i) sin(g + x) = Cosx(ii) cos(-;E + x) = ~sinx

(i) sin(m—x) = sinx(iv)cos(r - x) = - -cosx
(v) sin(m +x) = ~8inx(Vi)Cos(m + x) = ~cosx
(vii) sin(2r ~ x) = =sinx(viii)  cos(2n —x) = cosx

‘ tanx + tany
tan(x + y) = 1-tanxtany
tan(x - y) = e tany

~ T+tanytany

tan(vﬁ+ J _ T+tanx
D v

t (n \ 1-tanx
an Z—,\J =

T+tanx

COtx coty + 1

ool + ) = coty + cotx

Cotx coty + 1

0ollx ~ y) = coty - cotx

2tanx

Sin2x = 2sin x cosx = T
1+ tan” x

r s ) -, 1-tan®x
COS(2x) = cOs? x - sin?x = 20082y~ 1 = 1 — 28Ny = ~——x "

tan 2x = —EED;—
1-tan® x
sinx = 1~ cos? y
cos?x = 1 - sin? x
e''=cos t+isint

2.10.3 Methods of | ntegration

There are various methods of inte
Standard integrals. There are four princip

1.

1+ tan® x

gration by which we can reduce the given integral to one of the known
al methods of integration.

Integration by substitution: A change in the variable of integration often reduces an integral to one of

fundamental integrals.

Let] = ff(x)dx, then by differentiation w.r.t to x we have

dx
x = 0(t), that == = ¢'(¢
v = (1), sO adz‘ o't

g{— = f(x). Now put,

X




i _dl o
dt dx dt
This gives I= ff Y- ¢'(1)jd

Then, = f{x)- ¢'(t) = flo(t) - ()} for x = ¢(t)

Rule to Remember:
To evaluate j Flo(x) - ()}

Put ox) =t
and o'(x)dx = ot
where ¢’'(x) is the differential coefficient of d(x) with respecttox.

Three Forms of Integrals:

(a) f%j—))dx = log f(x)

Put f(x) = tdifferentiating we get f'(x) - dx = dt -

g
= Jﬁf)ldxzf-tizloghlogf(x)

Thus the integral of a fraction whose numerator is the exact derivative of its denominatoris equ
logarithmic of its denominator.

Example:
3
I 1+x4 ox = log(1 +x%
Because, if we put (1 +x4) =t
= 4x8 dx = dt

() reduces to= J' gt£ = log t=> log(1 + x*).

Some Important Formulae Based on the Above Form:

‘ sinx (~sinx)

(i) J-tanxdx- -‘.COSde -—J. v dx
= ~log COS x
= log(cos x)™
= {0g sec x

(ii) jcotxdx = log sin x

(iii) fseo x = log (sec x -+ tan x)

i = log | tan —’5)
(iv) jcoser log ( 5

(n+1

A

n+1 .
(b) f [f(x)" F(x)dx = [MT when n# 1: lfthe integrand consists of the product of a const

of a function /(x) and the derivative f'(x) of f(x), to obtain the integral we increase the in
unity and then divide by increased index. This is known as power formula.



2

Formulae:
flax + b)
a

() {f(ax + b)ox =
(i) fﬁ;dx: sin h“(é) - tog[x+ [F 1 ]
(i) [ e qu@ |

: dx ¥

(V) } —==5 = cos fr?(_éj = log[ﬂm]
W [Erdar= 222 o %sin h"‘(—;-)

or %m +-a;—log{x+m}
i) [@-sPdr = ZF - fisin-1(§)

Integral of the product of two functions
Integration by parts: Let u and v be two functions of x. Then we have from differential calculus.

]

d av du

a;(uv):u-a;+v-—a~;

Integrating both sides of (1) with respect to x, we have

()

uv = ju- %dx+ jv- %dx
= fu%dx: uv~fv- g% - ol ()
ie. judv: uv~—fv- du

This can aiso be written as fuvdx = uf vae - j[duj val]ce

The choice of which function will be v and which function will be dv is very important in solving by
integration by parts.

The ILATE method helps to decide this.

ILATE stands for

I Inverse trigonometric functions (sin~"x, cos™ x etc)

L : Logarithmic functions (log x, Inx etc.)

A Algebraic functions (x2, x3 + x2 + 2, etc.)

T Trigonometric functions (sinx, cos x etc.)

E : Exponential function (e*, a* etc.)

whichever of the two functions comes first in ILATE, get designated as v and other function gets
designated as dv.

Formulae Based Upon Above Method:

Ay

e
& + b

(a) feax sin bx dx = (asin bx — b cos bx)

e



ax

(b) [e® cos bx dr = — = (a.c0s by + bsin bx)
a” +

Integration by Partial Fractions:

(a) I= 2_2,‘(x>a)

x—a
= |l —-a)—~loglx + @)l = —Ilo
{log(x — a) ~ log(x + a)} 57109
1 1 x—-a
Th Oy = —| .
US'[,\‘2—82 ! ZQng+a ¥4
(b) I=| ! dx (x < a)
- X X
2 _ 2
!nthiscasef ! d 1!0 ats <a
X = — X
a° - ¥° 2a 9 a

The following is a summary of some of the integrals derived so far by using the three methods of

integration.

o Jgigen= 3o ()
R
o [t - 509

(d) fﬁdx = sin b~ (-;-) = |O9[X+\/XZT82}

az—x

() j 21_5dvzoosh (—) =[og[x+«/x2—a2]
X —a

9) l = isec“(f«j
it - & a a

<
Q

|

C

i1
N | =
-

8




Afew other useful integration formulae:

52 p(fﬁﬂ_} P+
(a) f sinf” x cos” x dx = 2

where I'(x) is called the gamma function which satisfies the following properties
(n+1) =nIn
(n+1) =n! if nis a positive integer
ra) =1

(1) -

(b) Walle's formula

1

1

) . (n-9(n-3)(n-5 2

Tae - Toogs . | @0=2(0=2) 73

jsm X = fCOS t = (n="1(n-3)(n-5) 31m when nis even
(Mn=2)(n-4) "4 2 2

when nis odd

2.11 Definite Integrals

it [ e

] = F(b) - F(a) is called the definite integral of f(x) between the limit of a and b,

b — upper limit; a — lower limit.

2,11.1 Fundamental Properties of Definite Integrals

1.

b b
We have f flx)dx = f f(t) dti.e., the value of a definite integral does not change with the change of
variable of integration provided the limits of integration remain the same.

Let [fax = Fix )and [ f(hat = F(1)
Now fbf(xmx = [F()]2 = F(b) - F(a)
[ K0at = [F(O, = F(b) - F(a)

f fx f fx)dt. Interchanging the limits of a definite integral does not change in the absolute

value but change the sign of integrals.

Wehave [Tty = [fajd + [ sy

Note 1: This property also holds true even if the point ¢ is exterior to the interval (a, b).
Note 2: In place of one additional point ¢, we can take several points. Thus several points.

Thus, «[a f(x)dx = ja flx)dx + j x)dx + _[ x)dx + ..+ J-
(@) Wenave [ f(x)ok = [ f(a+ b- o

(b) Wehavef O’xwf fla-x)dx




a
Proof: L et = fo f(x)dlx

Putx=a-t= dx = -dtwherex =0, t = gand when x = at=0

> 1= a0 = [Ta- ot = [~

5. f f(x)dx =0or2 f x)dx accordmg as f(x) is an odd or even function of x.

Odd and Even function
(@) Anodd function of x if f(-x) = ~F(x)
(b) Aneven function of x if f(-x) = f(x).

6. [ OZaf(x)C/x =2 foa fx)dx, if f(2a-x) = F(x)
2a )
and [ o fdx =0, it fl2a~x) = - f(x)

Coroliary: j xX)dx = jo )y + jo f2a - x)dx

na ?
7. fr(x) ax = nj f(x) dx
0 0
if fx) = fix + a) [periodic function with period a] -
8. = f fx WO 9() - flo()] (p)
. o)
Example 1.
Evaluate the following definite integrals:
5 4
f [x+ ZIdx j(’xl + ’x 3[)
-5 1
Solution:
(@) Sincefor-5<x<-2 x+2<0
= k+2 = -(x+2)
andfor-2<x<5x+220
= e+ 2] = x+ 2,
5 -2 5 -
f{x+2|dx = flx+2|dx+f|x+2]dx (Property 3) §
-5 -5 -0
-2 5 x2 -2 x2 5
= [~(x+2)dx+ [ (x+2)dx= {-—-—sz +[:-—+ 2xJ
b b 2 - 2
£ 2 .. -5 ~2
- 2+4),_(£é§+m) (?é:’ 10) (2-4)=29
(b) Sincefor1<x<3,x20,x-3<0=s{]=x, [x~ 3| = —(x-3)
Alsofor3sx<4,x<0,x-320=lf=xx -3 =x-3 f
A‘i/l | 1 1\ 3{‘ Z};/, h N ' !
JUl+jxr=3jjdx = | [x(+[x~3[ )+ | (| + |- ) dlx (Property 3) g
1 1 3




(x—(x~3))dx + :i()mt xm3)dx

it

ok Gy (3t Revemmm, ()

4
3cix+[ (21 - 3)dx
3

2 4
3[@?{23&*34
2
3
3(3-1)+(16-12) - (9-9)
16+4-0=10.

It

i

Example 2. ,
Evaluate the following definite integrals:

2 ox+1 x<i ! 1
(a) Lf(x)dxwhere f(x>:{xx—+5, j>1 (b) ﬂ%‘dx (c) £[3x]dx

Solution:
(a) First note that the given function is discontinuous at x = 1.
2 1 2
[f(x)dx = [r(x)dr+[f(x)dx (Property 3)
-1 -1 1
1 2
j(2x+1)dx+j(x —5)dx
1

-1

R
x+xl1+ —2——5x

1

i

(1+1)-(1—1)+(2—1o)—[—;~—5) - 2-0-8+2--3

i

(b) First note that lﬂ is discontinuous atx = 0.
X

1
I 0 1 0 1
L”;dx = :f1l—§—l-dx+'(£l%‘dx: L%dx+£§dx

(F-1<x<0=|=-xand 0<x< 1= =x)

i

0 1
j ~1dx 4-J1dx = [*x}g +[X]2)
-1 0

= {0+ (1-0) =1 +1=0,

. S . 1 2
(c) First note that [3x] is discontinuous at x = 3 and x = 3

1 13 213 1
J[Bx] dx = j[Bx} O + f [3x]dx+ f [Sx]dx
0 0 13 2/3

3 2/3 1

i

Ide+ f 1dx+ J 20’x=0+[x]12//§+2[x];/3
0 13 2/3




3 3 3) 38 3
Example 3.

By using properties of definite integral, evaluate the following:

n/2 w2 2n
@ [sinffxar ) [ Psinfxar (o) [ [cos| d
~7f2 -n/4 0
Solution:
(@ Let f(x)=sin*x= fl—x) = sinf(—x) = (-sin x)* = sind x = f(x)
/2 2
.4 n/2 n/2 _
= f Sin“xdy 2f sin® xdly = Zf (~—~———1 COSZX) dx
/2 0 0 2
1 7(/2 5
= > g (1—20052x+ Ccos 2x)dx

2
(1~2coszx+li%os—43] ol

\ e J

N —

C}'—ﬁ:l\

2
(3-4cos2x + cos4x)dx

N

O".i

. . n/2
34 sin2x N sindx
2 4 b

N

PN

(82-2sinn+lsin2n] —«(O ~28in0+1sinoj
2 4 4

- %K%ﬁ—mo)-(o-mo)}%’i

(b) Let f(x) = x®sin*x = f(—x) = (=) sin*(—x) = —x3 sin? x = —f(x)
= f(x) is an odd function; therefore, by property 5,
n/4
f Ssinfxdy = 0
~n/4

(c) Let fix) = |cos x| = f(2n -x) = |cos (2n - x)| = |cos x| = fx), therefore, by property 6,

2n b

_(l;ICOSx[d\' = 2£ICOSXICJ',\‘

Again, fim - x) = |cos (n - x)| = [-COs x| = [cos x| = f(x), therefore, by property 6,
r/2

2 [ |cosx{ax
0

I

[lcosa|aix
0
= From (i) and (ii), we get

2n
[leosa{cx = 22 [leossjdr =4[ cosxax
0 0 0




n
(-forO<x< rx cosx 20 = |cos x| = coS x)

= 4[sinx]g/2 = 4(sin-g—~ sian =4(1-0)=4.

Example 4.
Evaluate the following J' 2y
0 SiNx + COSx
Solution:
n/2 .
Sina
Let I = j W—Y‘“’—d.l )
0 SNx + COSx
Then, by using property 4b, we get
(n
T2 Sm(?—xJ "? Cosx
1= 2 —dx = [ —=T gk (i)
0o (f?__ J (n_ ) COSx +sinx
sin X|+Cos| — —x 0
2 2
Onadding (i) and (ii), we get
/2 . n/2
SINx + COSx 2 T T
o = | T = [k = [T
g Sinx +cosx g sl 2 2
= =T
4
Example 5.
Evaluate the following definite integrals:
Lo
(a) flog(_~1)dx
0 X
n/2
(b) [ sin2xlog(tanx)dx
0
Solution:
e Lo (1-x
(a) Let I = flog(——1]d.r:jlog( )dx (D)
0 x 0 X

Then, by using property 4b, we get

I = flog( j:_MJ o/x:flog( . al de

!

4l
~
no
o o

n/2
(b) Let I'= [ sin2xlog(tanx)dx (1)
0



Then, by using property 4b, we get

Let 1

= 21

= I
Example6.

i

it

Tl et

/2 /2
[ sin(m - 2x)log(cotx) dx = [ sin2x Iog((tanx)”1)
0 0
n/2 n/2

[ sin 2x(~Ylog(tanx)asx = | sin2x log(tanx) dix
0 0
I

0
0

i1
Evaluate the following definite integrals [log(1+ cosx) o
0

Solution:

!

log (1+ cosx)dx

O Sy 3

Then, by using property 4b, we get

alx

[using (i

I= Tlog (1+cos(m - x))dx = flogﬁ ~ COSx)dx
On adding (i) and (ii), we get i i
o= ]‘E(iog(w COsxj+log(1- cosx))dx = ]tlog('i— cos? x) dx
0 0
- jzlog(sin2 x)dhr = ij[log sinedx
0 0
= I=

Let f(x) = log sinx = f(n-x) = log (sin (1 - x)) = log sin x= f(x)

f!og Sinx dx
0

/2

I = Zf log sinx dx =2(~—gl!ogz) = -7 log 2.
0

2.12 Applications of Integration

We study three areas where integration is applied

1. Areas of curves
2. Lengthofcurves
3. Volumes of revolution

2.12.1 Preliminary : Curve Tracing

In order to find area under curves, as well as for evaluatin

how to trace some common curves from their equations,

, therefore, by using property 6, we get

g double and triple integrals, it is used to knOWf




Circle : Cartesian Form:
1. x? + y2 = a%: Circle with centre (0, 0) and radius a.

(0, a)

A
J(a, 0)

(0,-2)

2. (x—h)2+(y- k) = a: Circle with centre (h, k) and radius a.

Polar Form:
1. r= a: Circle with centre (0, 0) and radius a.

2. r=asin®:Circle with centre (O, g) and radius g.

al2

(0,0)

3. r=acos0:Circle with centre [g. O) and radius g— :

al2 \
Parabola:

1. x? = 4ay . Parabola with vertex at (0, 0) and focus at (0, a) and latus rectum = 4a.

\ 4?(0, a) /

(0,0)




2. x%=-day: Parabola with vertex at (0, 0) and focus at (0, -a) and latus rectim = 44,

(0,0)

8. y* = 4ax:Parabola with vertex at (0, 0) and focus at (a, 0)

-
&

and latus rectum = 44,

(0. 0)

4. y?=-4av: Parabola with vertex at (0,0) and focus at (

n n
3%

)
5. (x—~hy=4a(y- k) : Parabola with centre at (h, k) focus at

-a, 0) and latus rectum = 44,

(0+ h, a+ k) and latus rectum = 44,

Ellipse:
1. —% };7 =1 Ellipse with centre at (0, 0) and major axis = 2a and minor axis = 2p.
a
>0b>\
(0 ~b)
Ry a2
2 (x 2/7) + 4 b2k) . Ellipse with centre at (h, k) and major axis = 2a and minor axis = 2h.
a

o)




7 = 1:Hyperbola with vertex at (a, 0) and (~a, 0)and centre at (0, 0).
a
Mj 0,0) W>
2

> = 1:Hyperbola with vertex at (0, b) and (0, -b) and centre at (0, 0).

\4 (0, b)
(0,0)

N

s Y

2
2

oy
o)

DEO, —b)

2.12.2 Areas of Cartesian Curves
Theorem:

1. Areabounded by the curve y = f(x), the x-axis and the ordinates x = a, x = b is

f:ydx - j:f<x)dx

14 y=fx)

X

t
i
!
t
xX=a x=

b

2. Interchanging x and vy in the above formula, we see that the area bounded by the curve x =

y), the
. . . b b
x-axis and the abscissa y = a, y = b is fa xdy = fa f(y)

dy as shown in figure below.
14

0 - X

Note. 1: The area bounded by a curve, the x-axis and two ordinates is called the area under the curve.



The process of ﬁndihg the area of plane curves is often called quadrature.

Note. 2 : Sign of an area. An area whose boundary is described in the anti-clockwise direction (i.e. lies
above x-axis) is considered positive (Fig. a) and an area whose boundary is described in the clockwise direction
(i.e. lies below x-axis) is taken as negative (Fig. b).

Y Y Y
D .
B
(0] T X
A Q © ~ve D
] 0 " area Q x=a +ve
I *ve 8 ® i |
] area
= area A 5 c
L Ve (x=0) LE
(a) n D area x=b
(b)

InFig. (c) above, the area given by J':y dx will not consist of the sum of the area ABC(: j Cy dx) and
a

b
the area CDE(:- jc % dx) but their difference.

Thus to find the total area in such cases the numerical vaiue of the area of each portion must be evaluated
separately by taking modulus and their results added afterwards.

Example:
Find the area of the segment cut off from the parabola x? = 8y by the line x - 2y+8=0.
Solution:
Given parabola is ¥ = 8y . ()
ane-the-straight line-is
x-2y+8 =0
x+8 N
= y = 5 i)
Substituting the value of y from (ii) in (i), we get
x° = 4(x + 8)
or . x°~4x-32 = 0
or (x-8)(x+4) =0
x = 8,-4

Thus (i) and (i) intersect at Pand Q wherex =8 and x = — 4.

- Required area POQ (i.e. dotted area) = [area bounded by st. line (i)
and x-axis fromx = — 4 to x = 8] — [area bounded by parabola (i) and
x-axis fromx =~ 4tox = 8]

it

f _84 y dx from (i) — | _84 y dlx, from (i)

’ 8 8
8 x+8 8 x° 1]x? 1]x°
s

1

] ’
E{(SZ +64) - (-24)} - 55(512 +64) = 36.




9.12.3 Areas of Polar Curves
Theorem: Area bounded by the curve r = f(8) and the radii vectors
g =0, 0= B is

. ‘ %jfﬁd@

Example:

Find the area common to the circles r= a2 and r= 2acos 0.

Solution:
The equations of the circles are

r
r

il

av2 and 7 ()
2acos 0 (i

(i) represents a circle with centre at (0, 0) and radius a2 .

(i) represents a circle symmetrical about OX, with centre at (a, 0) and radius a.
The circles are shown in Fig. below. At their point of intersection P, eliminating r from (i) and (ii),

1
a =2acosfie.,cos=—
J2

or 8 = qn/4
Requiredarea = 2 x area OAPQ (by symmetry)
= 2(area OAF + area OPQ)

_ 1pn/d 2 . 1pen/2 2 .
= 2[—2—fo rede, for (1)+§fn/4r ae, for (H)J

= | g/4<ax/§)2 do+| ://5(251 cos0)°ab

-_— ZJ- n/21+C0s 260 40

= 2a°0]) " +4a w3

sin 20/™?2

= 22°%(n/4-0)+2a°[0 +

n/4

2.12.4 Derivative of arc Length d
Theorem: For the curve y = f(x), we have

d _—‘{*
@ {{w(»@i} }
dx dx
Proof: Let M(x, y). Qlx + dx, y + dy) be two neighbouring points on the curve AB (Figure below). Let arc
AP = s arc PQ = 8s.
Draw PL, QM Ls on the x-axis and PN L QM.

- From the rt. triangle PNQ,

PCR?
le. &

PN? + NCG?
8x2 + 8y

il



2
. )
S

H

L N2
oy
H(Sx]

&) - (5 - (&)

Taking limits as Q@ — P (i.e. 8¢ — 0), o T F

2 2
(f@} = 1. {H[dyj } {S/nce Lt m:T}
dx dx x—08¢

I s increases with x as in Figure above, dy/dx is positive.

as

2
Thus — = 1+ ﬂ)_{) , taking positive sign before the radical
dx dx

Cor. 1. If the equation of the curve is x = f(y), then

R

Cor. 2, If the equation of the curve is in parametric form x =1), y = ¢(), then

(&) (2]

ds _ ds o

- dx _
at dx dt

Gt

ds

ds dx)? (dy)?
a = &) (3)
2.12.5 Lengths of Curves

Theorem: The length of the arc of the curve y = f(x) between the points where x = aandx = bis

I

The length of the arc of the curve x = f(y) between the points where y = aand y = b, is

-5

The length of the arc of the curve x = 1), y = f(i) between the points where t= aand t= b, is

12 (2] Ja




The length of the arc of the curve r = f(0), between the points where 6 = o;and 6 = B,is
2
LYl () Jo
o ao

Find the length of the arc of the parabola x? = 4aymeasured from the vertex to one extremity of the latus-
rectum.

jution:
Let A be the vertex and L an extremity of the latus-rectum so that at A, x = 0 and at L, x = 2a, as shown
in figure.

Now, y = x?/4a Y
so that &Y = i x = 2
X 4a 2a
N 2a
— L’ L
2a d 2 2a X 2
arc AL f 1 (lj dx = 1+(»—) adx
0 'dx/ 0 ] 23 A X

i

r 2a
Tpea o5 _ 1ixflRaf+5°] (2a® | x
2 dx = + sinh™ ' —
520 [(2a)" + x"Jdx 7 5

1] 2ay(8a)°
2a 2

+28° sinh“@

i

a[ﬁ + sinh‘ﬂ - a[\@ +log(1+ \@)} [ sinh™"x = log[x + /(1+ xZ)J

2.12.6 Volumes of Revolution
: 1. Revolution about x-axis: The volume of the solid generated by the revolution about the x-axis, of the

b
area bounded by the curve y = f(x), the x-axis and the ordinates x = ax=blis fa nyzdx._

Let ABto the curve y = f(x) between the ordinates LA (x = a) and MB(x = b).

i .

o W

Y

i
t
1
i

Example:
Find the volume of a sphere of radius a.
Solution:

Let the sphere be generated by the revolution of the semicircle ABC, of radius
a about its diameter CA, (Figure)




Taking CA as the x-axis and its midpoint O as the origin, the equation of
the circle ABC is

PP = &
Volume of the sphere = 2 (volume of the solid generated by the revolution y
about x-axis of the quadrant OAB)

= ZJ:nyzdx = ans(az~x2)dx

a 3

|
& _(0-0)f = 2na?
3 3

.

3

on a2x~%— = 2n|a® -

i

0

2. Revolution about the y-axis. Interchanging x and y in the above formula, we see that the volume of the
solid generated by the revolution, about y-axis, of the area, bounded by the curve x = f(y), the y-axis ang

the abscissa y = a, y = b is f:Terdy ‘

Example: ‘
Find the volume of the reel-shaped solid formed by the revolution about the y-axis, of the part of theg
parabola y? = 4ax cut off by the latus-rectum. |

Solution:
- Given parabola is x = y#/4a. |
Let Abethe vertex and L one extremity of the latus-rectum. For the arc AL, yvaries from 0 to 2a (Figurelg
Required volume = 2 (volume generated by the
revolution about the y-axis of the
area ALC)

_ of22g - o (2 Y
- 2f0 mldy = znjo T&?’dy

52a

y

5O

3
n 5 4dna
32a° -0) =
408° ( ) 5

n
8a°

2.13 Multiple integrals and Their Applications

1. Double integrals 2. Change of order of integration
3. Doubleintegrals in polar coordinates 4. Areasenclosed by plane curves
5. Tripleintegrals



1 Double Integrals

The definite integral f:f(x)dx is defined as the limit of the sum

Ao, )8x + Roxy)dx, + . L+ fx,)ox,, )

where n -« and each of the lengths 8x,, dx,, .. . tends to zero. A double integral is its counterpart in two
nsions.

- Consider a function fx, y) of the independent variables x, y defined at each point in the finite region Rof the

lane. Divide Rinto n-elementary areas 8A;, 84, ... 8A, Let (x, y) be any point within the £ elementary area
Consider the sum

n

focg, YOBAL + s vp)8A, + .+ flx, y)8A, ie. > f(x,, v, )84

r=1

The limit of this sum, if it exists, as the number of sub-divisions increases indefinitely and area of each sub-

d;wslon decreases to zero, is defined as the double integral of fx, y) over the region R and is written as ”Rf(x,y)dA

n
Thus [] fa yioa = 62g°5§f<x,, y,)8A, | (D)

The utility of double integrals would be limited if it were required to take limit of sums to evaluate them.
. However, there is another method of evaluating double integrals by successive single integrations.

For purposes of evaluation, (i) is expressed as the repeated integral J::Q fyyf f(x, y)dxdy . Its value is found

. agfollows:

»;}f,:irl 1. When y,, y, are functions of x and Xy, Xp are constants, flx, y)is first integrated w.rt. ¥ (keeping x fixed)
E between limits y,, ¥, and then the resulting expression is integrated w.r.t. x within the limits Xy, X, 1€,

1= [* f "2 f(x,y)dy | dx

LA AP 4]

where integrations carried from the inner to the outer rectangle,

Fig. (a) below illustrates this process. Here AB and CD are the two curves whose equations are
yy=fix)and y, = f(x). PQis a vertical strip of width k.

Then the inner rectangle integral means that the integrationis along one edge of the strip PQfrom Pto

Q2 {x remaining constant), while the outer rectangle integral corresponds to the sliding of the edge from
AC to BD.

Thus the whole region of integration is the area ABDC. .

Y : 4

(b)

2. Whenx,, x, are functions of y and Yy, Yo are constants, fx, y)is first integrated w.r.t. x keeping y fixed,
within the limits x4, x, and the resulting expression is integrated w.r.t. between the limits Vi Yo €.



. y
I, = fYQ J"zf(x,y)dx dy which is geometrically illustrated by €| @ - o
Yi ¢ x Y=Y
X = ,’C1 X = \’7
Fig. (b)
=4 Q
Here ABand CD are the curves x, = f,(y) and x, = f,(y). PQis a Al P yEy B
0 X

horizontal strip of width dy. ;
Then inner rectangle indicates that the integration is along one edge of this strip from Pto Q while the
outer rectangle corresponds to the sliding of this edge from AC to BD.
Thus the whole region of integration is the area ABDC.
3. When both pairs of limits are constants, the region of integration is the rectangle ABDC (Fig.)

In 7, we integrated along the vertical strip PQ and then slide it from AC to BD.
In I, we integrate along the horizontal strip P2 and then slide it fro AB to CD.
Here obviously 1, = I,. Thus for constant limits, it hardly mattery whether we first integrate w.r.t. x and
then w.r.t. yor vice versa.

Example:

v/
A Ay

Fvaluate f5 ( L /2)

Solution:
2
5 2 37
1= [ def (¥ +xy?)dy = JS[xzy“_J i
o
6 7 5 8P
- [ en = [ o = [
L ! N o) I

5 58
= 2 42 =16901.04
£+ 5= 169010

2.13.2 Change of order of Integration

In a double integral with variable limits, the change.of order of integration changes the limits of integration. -
While doing so, sometimes it is required to split up the region of integration and the given integral is expressed as
the sum of a number of double integrals with changed limits. To fix up the new limits, it is always advisable to draw 7
a rough sketh of the region of integration. -

The change of order of integration quite often facilitates the evaluation of a double integral. The foHowmg
examples will make these ideas clear. f

Example: 1
Change the order of integration in the integral,

1= 7 [y ”

f(x,y)dxdy .

Solution:

. : ¥
The elementary strip AB from x = 0 to x = NEaae
(corresponding to the circle x? + y? = a%), can be slided up from
y = -ato y = aand integration is carried out. This shaded
semicircular area s, therefore, the region of integration (Figure).




This corresponds to the given integral

1= [

0
The order of integration can be changed, if we first integrate with respect to y along a vertical strip CD

(going from y = ~J52 —xtoy=+/a —x2 ), and then integrate with respect to x as x goes fromx = 0
tox = a. (i.e. slide the strip CD from left to right fromx = O to x = g)
This will result in the integral,

)axay .

a -2
1= [gof o ey

i

or

apf@-2)
J-O f.@‘jz)f(x,y)dy ax

Example: 2

Te2-x
Change the order of integration in 7 = J'Ofxg xy dx dy and hence evaluate the same.

Solution: 4
Here the integration is first w.r.t. y along a vertical strip PQ
which extends frcm Pon the parabola y = x? to Q on the line %
= 2 - x. Such a strip slides fromx = O to x = 1, giving the
region of integration as the curvilinear triangle OAB (shaded)
inFigure.

On changing the order of integration, we firstintegrate w.r..

x along a horizontal strip P& and that requires the splitting up of »
the region OAB into two parts by the line AC (y = 1), i.e. the curvilinear triangle OAC and the triangle
ABC.

B

For the region OAC, the limits of integration for x are fromx = 0 tox = \/)7 and those for yarefrom y =0

to y= 1. So the contribution to 7 from the region OAC is
1 Jy
I = fodyfo xy dx

For the region ABC, the limits of integration for x are fromx = 0 to x = 2 yand those for yare from y = 1
to y = 2. So the contribution to | from the region ABC is

L= ffdﬂ Y xy

0

_ 1 \/6; i 2 2~y
[ = jodyjo xydz+f1 dyfo xy dx
_ 10, X W 2d x° ey
= vy [ sy
o 0
Tr1 o tr2 9 1 5 3
= = Vdy+—{y@e-yldy = ~+ > = 2
Sloyareg] ivie-yray = =+ -



2.13.3 Double Integrals in Polar Coordinates

D
T
To evaluate f:g f :2 f(r,8)dr db, we firstintegrate w.rt. rbetween limits r = 1, e
1 1 '
and r = r, keeping 0 fixed and the resulting expression is integrated w.r.t. 6 from Bl
0, to 6,. In this integral, r,, r, are functions of 6 and 8, , 6, are constants. 0 P C !
Here ABand CD are the curves r, = f,(6) and r, = 1,(8) bounded by the AN A
lines 6 = 6, and 8 = 8,. PQ is a wedge of angular thickness 86. \61
—=X
0

Then f:z f(r.8)dr indicates that the integration is along PQ from Pto Q
1

while the integration w.r.t. & corresponds to the turning of PQ from AC to BD.
Thus the whole region of integration is the area ACDB. The order of integration may be changed with

appropriate changes in the limits.

Example:

Calculate HrSdr b over the area included between the circles r=2sin 9 and r = 4 sin 0.

Solution:
Given circles r
and r

are shown in Figure below. The shaded area between these circles is the region of integration.
If we integrate first w.r.t. r, then its limits are from A(r = 2 sin 8) to Q(r = 4 sin 8) and to cover the whole

]

i

lflustrates the process
geometrically.

2sin8 )
4sind .. (i)

region 8 varies from 0 to «. Thus the required integral is v
_ i1 4sinB 4
] = IO d@sziner ar
44sine
= [Tdel
0 4
2 sin®
= 60{_ sin’ 000
= 60x2[ " sin 000
using reduction formula,
®2 g ©2 4 (n=N((n-3)(n-5)... (n
sin"ede = cos"9d6 = o=
fo ‘ fo nn-2)(n-4).. \2
Heren=4 [using walle’s formula with n is even|
7 >
So, [sintode = 3“(_73)
0 4x2\ 2
‘ . 3xtin
Sothe required integral, I = 120 (mj =225m .
4x2\ 2

2.13.4 Area Enclosed by Plane Curves

The area enclosed by curves y = f,(x) and y = £,(x) and the ordinates
x = Xx,, X = X, I8 shown in figure and is given by the double integral

ryirhly)

x dy .
yo o fly) Y




Example:
Show that the area between the parabolas 2 = 4axand x2 = 4ay is 1—:?82 .

Solution:
The equations y? = 4ax and x2 = 4ay, it is seen that the parabolas intersect at O(0, 0) and A(4a, 4a). As
such for the shaded area between these parabolas (Fig. below) x varies from 0 to 4a and yvaries from

Pto Qie. from y=x%4atoy = 2,/(ax). Hence the required area

_ "-4aJ-2\/’-a;‘
¥l4a : Y
4a 2 Peday ¥ =4 ax
= [, @) - x*/4a)dx 7
Q !
54a e !
X ! 1 4a
= Ip L : :
! Va5 4a 31, P !
: : N
0 4a

16
320 16 o 16 2

2 3 3

|
|
Q

2.13.5Triple Integrals

Consider a function fix, y, z) defined at every point of the 3-dimensional finite region V. Divide Vinto n
elementary volumes §V,, 8V,,...,8V, . Let(x, v, z,) be any point within the /" sub-division & V.. Consider the sum

oo

Ef(x,,yr,Z,)SV,,

r=1
The limit of this sum, if it exists, as n— « and 8V, — Qs called the triple integral of fx, y, z) over the region
Vand is denoted by

[[[ftx.y.20av

For purposes of evaluation, it can also be expressed as the repeated integral
frz.f f f(x,y,2)dx dy dz .
al

If x,, x, are constants; y,, y, are either constants or functions of x and z,, z, are either constants or functions
of x and y, then this integral is evaluated as follows:

First fx, y, 2) is integrated w.rt. z between the limits, z, and z, keeping x and y fixed. The resulting
expression is integrated w.r.t. y between the limits v, and y, keeping x constant. The result just obtained is finally
integrated w.rt. x from x, to x,.

Xz )/2(,1‘) Zp X )/ :
Thus I = L «fn(-r)f o) f(x,y,z)dz|dy|dx

where the integration is carried out from the innermost rectangle to the outermost rectangle.
The order of integration may be different for different types of limits.

Example: 1

Evaluate J';f;ijzz(x +y+2)dxdydz .



Solution:
Integrating first w.r.t. y keeping x and z constant, we have

1= [s

X+2Z
dxdz

xX—=Z

2

y

VA
Xy 5

74

2

1,2 1 1x%z2 ., x

= JAJAO {(x+z)(22)+~2~4xz}dxdz = 2f_17+2 x+?ZdZ
122 4 2 [

=2f 1=+ 42ldz =45 =0
-\ 2 2 g

Example: 2

1122 2
Evaluate fofa fov( yg)xyz dxdydz.

Solution:

fi_@ [y 2
We have, [= IT,{L}W ' )y{f\/“ g )Zdz}dy}dx

2. .2
PR P (=) 1. 5 5
= jox J‘o y ?O dyidx = J.Ox fO y-§(1—x - y)ay t dx
(%)
1 2 4 1
= ; Oxl(1—x2)%——y7! dr = =] [(1-x*)° - 2x = (1~ * - x]dx
= - o
1 2 oyt x61

2.14 Vectors

2.14.1 Introduction

This chapter deals with vectors and vector functions in 3-space and extends the differential calculus to
these vector functions. Forces, velocities and various other quantities are vectors. This makes the algebra and
calculus of these vector functions the natural instrument for the engineer and physicist in solid mechanics, fluid
flow, heat flow, electrostatics, and so on. The engineer must understand these fields as the basis of the design and
construction of system, or robots. In three dimensions (as opposed to higher dimensions), geometrical ideas
become influential, enriching the theory, and many geometrical quantities (tangents and normal, for example) can
be given by vectors.

We first explain the basic algebraic operations with vectors in 3-space. Vector differential calculus begins
next with a discussion of vector functions, which represent vector fields and have various physical and geometrical
applications. Then the basic concepts of differential calculus are extended to vector functions in a simple and
natural fashion. Vector functions are useful in studying curves and their applications as paths of moving bodies in
mechanics.

We finally discuss three physically and geometrically important concepts related to scalar and vector
fields, namely, the gradient, divergence, and curl. integral theorems involving these concepts follow in vector

integral calculus.




2.14.2 Basic Definitions

In geometry and physics and its engineering applications we use two kinds of quantities, scalars and
vectors. A scalar is a quantity that is determined by its magnitude, its number of units measured on a suitable
scale. For instance, length, temperature, and voltage are scalars.

A vector is a quantity that is determined by both its magnitude and its direction: thus it is an arrow or
directed line segment. For instance, a force is a vector, and so is a velocity, giving the speed and direction of
motion (Figure below). We denote vectors by lower case bold face letters a, b, vetc.

A vector (arrow) has a tail, called its initial point, and a tip, Velocily
called its terminal point. For instance, in Figure, the triangle is translated -:-\'Earth
(displaced without rotation); the initial point P of the vector a is the / o
original position of a point and the terminal point Q is its position after /,‘/Force R
the translation. !
The length (or magnitude) of a vector a (length of the arrow) is Sun P
also-called the norm (or Euclidean norm) of a and is denoted by Ja. Force and Velocity Translation
A vector of length 1 is called a unit vector. U (if)

2.14.3 Equality of Vectors

By definition, two vectors a and b are equal, written, a = b, if they have the same length and the same
direction (Figure below). Hence a vector can be arbitrarily translated, that is, its initial point can be chosen arbitrarily.
This definition is practical in connection with forces and other applications.

NN

Equal vectors, Vectors having Vectors having  Vectors having
a=b the same length  the same different length
but different direction but and different
direction different length  direction
Vectors

2.14.4 Components of a Vector

We choose an xyz Cartesian coordinate system in space, that is, a usual rectangular coordinate system with
the same scale of measurement on the three mutually perpendicular coordinate axes. Then if a given vector a has
initial point P: (x,, y,, z,) and terminal point Q: (x, ¥, Z,) the three numbers,

1. ay=x,-x,8,=y,~y, a= z,- 2, are called the components of the vector a with respect to that

coordinate system, and we write simply a = [a,, a,, a,].
Length in Terms of Components: By definition, the length |a] of a vector a is the distance between its
initial point P and terminal point Q. From the Pythagorean theorem, and figure (ii) below we see that

2. = a +a5+a;

Cartesian coordinate Components of a vector

(i (i)



Example:
Components and length of a vector.
The vector a with initial point P: (4, 0, 2) and terminal point Q: (6, — 1, 2) has the components

a,=6-4=2a-=-1-0=-1,3=2-2=0,

Solution: :
Hence, a

il

[2,-1,0]

lal = 221 (12402 = 5.

If w choose (~1, 5, 8) as the initial point of a, the corresponding terminal point is (1, 4, 8).

If we choose the origin (0, 0, 0) as the initial point of a, the corresponding terminal point is
(2,-1,0); i.e. its coordinates equal the components of a, if origin is closer as initial point. This suggests
that we can determine each point in space by a vector, as follows:

2.14.5 Position Vector

A Cartesian coordinate system being given, the position vector r of a point
A (x, y, 2) is the vector with the vector with the origin (0, 0, 0) as the initial point
and A as the terminal point. Thus, r = [x, y, 2].

Furthermore, if we translate a vector a, with initial point Pand terminal point

Q, then corresponding coordinates of £ and Q change by the same amount, so
that the components of the vector remain unchanged. This proves

Position vector r of a point A: (x, y, z)

2.14.5.1Vectors as Ordered Triples of Real Numbers

Theorem: A fixed Cartesian coordinate system being given, each vector is uniquely determined by its
ordered triple of corresponding components. Conversely, to each ordered triple of real numbers (a,, &, a,) there
corresponds precisely one vector @ = [a,, a,, a,]. In particular, the ordered triple (0, 0, 0) corresponds to the zero
vector "07, which haslength 0 and no direction.

Hence a vector equation a = b is equivalent to the three equations ay=by, a,=>b, a = b, for the
components.

We see that from our “geometrical” definition of vectors as arrows we have arrived at an “algebraic”
characterization by above Theorem. We could have started from the latter and reversed our process. This shaws
thatthe two approaches (i.e. “geometrical” and “algebraic” approaches) are equivalent.

2.14.6 Vector Addition, Scalar Muitiplication

Applications have suggested algebraic calculations with vectors that are practically useful and almost as
simple as calculations with numbers.

2.14.6.1 Definition: 1
Addition of Vectors: The sum a + b of two vectors a = [a,, a,, a;] and b = [b,, b,, b,] is obtained by adding.

a+b = [a+b,a,+Db, a;+ by
o

c=a+b

Vector addition

Geometrically, place the vectors as in Fig. above (the initial point of b at the terminal point of a): then

PO Fo '

a+ bis the vector drawn from the initial point of a to the terminal point of b.

e



Figure shows that for forces, this addition is the parallelogram law by which we obtain the resultant of two
forces in mechanics.

~
Q

Resultant™~«

Resultant of two forces (parallgram law)

Figure illustrates (for the plane) that the “algebraic” way and the “geometric” way of vector addition amount
to the same thing.

Basic properties of Vector addition follow immediately from the familiar laws for real numbers
(@ a+b=b+a  (commutativity)
(b) (G+V)+w =0+ (V+W) (associativity)
(C) 4+0=0+4=4
(d) a+(-8)=0
where -a denotes the vector having the length |a and the direction Oppaosite to that of a.

utv+w

| el by

G

Vector addition Commutativity Associativity of
of vector addition vector addition

In property (b) above, instead of ¢ + (V+wor(u+v)+ w, we may simply write U + v + wwithout brackets, and
similarly for sums of more than three vectors. Also instead of a + a we also write 2a, and so on. This (and the
notation —a before) suggests that we define the second algebraic operation for vectors, namely, the multiplication

of vectors by a scalar as follows.
2.14.6.2 Definition: 2

Scalar Multiplication (Multiplication by a Number): The product ca of any vector a=[a,, a,, a,] and any
scalar ¢ (real number c) is the vector obtained by multiplying each component of a by ¢,
ca = [ca,, ca,, ca,]
Geometrically, if a# 0, then ca with ¢ > 0 has the direction of @ and with ¢ < 0 the direction opposite to a.
Inany case, the length of cais lcal = |cllal,and ca=0ifa=0orc=0 (or both).

/ 2a/ma/w1/

a

Scalar muitiplication [muttiplication Difference of vectors
of vector by scalars {(numbers))]




Example:
Vector Addition and Multiplication by Scalars.
With respect to a given coordinate system, let

a =1[4,01)andb=[2-514]
Solution: _
Then. -a = [-4,0,-1],7a=[28,0,7]. a+ b= [6, -5, -Cﬂ and
2(a-b) = 2[2-5%]=[4104] = 2a-2b.
2.14.7 Unit Vectors

Any vector whose length is 1 is a unit vector / and k are example of special unit vectors, which are

along x, yand z coordinate axes.
il =l =1d=1
U= cosBi+sing
gives every unit vector in the plane.

2.14.7.1 Representation of Vectors in Terms of i, j, and k
a =[a,, a, a}l = a;i + a,/ + a;k.
.4, j, kare the unit vectors in the positive directions of the axcs of a Cartesian

coordinate system.

. an aak ' i

The unit vectors i, j, k and the representation (8)

i=[1,00] j=10,10] k= [0, 0, 1]
and the right side of a = a,i + a,j + a,k is a sum of three vectors parallel to the three axes.

Example:
i, j, k Notation for Vectors:
Solution:

In previous example where a = [4, 0, 1] and b = {2, -5, %} ,

we have a = 4i + k b = 2i - 57+ %k, and soon, in i, j, k notation.

2.14.8 Length and Direction of Vectors
Any vector @ may be written as a product of its length and direction as follows:

o

g a . , o
here |4 is the length of vector and E] is a unit vector in direction of a
' a




Examiple 1.
Express 3i - 4jas a product of length and direction:

v = 3i-4j
Solution:
lengthof v = | = [52 142
The unit vector in direction of v = % = 9L=4 Ev Wf"_/
vi 5 5 5

<
i

r

(3. 4,
3i-4j=52;-2
i-4j=5| <i 5/]

[/ an2 2
Note that Igi_ﬁ' (g) +(ﬁ] = 1
5 b 5 5

Since, §i_ﬁ/ iS a unit vector.
5 5

I

Example 2.
Find a unit vector in direction of 4 + 6/
Solution:
_4it+ 6] 4 6

The required vector is — = P
\/ + 62 @/

Example 3.
Find unit vector, tangent and normal to the curve
3

X 1
= —+— atpt(1,1
y=5 5 pr(1,1)
Solution:
Unit vector tangent to curve:
. gﬁJ 3xP 3
. 2 (11 2 2

. v 3 :
Any vector with slope of > can.be written as

vV = Kk(2i+ 3))
M = k2213 = JT3A

A unit vector in direction of vis

e k2i+3j) 2 z‘+~3——j

lvi V13 k J13 3
~2 3 .
Note also that U = e
VRN

is another unit vector tangent to the curve, but in opposite direction to v.
Unit vector normal to curve:

rr’

Any vector normal to ai + byj is of the form of bi - aj, since product of this slopes is

B --



2 3, 3 2 .
So avector normalto U= —m—=i+—=—/ IS N = —ej — —0e
NRNEE NERINEY

”y

Note that -1 = —= i + 7—1;5 J is another unit vector normal to the curve, but in opposite direction to n.

J13

2.14.9 inner Product (Dot Product)

We shall now define a multiplication of two vectors that gives a scalar as the product and is suggested by
various applications.

Definition. Inner Product (Dot Product) of Vectors

The inner product or dot product a- b (read “a dot b") of two vectors a and b is the product of their tengths
times the cosine of their angle, see Fig. below.

1. a-b=lallblcosy
Theangle v, 0=y €7, between aand bis measured when the vectors have their initial points coinciding,

as in Fig. below.

a alky ¥
i . a
b b b
ab>0 ab=0 ab<0
Angle between vectors and value of inner product
In components, a = [a,, a, &), b=[b,, b,, by], and
2. a.p= a;b, + a,b, + a,b,

can be derived from (i).
Since the cosine in (i) may be positive, zero, or negative, so may be the inner product. The case that

the inner product is zero is of great practical interest and suggests the following concept.
A vector a is called orthogonal to a vector b if a- b= 0. Then b is also orthogonal to a and we call
these vectors orthogonal vectors. Clearly, the zero vector is orthogonal to every vector. For nonzero

vectors we have 2.5 = 0if and only if cos y = 0; thus y = 7/2(90°). This proves the following important

theorem.
Theorem: 1 (Orthogonality)
The inner product of two nonzero vectors is zero if and only if these vectors are perpendicular.

Length and Angle in Terms of Inner Product: Equation (i) above with b = 4 gives a - a = |al°.

3. |ag=va-a
From (i) and (iii) we obtain for the angle y between two nonzero vectors
4. cosy=2b.___ab
| allel " Va-avb b
Example:

Find the inner product and the lengths of & =[1,2,0]and b = [3, -2, 1] as well as the angle between

these vectors.
Solution:

jav}
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o
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i
”
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lal




bl = Jb-b = JF+(22+* = fig
a.
Y = arc Coslanb[ =arc cos (-0.11952)

1.69061 = 96.865°
The given vectors make an obtuse angle between them solves and notice that the inner product has come
out negative because of this.

1l

General Properties of Inner Products: From the definition we see that the inner product has the
following properties. For any vectors a, b, ¢ and scalars g, g,

@ lga+ag.bl-c=qga-c+qb-¢

(Linearity)
(b) a-b=b-a (Symmetry)
{c) a-a=0 (Positive-definiteness)
(d) a-a=0ifandonlyifa=0 (Positive-definiteness)

Hence dot multiplication is commutative and is distributive with respect to vector addition: in fact,
from above (a) with g, = 1 and g, = 1 we have

5 (a+b)-c=a-c+bé (Distributivity)
Furthermore, from a - b = [allbl cosy and |cos v/ <], So
6. la bl < lal | b] (Schwarz inequality)

7. la+bl < lal+|b] (Triangle inequality)
A simple direct calculation with inner products shows that

8. la+bl2+a-bl2=2(]al2+|b]? (Parallelogram equality)
Equations (6) - (8) play a basic role in so-called Hilbert spaces (abstract inner product spaces), which
form the basis of quantum mechanics.

Derivationof 3-b = a,b, + ab, + a,b, from a- b = |4 |p| cosy
Let a = aji + ay + akand b= byi + b,j + byk.
Since i, jand k are unit vectors, we have from (3)i-i=|ifP =1,/ -j=|jP=1and k- k= |k = 1.
Since i, j, kare or orthogonal to each other (The coordinate axes being perpendicular to each other), we get
from theorem,i-j=0,/j- k=0 k-i=0,
Now, a-b = (ai+ ay + ak) - (byi + b,/ + byk)
using distributive property, we first have a sum of nine inner products.
a-b=abi-i+abi-f+.. .+ asbk - k
Since six of these products are zero, we obtain a.b = a;b, + a, b, + ab,
Applications of Inner Products: Typical applications of inner products are shown in the following examples.

Example:
Work done by a force as inner product.

Solution:
Consider a body on which a constant force p acts. Let the body be given a displacement d. Then the
work done by p in the displacement is defined as

W = |pldlcosa=p-d




thatis, magnitude Iplof the force times length Id1 of the displacement times the

cosine of the angle a between p and d. If & < 90°, as in Fig. below then W > 0. p
It p and d are orthogorial, then the work done is zero. If o, > 90°, then W < 0, o,

which means that in the displacement one has to do work against the force. d

Vector Projection: Proj, @ is the vector projection of a on another vector b. Work done by a force

-
D
<2
-
[]
2
—~
QD
-2

b 5 ““‘5"" b
p = Proj2
= (Scalar component of a in direction of b) x (a unit vector in direction of b)
Proj,2 = (lalcosy)(l J

H

lb INED bb)
Typical application of projection is finding component of n force in a given direction as is often required in
mechanics.
Example:

Vector projection of a on another vector b.
Find the vector projection of a vector a = 2 — 3jorb=3i+4j

Solution:
a-b 23-3.4 18 . 24
o= (20)o - (B8N, Ly o ) 18, 2
ihall o Bl Ex wwrwrd 54 = Zpi= o

2.14.10Vector Product (Cross Product)

The dot product is a scalar. We shall see that some applications, for instance, in connection with rotations,

require a product of two vector which is again a vector. This is called vector product of two vectors or the cross
product.

Definition. Vector product (Cross product)
The vector product (cross product) a x b of two vectors g = (a,, a, aJand b = [by, b,, byl is a vector.

= axb=|allblsiny n suchthat 4.6 and 7 from a right handed system, with n being a unit normal
vector perpendicular to plane of a and b.

v=axh Middle finger
v
Index finger
b b
& Vector product \Thumb

If and b have the same or opposite direction or if one of these vectors is the zero vector, then §
= 0. Inany other case, v= a x b has the length. g

m




| =lal bl siny

This is the area of the parallelogram in Figure above with & and b as adjacent sides. (yis the angle
between aand b). The direction of v = a x b is perpendicular to both aand b and such that a, b, v, in
this order, form a right-handed triple as shown in figure above.

In components, v = [v,, v,, V] =axbis

Vi = @by —agh,, Vo, =agby—abs;, vy =ab, - ab,

i.e. If ais in direction of (right hand) thumb, b is in direction of index figure, then v= ax b will be a

vector in direction of the middle figure.
in terms of determinants:

V1:ag as’ V, - & a1’ - a &
b, by by b b b
Hence v =[v,, v,, ;] = vji + v,/ + v;kis the expansion of the symbolical third-order determinant
i | Kk
axb=a a &
by b b

by the first row. (We call it "symbolical” because the first row consists of vectors rather
than numbers.)

2141 0.1 Finding a Unit Vector Perpendicular to two Given Vectors a and b
_ Aunitvector perpendicular to two given vectors a and b is given by

3 axb _axb
" lallblsiny ~ |axb]

Example 1.
With respect to a right-handed Cartesian coordinate system, let a = [4, 0, -1] and
. b=[-21,3] %
" Solution: |
ik
axb=14 0 -1 = i-10/+4k=[1,-10, 4]
-2 1 3
Example 2.
Find a unit vector perpendicular to both a = 3i + j + 2k and b = 2i - 2] + 4k.
Solution:
i J Kk
axb =3 1 2| =8i-8/-8k
2 -2 4

A unit vector perpendicular to both aand bis
axb 8 -8j-8k 1, .
- poid o A ”‘k
axd - 8B a7

There are 2 unit vectors perpendicular to both a and b. They are zn = *

n

(i-j-K)

)




i

Example 3.

The vectors from origin to the points Aand Bare d=7 — 6]+ 2k and b = 27 + j ~ 2k respectively. Fing.
the area of ‘
(a) thetriangle OAB

(b) the parallelogram formed by OA and OB as adjacent sides.
Solution:‘

Given OA = 8=3/ -6/ +2k and OB=b=2f+] -2k,

ik
axb = |3 -6 2
2 1 2
= (12-2) ~(-6-4)] +(3+12)k = 107 +10] + 15k
= ’5><5f = 102 4107 +152 = 425 =577

(a) area of AOAB = %IéxE’ = %6\/1—7— sQ. units = gﬁ sq.units .
(b) Area of parallelogram formed by OA and OB as adjacent sides
= ’szb’, = 5J17 sq.units
Example. 4.

Using vectors, find the area of the triangle with vertices A(1, 1, 2), B (2,3,5)and C(1, 5, 5)
Solution: '

Let the vectors & and b represents the sides AB and AC of AABC, then (1,5,
d = AB=PVof B-PV of A

= (2 +3/+5K) = (7 + ] + 2K) b
= [+2/+3k A -
(1,1,2) a
and b = AC =PV.of C=PV.of A
= ({+5]+5K)~ (i + ]+ 2K) = 4] + 3k
Pk
No dxb = 112 3|=(6-12-(3-0)]+(4-0)k
04 3
= —6i -3j+4k
= l5><5f = (-6 +(-32+ 4% = /&1
- The area of AABC = %IéxE{ :%\/6‘3‘




4.10.2 Vector Products of the Standard Basis Vectors

Since i, j, k are orthogonal (mutually perpendicular) unit vectors, the definition of vector product gives some
~usefu1 formulas for simplifying vector products in right-handed coordinates these are
' ixfj=k jxk = kxi=]f

jxi=-k kxj=—~i, ixk=-

2.14.10.3 General Properties of Vector Products
Vector Product has the property that for every scalar |,
(layx b = lla xb) = ax(Ib).
It is distributive with respect to vector addition, that is,

il

ax(b+0o) (axb)+(axc),

il

(G+b)x¢ = (a+0)+(bx¢)
It is not commutative but anti-commutative, that is,
: bxa = —(axh)
It is not associative, that is,
ax(bxc) # (axbyxc (in general)

so that the parentheses cannot be omitted.

2.14.11 Scalar Triple Product
The scalar triple product or mixed triple product of three vectors
a=la,, a, a,], b =b,, b, b], c=[c, ¢, ¢ )
is denoted by (a b ¢) and is defined by (a b ¢) and is defined by (a b ¢) = a.(b x ¢)

We can write this as a third-order determinant. For thiswe set bx ¢ = v = [V, v, V5], Then from the dot
product in components we obtain

a-(bxc) = a-v=ayv, +av,+ av,
b b)

|3 "+ a,
s i)

The expression on the right is the expansion of a third-order determinant by its first row. Thus

b, b,
Cy Gy

b, bs|
Cp Oy

it

a4

2 a &

by b by

G & G

Geometric Interpretation of Scalar Triple Products

The absolute value of the scalar triple product is the volume of the parallelepiped with a, b, ¢ as edge

labc] = a(bxe=

rectors (Figure, |a-(bx c)| = [g|bx clcos B where |a]|cos] is the height hand, by (1), the base, the parallelogram




with sides b and c, has area |bx d. Naturally, if vectors a, b and ¢ are coplanar, then this volume is zer
a-(bxc)=0,if a, band care coplanar,
we also have for any scalar k. bre
[kabc] = Kabc]
because the multiplication of a row of a determinant by k multiples
the value of the determinant by . Furthermore, we prove that

a-(bxc) = (axb)-c
a & &
. - Geometrical interpretation
Proof: LHS of above b1 b2 b3 of a scalar triple product
G G G
G G G
RHS of above = (axb): c= c-(axb)=|a a &
b b byl
By properties of determinants it can be seen that the LHS and RHS determinants are indeed both equal,
So, a-(bxc) = (axb) ¢
In fact a-(bxc) = b-(cxa)=c-(axb) :
i.e. the value of triple product depends upon the cycle order of the vectors, but is independent of the
position of dot and cross. However if the order is non-cycle, then value changes.
ie. a-(bxc) # b-(axc)
Example: y
A tetrahedron is determined by three edge vectors a, b, ¢ as indicated in Fig. m
Find its volume if with respect to right-handed Cartesian coordinates, -
a=[2,0,3],b=[0,6,2],c=]3, 3, 0]. /
Solution: Tetrahedron
The volume V of the parallelopiped with these vectors as edge vectors is the absolute value of the scalary

triple product.

Thatis, V= 66. The minus sign indicates that a, b, ¢, inthis order, form a left-handed triple. The volum
1 .
of the tetrahedron is 5 of that of the parallelepiped, hence 11.

Testing Linear Independence of 3 Vectors using Scalar Triple Product:

Linear independence of three vectors can be tested by scalar triple products, as follows. We call a gi ;
set of veclors 4y s &y linearly independent if the only scalar Cy...., C,, for which the vector equation.
C8ny + Colgy + oo + Co8y = 0

Is satisfied are ¢, = 0, ¢, = 0, ..., Cp = 0. otherwise, that is, if that equation also holds for

m-tuple of scalars not all zero, we call that set of vectors linearly dependent. ;

Now three vectors, if we iet their initial point coincide, form a linearly independent set if and only if they
not lie in the same plane (or on the same line). i.e. These vectors are linearly independent, if and only if they arel
co-planar. The interpretation of a scalar triple product as a volume thus gives the following criterion.




Theorem: 1 (Linear Independence of Three Vectors)
Three vectors form a linearly independent set if and only if their scalar triple product is not zero.

The scalar triple product is the most important ‘repeated product.” Other repeated product exist, but are
used only occasionally.

2.14.12Vector Triple Product
lfa,bandc are three vectors then the vector triple product is written as a x (bxc)
It can be proved that a x(bx ¢) = (a- c)b—(a- b)c
Example:
Leta=i+j-k b=i-j+k c=i-j-—k
Find the vector ax (b x ¢)

Solution:

Since, ax(bxc) = (a-c)b-(a-b)c
a-c=1-1+1=1
ab=1-1-1=-1

So, ax(bxc) =1-b-(-1)-c=b+c

= (i—j+ K +(i-j-K =2i-2

2.14.13 Vector and Scalar Functions and Fields. Derivatives

This is the beginning of vector calculus, which involves two kinds of functions, vector functions, whose
values are vectors.

V= VP = [V1(P), Vo(P), V3(P)]
depending on the points P in space, and scalar functions, whose values are scalars

f=fP)
depending on P. In applications, the domain of definition for such a function is a region of space or a surface
in space or a curve in space. We say that a vector function defines a vector field in that region (or on that surface
or curve). Examples are shown in figures. Similarly, a scalar function defines a scalar field in a region or on a
surface or a curve. Examples, are the temperature field ina body (scalar function) and the pressure field of the air
in the earth’s atmosphere. Vector (vector function) and scalar functions may also depends on time t or on further
parameters.

Field of tangent vectors of a curve - Field of normal vectors of a surface

Comment on Notation. If we introduce Cartesian coordinates x, ¥, Z, then instead of (P) and f(F) we can
also write

Vixy,2) = [vix, Y, 2), V(% ¥, 2), va(x, v, z)]

and fix, y, ), but we keep in mind that a vector or scalar field that has a geometrical or physical meaning
should depend only on the points Pwhere it is defined but not on the particular choice of Cartesian coordinates.



Example: 1
Scalar function (Euclidean distance in space).

Solution:
The distance f{P) of any point P from a fixed point P, in space is a scalar function whose domain of
definition is the whole space. f{P) defines a scalar field in space. If we introduce a Cartesian coordinate
system and £ has the coordinates Xo Yor Z5 then Fis given by the well-known formula

() = fv.y, 2) = Jlr—x0)? +(y = yo ) + (2= 2

where x, y, z are the coordinates of P. If we replace the given Cartesian coordinate system by another
such system, then the values of the coordinates of Pand Fywillin general change, but {p) will have the
same value as before. Hence f(P) is a scalar function. The direction cosines of the line through Pand £,
are not scalars because their values will depend on the chaoice of the coordinate system.

Example: 2
Vector field (Velocity field).

Solution:
At any instant the velocity vectors W(P) of a rotating body B constitute a vector field, the so-called
velocity field of the rotation. If we introduce a Cartesian coordinate system having the origin on the axis
of rotation, then
x, y,2) = wxr=wx[y, y, 2] = wx (xi + yj + zK)
where x, y, zare the coordinates of any point Pof Bat the instant under consideration. If the coordinates
are such that the z-axis is the ais of rotation and w points in the positive z-direction, then w = wk and
i j Kk
v=10 0 w|=o-y+x)=o-y,x 0]
ESAr4

An example of a rotating body and the corresponding velocity field are shown in Figure below. Also
shown is another example of vector field, the gravitational field.

Velocity field of a rotating body Gravitational field

Vector Calculus: We show next that the basic concepts of calculus, such as convergence, continuity, and
differentiability, can be defined for vector functions in a simple and natural way. Most important here is the derivative.

Convergence: An infinite sequence of vectors Gy N=1,2, ..., Is said to converge if there is a vector a
such that

,Q_TO'Q(H) _a’ =0
a is called the limit vector of that sequence, and we write

lim &, = a
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Cartesian coordinates being given, this sequence of vectors converges to a if and only if the three sequences
of components of the vectors converge to the correspondihg components of a.
i Similarly, a vector function W1} of a real variable t is said to have the limit / as tapproaches t,, if W{) is
V'defined in some neighborhood of ¢, (possibly except at ty) and

limv{t)-1 =0
['-91‘0
Then we write, fimv(t) =1
[m)[o

Continuity: A vector function W) is said to be continuous at t = l, if itis defined in some neighborhood of
yand
limv(t) = L)

f“")fo
If we introduce a Cartesian coordinate system, we may write
vl = [v,(8), v(1), V()] = v (B + v,(1)) + Vi(Bk.
Then v(1) is continuous at I, if and only if its three components are continuous at t,- We now state the most
important of these definitions.

2.14.13.1 Derivative of a Vector Function

A vector function (1) is said to be differentiable at a point tif the following
limit exists:
= lim v(t+ AL - v(t)
A0 At
exists. The vector v/(#) is called the derivative of /). See Figure above (the
curve in this figure is the locus of the heads of the arrows representing vfor values
of the independent variable in some interval containing tand t + Ab).

Derivative of a vector function

In terms of components with respect to a given Cartesian coordinate system W(1) is differentiable at a point
titand only if its three components are differentiable at ¢, and then the derivative V(1) is obtained by differentiating
each component separately.

vt = [viD), va(, va(h)]

Itfollows that the familiar rules of differentiation yield corresponding rules for differentiating vector functions,
for example,

’ ’

(cv) = cv (c constant)

’

(U+ V) = U + Vv andin particular,

’

(u-vy =uv-v+u-v
Y o= U x v uxV

(Uxv

’

H

[u v w W vwl+uv w+uvw]

The order of the vectors must be carefully observed because cross multiplication is not commutative.
Example:
Derivative of a vector function of constant length,

Solution:

Let W) b a vector function whose length is constant, say, ]v(f)lz ¢. Then (\/]2 =v-.v=c? and

(V- v) =viv+ w =2v. v =0, by differentiation. The yields the following result. The derivative of a
vector function W(f) of constant length is either the zero vector or is perpendicular to v(f)




2.14.13.2 Partial Derivatives of a Vector Function ]

From our present discussion we see that partial differentiation of vector functions depending on two or more :

variables can be introduced as follows. Suppose that the components of a vector function "

Vo= vy v vl = v+ v+ vk

are differentiable functions of n variables t,, ...., t.. Then the partial derivative of v with respect to tis g

denoted by 9v/dt, and is defined as the vector function |
av avy . v, . oV

AT T

2 2 2 2
Similarly, oV 9, 9V j+ IV3 K and so on.
ot,0t,, dtot,,  odtot,” adtdt,
Example:
Let ft, ) = acos ti+ asintj+ Lk
Solution:
or - .
Then —— = —asinli+acost)
o
at,

Various physical and geometrical applications of derivatives of vector functions will be discussed in the
next sections.

2.14.14 Gradientof a Scalar Field

We shall see that some of the vector fields in applications-(not all of them) can be obtained from scalar
fields. This is a considerable advantage because scalar fields can be handled more easily. The relation-between

the two types of fields is accomplished by the “gradient”. Hence the gradient is of great practical importance.
Definition of Gradient: The gradient grad fof a given scalar function fx, y, z) is the vector function defined
by '

Here we must assume that f is differentiable. It has become popular, particularly with physicists and
engineers, to infroduce the differential operator.

d. 9. 0
. V=—it+—j+—k
2 0x +ayj+az

(read nabla or del} and to write

gradf-vi=Lpy 9y, 9y
ox dy 9z
For instance, if fix, v, 2) = 2x + yz—3)? then grad f= Vi=2i + (z - 6y)j + yk. ,
We show later that grad fis a vector; that is, although it is defined in terms of components, it has g
length and direction that is independent of the particular choice of Cartesian coordinates. But first
explore how the gradient is related to the rate of change of fin various directions. In the directions
_ the three coordinate axes, this rate is given by the partial derivatives, as we know from calculus. Th
idea of extending this to arbitrary directions seems natural and leads to the concept of direction

derivative.



2.14.15 Directional Derivative

The rate of change of fat any point Pin any fixed direction given by a vector b is defined as in calculus. We
denote it by V,for dfids, call it the directional derivative of fat Pin the direction of b, and define it by figure.
df Q) ~f(P)

3. V. f=-—=1Im
by

(s = distance between Pand Q)
S 50 S

where Qis a variable point on the ray Cin the direction of b as in Fig. below.
The nextidea is to use Cartesian xyz-coordinates and for b a unit vector. Then the ray Cis given by

4. n8) =x(s)i + Y(s)j + Z(s)k = py + sb (s20,|b|=1)

(b, the position vector of P). Equation (3) now shows that D,f= dflds is the derivative of the function
x(s), As), 2(s)) with respect to the arc length s of C. Hence, assuming that f has continuous partial
derivatives and applying the chain rule. We obtain

/ Q

/ 0

L. _
Directional derivative

ar of of of

5, Df=—=—xt+—y +—7
O N ayy 0z
where primes denote derivatives with respect to s (which are taken at s = 0). But here, r'= x'i+ V'j+Zk=b

by (4). Hence () is simply the inner product of b and grad fisee (2), Sec. 8.2],

df
6. Dyf=—=b-gradf bl =1
bl =5 =09 _ (Il =1)
Attention! In general, if the direction is given by a vector a of any length, then
af

1 , . e
pf =—=—a-grad f (where 2 is a unit vector is direction of a)
ds | la|
Example:
Gradient. Directional Derivative

Find the directional derivative of fix, y, z) = 2x° + 3)? + 22 at the point P: (2,1, 3) in the direction of the
vector a =i -2k

Solution:
We obtain grad f = 4xi + 6yj + 2zk, and at P. (2, 1, 3), grad f= 8 + 6/ + 6k

Df = -2 gradf

fal
, 715—(i—2k).(8i+6/'+6k)
18-26 4
_18-26 4 g
F - F

The minus sign indicates that f decreases at Pin the direction of a.

2.14.16 Gradient Characterizes Maximum Increase
Theorem. 1 (Gradient, Maximum Increase)

Let f(P) = f(x, y, z) be a scalar function having continuous first partial derivatives. Then grad f exists and its
length and direction are independent of the particular choice of Cartesian coordinates in space. If ata point Pthe



gradient of fis not the zero vector, it has the direction of maximum increase of fat P. Proof. From (6) and the
definition of inner product we have
7. Dyf=|H|gradf| cosy =|grad f| cosy
where vy is the angle between b and grad f Now fis a scalar
function. Hence its value ata point P depends on Pbut not on the
particular choice of coordinates. The same holds for the arc length
s of the ray C (see hence also for D,f. Now (7) shows that D,fis
maximum when cos y = 1, i.e.y = 0, and the D,f = |grad fl. It
follows that the length and direction of grad fare independent of
the coordinates.
Since y = O if and only if b has the direction of grad £, the latter is the direction of maximum increase
of fat P, provided grad f# 0 at P.

Tangent plane
f=const

/

Gradient as surface normal vector

Gradient as Surface Normal Vector: Another basic use of the gradientresults in connection with surfaces
Sin space given by

8. fix, v, 2) = ¢ = const.

as follows. We recall that a curve Cin space can be given by
9. 8 = x(i + B + Ak

Now if we want C'to lie on S, its components must satisfy (8); thus
10. fx(D), vt), AD) = ¢

Atangent vector of Cis

() =x(8i + y(tj + Z(Hk
If Clies on S, this vector is tangent to S. At a fixed point Pon S, these tangent vectors of all curves on
Sthrough Pwill generally form a plane, called the tangent plane of Sat P(Figure above). Its normal (the
straight line through Pand perpendicular to the tangent plane) s called the surface normal of Sat P. A
vector parallel to it is called a surface normal vector of Sat P. Now if we differentiate (10) with respect
tot,we get by the chain rule.

of , of , of
2y

11— e
o +ay 0z

Z =(grad ir =0

This means orthogonality of grad f and all the vectors 7 in the tangent plane. This result in shown
pictorially in the figure above, where grad fis shown as normal to tangent plane of vectors 7.
S0, we have the theorem 2 given below.

Theorem. 2 (Gradient as Surface Normal Vector)

Let fbe a differentiable scalar function that represents a surface S: f(x, y, z) = ¢ = const. Then if the gradient
of fata point Pof Sis not the zero vector, it is a normal vector of S at P. 2

Comment. The surfaces given by (8) with various values of ¢ are called the
level surfaces of the scalar function f.

Example:

Gradient as Surface Normal Vector p
Find a unit normal vector n of the cone of revolution 22 = 4(x? + )
atthe point P: (1, 0. 2).

Solution:
The cone is the level surface f= 0 fx, y, 2) = 4(x® + 12) - 2. thus - e
grad f= 8xi + 8yj- 2zkand at P(1, 0, 2), grad f= 8i - 4k

O et Lo g

Cone and unit normal vector




Hence, by Theorem 2, grad fis a normal vector of the cone at point P,
Now a unit normal vector at point Pwill be,

n = ! gradf~ii~—1~—k
fgradf[_ J5 5

and the other ong is -n.

14.17 Vector Fields that are Gradients of a Scalar Field (“Potential”)

Some vector fields have the advantage that they can be obtained from scalar fields, which can be handled

ore easily. Such a vector field is given by a vector function W(P), which is obtained as the gradient of a scalar
function, say, V(P) = grad f{P). The function f(P) is called a potential function or a potential of V(F). Such a v(P) and
e corresponding vector field are called conservative because in such a vector fields, energy is conserved; that

s no energy is lost (or gained) in displacing a body (or a charge in the case of an electrical field) froma point Pto
another point in the field and back to P.

2.14.18 Divergence of a Vector Field

Vector calculus owes much of its importance in engineering and physics to the gradient, divergence. and curl.
Having discussed the gradient, we turn next to the divergence. The curl follows in next section.

Let (x, y, 2) be a differentiable vector function, where x, y, zare Cartesian coordinates, and let Vi, v, vy be
he components of v. Then the function

K divv= dx dy 9z

is called the divergence of v or the divergence of the vector field defined by v. Another common
notation for the divergence of vis V.v,

divv=V.v

d . d , vy dv, v

= | itk (Vi Vo vak) = 1. 9Y2  OV8

(axl / az)” 2l HVk) = S,
with the understanding that the “product” (d/dx)v; in the dot product means the partial derivative dv,/ox,

etc. This is a convenient notation, but nothing more. Note that V. vmeans the scalar div v, whereas, Vf
means the vector grad f.

Example:

il

If Vv = Bxzi + 2xyj- yZ2k,

then divv = 3z + 2x - 2yz

We shall see below that the divergence has an important physical meaning. Clearly the values of a
function that characterize a physical or geometrical property must be independent of the particular

choice of coordinates; thatis, those values must be invariant with respect to coordinate transformations.

Theorem. 1 (Invariance of The Divergence)

1. The values of div vdepend only on the points in space (and, of course. on v) but not on the particular
choice of the coordinates,

Now, let us turn to the more immediate practical task of getting a feel for the significance of the
divergence.

If fx, v, 2) is a twice differentiable scalar function, then

af  of . of
= it —k
grad f 8xl+8y/+8z



and div(grad f) = —5+——5+—=
R IV Ve
2. The expression on the right is the Laplacian of f. Thus
div (grad f) = V?f.
Example 1.

Example 2.
1.

PF 0% o°f

Gravitational force

The gravitational force p, is the gradient of the scalar function fx, y, 2) = ¢/r, which satisfies Laplace’s
equation V2f= 0. According to (3), this means that div p=0 (r>0)

The following example, taken from hydrodynamics, shows the physical significance of the divergence of
a vector field (and more will be added in next section when the so-called divergence theorem of Gauss
will be available).

Motion of a compressible fluid, Physical meaning of the divergence
We consider the motion of a fluid in a region A having no sources or sinks in A, that is, no points at which
fluid is produced or disappears. The concept of fluid state is meant to cover also gases and vapors.
Fluids in the restricted sense, or liquids (water or oil, for instance), have very small compressibility, which
can be neglected in many problems. Gasses and vapors have large compressibility; that is, their density
r (= mass per unit volume) depends on the coordinates x, y, zin space (and may depend on time 1). We
assume that our fluid is compressible.

We consider the flow through a small rectangular box W of dimensions Ax, Ay, Az with
edges, parallel to the coordinate axes (Fig. below). W has the volume AV = Ax Ay Az. Let
V=V, v, vl = Vil + V[ vakbe the velocity vector of the motion. We set

U=pv=[Uy, Uy, U] = Ui + Uy + Uk and assume that vand v are

continuously differentiable vector functions of x, y, z, and ¢ (that
is, they have first partial derivatives, which are continuous). Let
us calculate the change in the mass included in Wby considering
the flux across the boundary, that is, the total loss of mass leaving
W per unit time. Consider the flow through the left face of W,
whose area is Ax Az. The components, v, and v, of vare parallel

to that face and contribute nothing to this flow. Hence the mass of d
fluid entering through that face during a short time interval At is
given approximately by X

(pV2)yAx Az Al = (Uz)yAx AZ At Physical interpretation of the divergen

where the subscript y indicates that this expression refers to the left face. The mass of fluid leaving th
box W through the opposite face during the same time interval is approximately (Up)yysy Ax AZ A
where the subscript y + Ayindicates that this expression refers to the right face (which is not visible
Fig. above figure). The difference

Au Ax Az AL = 222 Y At [Au = (Un )y ry ~ (Us) }

o A% - Ay 2 T \M2/y+Ay 2)y

is the approximate loss of mass. Two similar expressions are obtained by considering the othe(
pairs of parallel faces of W. if we add these three expression, we find that the total loss of mass'|
during the time interval Atis approximately. '



Au, A Au.
e e R UNVY
Ax Ay Az

Where’ Au‘l = (U1 )x +Ax (u1 )x

and Auy = (US)Z +Az” (us)z

This loss of mass in Wis cause by the time rate of change of the density and is thus equal to
‘ ap

~——AV At
At

If we equate both expressions, divide the resulting equation by AV At, we get
A A AU
Ath A Al AP

Ax Ay Az At
Now we let Ax, Ay, Az and At approach zero and get,

divu = divijpv) = —%;-»

3. e %?wd/v(pv) =0

This important relation is called the condition for the conservation of mass or the continuity equation of
a compressible fluid flow.

If the flow is steady, that is, independent of time, then %Ft—) = 0 and the continuity equation is

4. div(pv) = 0
If the density r is constant, so that the fluid is incompressible, then equation (6) becomes
5. divv=20

This relation is known as the condition of incompressibility. It expresses the fact that the balance of
outflow and inflow for a given volume element is zero at any time. Clearly, the assumption that the flow
has no source or sinks in Ris essential to our argument.

From this discussion you should conclude and remember that, roughly speaking, the divergence
measures outflow minus inflow.

If vdenotes the velocity of fluid in a medium and if div(v) = 0, then the fluid is said to be incompressible.
In electromagnetic theory, if div(v) = 0, then the vector field vis said to be solenoidal.

2.14.19 Curl of a Vector Field
Gradient, divergence, and curl are basic in connection with fields. We now define and discuss the curl.
Letx, y, zbe right-handed Cartesian coordinates, and let
Wx, ¥, 2) = Vi + Vol + Vik
be a differentiable vector function. Then the function

N
d d 0
lv=vxvl 2 2 2
curl v XV o 5 o
Vi Vo Vg
curly = [9a_9ve H(@ﬁ_% o[ 2 _9vi),
dy 0z dz  ox dx  dy




is called the curl of the vector function v or the curl of the vector field defined by v.

Instead of curl v, the notation rot vis also used, (since one application of curl is to signify rotation of =
rigid body) '

Example 1. .
With respectto right-handed Cartesian coordinates, let
- v = yzi + 3zxj + zK.

Then (1) gives
curlv = Vxv
i / K
) 0
T 9y oz
yz 3zx Zz

1t

- 3xi+ yf+ (837~ 2)k = -3xi + yj + 27k

The curl plays an important role in many applications. Let us illustrate this with a typical basic example. |
(We shall say more about the role and nature of the curl in next section). '

Example 2.

Rotation of a rigid body. Reiation to the curi ;

1. Rotation of a rigid body B about a fixed axis in space can be described by a vector w of magnitudew | -
in the direction of the axis of rotation, where w(> 0) is the angular speed of the rotation, and o is-
directed so that the rotation appears clockwise if we look in the direction of w. The velocity field of the |
rotation can be represented in the form

V= WXT

where ris the position vector of a moving point with respect to a Cartesian coordinate system having

the origin on the axis of rotation. Let us choose right-handed Cartesian coordinates such that
w= okand r=xi + yj+ zk

that is, the axis of rotation is the z-axis. Then 1
‘ i j ok
v wxr=/0 0 o|=-oyi+owxf
Xy z
i ik
d J 0
andtherefore, curlv = | — — —]= 2wk,
dx dy 0z
-0y wx O
since W= 0k,
2. curlv= 2w

Hence, in the case of a rotation of arigid body, the curl of the velocity field has the direction of the axiszi
of rotation, and its magnitude equals twice the angular speed o of the rotation.
Note that out result does not depend on the particular choice of the Cartesian coordinate system ;_j
space.
For any twice continuously differentiable scalar function f,

3. curl (grad f) = 0, '
as can easily be verified by direct calculation, as shown below:

ar . ~ £
gradf= —j+—j+—Kk
ox dy o7




i ]k
d d 0
curligrad ) = | ox 5); 9z
Jof of of
ox oy 0z
_ i( P fjmj[ P a2f]+k( P a%}
dydz dydz 0xdz 0xdz dxdy dxady
= 0i-0j+0k=0

Hence if a vector function is the gradient of a scalar function, its curl is the zero vector. Since the curl

~ characterizes the rotation in a field, we also say more briefly that gradient fields describing a motion
are irrotational. (If such a field occurs in some other connection, not as a velocity field, it is usually
called conservative;

If curl v =0, then vis solid to be an irrotational field.

Example:
The gravitational field has curl p = 0. The field in the rotation of rigid body exampile this section is not
irrotational since we saw that curl v = 2w# 0. A similar velocity field is obtained by stirring coffee in a
cup.
Other than (3), another key formula for any twice continuously differentiable scalar function is

4. div(curlv) = 0
It is plausible because of the interpretation of the curl as a rotation and the divergence as a flux. A
proof of (4) follows readily from the definitions of curl and div; the six terms cancel in pairs.

Let V= Vi 4 V) + VK
i k|

curl v = _8_ i 9

T lox dy oz

[ovs dv,) [dvy dv, v, dv,

SN PR3 N A T I N A A |

’ {ay azJ /(ax oz )T\ oy
divicuri v) = i[.%i@) i(i!@...iﬁ%i[%ﬁ.ﬁ}

Joylox 9z) azlox  dy

2, 2 2 2 2 2
0%y v, vy vy v,

xdy oxdz dyar dydz  dzox 320y
=0
The curl is defined in terms of coordinates, but if it is supposed to have a physical or geometrical
significance, it should not depend on the choice of these coordinates. This is true, as follows.

Theorem. 1 (Invariance of The Curl)
The length and direction of curl vare independent of the particular choice of Cartesian coordinate systems
in space.

2,14.19.1 Important Repeated Operations by Nable Operator (V)

°f 9% 9%
1. div fadf:v2:—--+—~—-—+._
J n? 9yt 37




curlgrad f=VxVf=0

diveurlf= V- (VxF)=0

curlcurl f=graddiv F-V2F =V (V. F)-VF
graddiv f=curlcurl F+ V2F = VxV x F+ V2x F

g s LM

2,14.20 Vector Integral Calculus: Integral Theorems

2.14.20.1 Line Integral
The concept of a line integral is a simple and natural generalization of a definite integral
b
1. fa fx) dx known from calculus. In (1) we integrate the integrand flx) from x = a along the x-axis to x = b,

In aline integral we shall integrate a given function, called the integrand, along a curve Cin space (orin
the plane). Hence curve integral would be a better term, but line integral is standard.

We represent the curve C by a parametric representation.

2.ty =[x(f), U, 0] = x(Di + Y8)j + ABk (a<t<b)

B
We call Cthe path of integrating. A: f(a) its initial point, and B: r(b) its a
terminal point. Cis now oriented. The direction from A to B, in which - C//%_\j
tincreases, is called the positive direction on C. We can indicate the
direction by an arrow (as in above Figure (a)). The points A and B <A

may coincide (as in above figure (b)). Then Cis called a closed path. @ )
a

~ . . :
We call C a smooth curve if C has a unique tangent at each of its Oriented curve

points whose direction varies continuously as we move along C. ;
Technically : Chas a representation (2) such that r(#) is differentiable and the derivative r(t) = dx/dltis
continuous and different from the zero vector at every point of C.

2,14.20.2 Definition and Evaluation of Line Integrals
A line integral of a vector function F(r) over a curve Cis defined by

b dr
3. : Frydr = | F(r(t))-—dt
i (-dr = [ ()~
In terms of components, with dr = [dy, dy, dz] and = d/dt, formula (3) becomes
3. [Flr-ar = [(Ri+Foj+ Fk).(dxi +dly j+dz k)
c c

b
= f/ﬂd,x+f?2dy+F3dz = fa (Fx'+ Ry +FZ)
c

If the path of integrating C in (3) is a closed curve, then instead of

fwe also write 96 .
C c

We see that the integral in (3) on the right is a definite integral of a function of ftaken over the interva

ast<b on the taxis in the positive direction (the direction of increasing f). This definite integra |
exists for continuous Fand piecewise smooth C, because this makes F.7’ piecewise continuous.

Example 1.
Find the value of the line integral (3) when A(r) = [~ y, = xy] = — yx—xyjand Cis the circular arc as from

Ato Bshown in figure titled Example below:



Solution:

We may represent C by
() = [cos ¢ sinf] = cos ti + sin tf (0t n/2)
x(t

Thus ) = cos t, Y i) = sin t, so that
Hif) = — y(8i-x(O1)j = [-sint,- cost sint] = - sinti - cost sin ¢
By differentiation, r(f) = - sinti + costj,
‘ b dr w2, o .
So by (3) [Firar = | Frt)-—t = J’O (-sinti - costsintj).(-sinti + costj)dt
C a
7’[/2 .92 2 '
= J.o (sin®t~cos” tsint)dt
= fn/zsing tat —j " c0s? t sintd
0 0
2
= j“/2£1~COS t] dt + fou2 dt (where u = cost)
0 2
T 1
= (~»O)— ~j =~ 0.4521
4 3
Example 2

Line integral in space.
Evaluation of line integrals in space is practically the same as it is in the plane. To see this, find the value

of (3) when fF(r)_dr =[z x, y] = zi + xj+ yk and C is the helix (Figure above titled Example 2)

() =[cos t sin t, 3l where 0 < t< 2m.

Solution:
We have x(f) = cos t, () = sin t, 2(t) = 3t
Thus F(r) = Zi +xj+ yk =3t + cos {j + sin tk

il

[Frar = [Fre)rat

[ @t + costj+ sintk). (- sinti + cost + k)t

1l

i)

f;n(~8fsint +00s? t + 3sint)alt

on+n+0=7n
~ 21,99,
1. Choice of representation : Does the value of aline integral with given Fand Cdepend on the particular
choice of a representation of C? The answer is no: see theorem 1 below.

il

2. Choiceof path:Does this value change if we integrate from the old point A to the old point Bbut along
another path. The answer is yes, in general; see example 3.



Example 3. z
Dependence of a line integral on path (same endpoints)
Evaluate the line integral (3) with A1) = [52, xy, x°2] = 5zi + xyj + x*zk
along two different paths with the same initial point A: (0, 0, 0) and the nB
same terminal point 8: (1, 1, 1), namely (Fig. below titled example 3)

(@ C,:the straight-line segment r() = [t & ] =ti+ tj+ th, 0<t<T,

and
(b) C,:the parabolicarer(t)=[t t, #]=ti+ tj+ £k 0<t<1.
Solution:
(a) By substituting r, into Fwe obtain F{r.(8) = [5t, £, £] = 5ti + &/ + Bk We also need
ry=M11l=i+j+k
Hence the integral over C, is

fF(f)df = J‘;F(G(l‘))'f{df = f;(5fi+f2/+tgk),(i+j+/<)dz‘
G

1t

5 1 1 31
._.._.*.,__ = ——
2 3 12

(b) Similarly, by substituting r, into £ and calculating r', we obtain for the integral over the path C,.

f1(5[+t2+[3)d[: +— =
0 4

‘ ( ) ar = ' 1‘ (Q(ZL)) ’(l‘)df = rT(bﬁfﬁ +Zﬂ +217)dt = 5 1 2 28
C>2 O B 2 JO ‘ .

The two results are different, although the endpoints are the same. This shows that the value of a line
integral (3) will in general depend not only on Fand on the endpoints A, Bof the path but also on the
path along which we integrate from Ato B.

Can we find conditions that guarantee independence? This is a basic question in connection with
physical applications. The answer is yes, as we show in next section.

2.14.20.3 General Properties of the Line Integral (3)
From familiar properties of integrals in calculate we obtain corresponding formulas for line integrals.

fckF-dr k_[CFdr (kconstant)

[oF+@yar = [ Feare| G
[oFrar = fch-dranch'dr

where in third formula above the path Cis subdivided into two arcs C,
and C,, that have the same orientation as C (Fig. below). In (second formula
above) the orientation of C is the same in both integrals. If the sense of
integration along Cis reversed, the value of the integral is multiplied by —1.

2.14.20.4 Line Integrals Independent of Path
1, | R dr - J”C(/—qd,w Fydy + Fydz)

as before. In (1) we integrate from a point A to a point B over a path C. The value of such an integr;
generally depends not only on A and B, but also on the path C along which we integrate. This

shown in example 3 of the last section. It raises the question of conditions for independence of pat
so that we get the same value in integrating from Ato B along any path C. This is of great practice



importance. For instance, in mechanics, independence of path may mean that we have to do the same
amount of work regardless of the path to the mountain top, be it short and steep or long and gentle, or
that we gain back the work done in extending an elastic spring when we release it. Not all forces are of
this type - think of swimming in a big whirlpool.

We define a line integral (1) to be independent of path in a domain D in space if for every pair of
endpoints A, B in Dthe integral (1) has the same value for all path in Dthat begin at Aand end at B.
Avery practical criterion for path independence is the following. :

Theorem. 1 (Independence of Path)
Aline integral (1) with continuous F,, F,, F, inadomain D in space is independent of path in D if and
only if F=[F,, F,, ;] is the gradient of some function fin D.
2 F=gradf,
incomponents,
of af _of

F

2/' F = =T, F - . _
T oy ~ady 570z

Example 1.
Independence of path. Show that the integral

[Fear = [ (2xalx + 2ycly + 4zdi2)
is independent of path in any domain in space and find its value if C has the initial point
A (0, 0, 0) and terminal point B: (2, 2, 2).
Solution:
By inspection we find that
F = [2x, 2y, 42] = 2xi + 2yj + 4zk = grad f,
where f=x2+y°+ 22

(If Fis more complicated, proceed by integration, as in Example 2, below.) Theorem 1 now implies
independence of path. To find the value of the integral, we can choose the convenient straight path

Cohy=1[ttf=H+j+k, 0<Lt<g2,
andgetr, =i+ j+ k thus Fr = 2t + 2t + 4{ = 8tand from this

2 2
fc(2,\—dx+2ydy+4zdz) = jOF-r dr:drjogstc/r:m

Proof of Theorem 1:
1. Let(2) hold for some function fin D. Let C be any path in D from any point A to any point B, given by

) = x(i + B + z2(Hhk, 0<t<hb
by chain rule, we get, ‘

& : 8{ of Jaf df
Fdx+Fdy + Fd2) = X A el
fA(1 x+ Fdy + F302) JA(a.\-d”ayd”ade)

e fb[af dx_}...@i.%.}.?iﬂé)d{

a

ox dt  dy dt dz dt

t=b
= (B)~f(A)

baf
) f t=0

2 gt =0, (0, 200)]

This shows that the value of the integral is simply the difference of the values of fat the two end points
of Cand s, therefore, independent of the path C.



2. The converse proof of this theorem, that independence of path implies that Fis gradient of some
function £ is more complicated and not given here.

The above example 1 can, now be solved more easily as

[ Far =4B)-#A4) = 2,2, 2) - 0, 0,0 0)
= (224 224222) (02 + 02 + 2.0% =16
An easy way of solving this problem follows from proof of theory 1, shown below:
The last formula in part (a) of the proof,

[ (Rl + iy + Fr02) =AB) = 4) [F= grad f]

Is the analog of the usual formula for definite integrals in calculus.

b
= G(b)~G(a) [G'(x) = g(x)].

a

[ otax = Glx)

3. Potential theory relates to our present discussion, if we remember, that f is called a potential of
F=gradf Thus the integral (1) is independent of path in Dif and only if Fis the gradient of a potential in D.

Example 2.
Independence of path. Determination of a potential
Evaluate the integral

I= | (3x%dlx + 2yzaly + ycty)

fromA: (0,1,2)to B: (1, -1, 7) by showing that F has a potential and applying line integral formula,
Solution:

If Fhas a potential f, we shou‘!d have
fo=F, =37% f, = F,=2yz f,=F, =)

X

We show that we can satisfy these conditions. By integration and differentiation.
f=x3+gly 2, = f,=g,=2z = g=y’z+ h(z)
f=x%+4dly 2) = fo=g =R H,

Now from first step we know that, f,= ¥ = g=yz2+0=y°z
LY h =2 = h =0, = h = constant = 0 (say)

This gives fix, v, 2) = 23 + 12z and the required integral 7 = {B) - f(A)
I'=f1,-17)-f0,1,2=(1+7)~(0+2) =6

Theorem. 2 (Independence of path)

The integral (1) is independent of pathin a domain D if and only if its value around every closed path
in Dis zero.

Proof: If we have independence of path, integration from Ato Balong C, and along G, inFig. 205 gives
the same value. Now C; and C, together make up a closed curve C, and if we integrate from A along
C, to Bas before, but then in the opposile sense along C, back to A (so that this integral is multiplied
by —1), the sum of the two integrals is zero, but this is the integral around the closed curve C

Conversely, assume that the integral around any closed path Cin Dis zero.

Given any points A and Band any two curves C, and Cgbfrom Ato Bin D, we see
that C, with the orientation reversed and C, together form a closed path ¢. By
assumption, the integral over Cis zero.

Hence the integrals over C, and G, Both taken from Ato B, must be equal. This
proves the theorem,

Proof of Theorem 2




5.

Work. Conservative and Nonconservative (Dissipative) Physical Systems: Recall from the last section

that in mechanics, the integral j'F(r) -dr represents the work done by a force Fin the displacement of
C

a body along C. Then theorem 2 states that work is independent of path if and only if it is zero for
displacement around any closed path. Furthermore, Theorem 1 tells us that this happens if and only if
Fis the gradient of a potential. In this case, Fand the vector field defined by Fare called conservative,
because in this case mechanical energy is conserved, that is, no work is done in the displacement
from a point A and back to A. Similarly for the displacement of an electrical charge (an electron, for
instance) in an electrostatic field.

Physically, the kinetic energy of a body can be interpreted as the ability of the body to do work by virtue
of its motion, and if the body moves in a conservative field of force, after the completion of a round-trip
the body will return to its initial position with the same kinetic energy it had originally. For instance, the
gravitational force is conservative; if we throw a ball vertically up, it will (if we assume air resistance to be
negligible) return to our hand with the same kinetic energy it had when it left our hand.

Friction, air resistance, and water resistance always act against the direction of motion, tending to
diminish the total mechanical energy of a system (usually converting it into heat or mechanical energy
of the surrounding medium, or both), and if in the motion of a body, these forces are so large that they
canno longer be neglected, then the resultant F of the forces acting on the body is no longer conservative.
Quite generally, a physical system is called conservative, if all the forces acting in it are conservative;
otherwise it is called nonconservative or dissipative. '

Exactness and Independence of Path: Theorem 1 relates path independence of the line integral (1) to
the gradient and theorem 2 to integration around closed curves. A third idea and theorem 3, below)
relate path independence to the exactness of the differential form

. F.dx + Fydy + Fdz
under the integral sign in (1). This form (4) is called exact in a domain Din space if it is the differential

of  of . of
af= Lo Ly g
P T

of a differentiable function fx, y, z) everywhere in D. That is, if we have

Fidx + Fdy + Fydz = df
Comparing these two formulas, we see that the form (4) is exact if and only if there is a differentiable
function f(x, y, 2) in D such that everywhere in D,

of of af
Fr=— F== F=——
T 2 9y % oz
In vectorial form these three equation (5) can be written
F = grad f.

Hence, by Theorem 1, the integral (1) is independent of path in Dif and only if the differential form (4)
has continuous components F,, F,, F; and is exact in D.

This is practically important because there is a useful exactness criterion involving the following concept.
A domain Dis called simply connected if every closed curve in D can be continuously shrunk to any
point in Dwithout leaving D.

For example, the interior of a sphere or a cube, the interior of a sphere with finitely many points
removed, and the domain between two concentric spheres are simply connected, while the interior of



a torus (a doughnut) and the interior of a cube with one Space diagonal removed are not simply
connected.

The criterion for path independence based on exactness is then as follows.

Theorem. 3 (Criterion for exactness and independence of path)
Let £, F,, Fyinthe line integral,

[ F)-ar = | (Fax+ Ry + Faz)

be continuous and have continuous first partial derivatives in adomain Din space. Then:
(@) Ifthisintegralis independent of path in D—and thus the differential form under the integral sign is
exact, ;

6. curlF=0
in components therefore condition of exactness follows from curl F=0, which gives,

i ]k
: Jd J 9
since curl F= E™ 3y 97 |
AR R P
oF, OF o OF oF,  oF
cunF= 4 23 _Y'2 w'(u_i__l ki —2 _ 71 =0
Z( ox BZJ /\ax 2z )" ox oy
Y 02 8z 9’ on ay
(b) 1f(6") holdsin Dand Dis simply connected, then the integralisindependent-of pathrin o
Proof:
(@) Iftheline integral is independent of pathin D, then F= grad fby (2) and
curl F = curl (grad /= 0 So, that (6) holds.
(b) The proof of the converse requires “Stokes's theorem” and is omittes here.
Comment For a fline integral in the plane
[ Fn-ar = [ (Fdx+Fay)
curl F has just one component and (6') reduces to the single relation 6”.
oF, _ aFl
ox ay
Example:

Exactness and independence of path. Determination of a potential
Using (6'), show that the differential form under the integral sign of

t = fc [2xy22dx +x°2% + zcos yz)dy + (2x?yz + ycos yz)dz]

is exact, so that we have independence -of path in any domain, and find the value of I from .
A: (0,0, 1)to B: (1, n/4, 2). ‘



Solution:

Exactness follows from (6"), which gives
Fa), = 2x°z + cos yz— yzsin yz = (F))
F), = 4xyz= (F3)

(F), = 2x2°=(F)

It

z

i

P

X

y
To find f, we integrate F, (which is “long,” so that we save work) and then differentiate to compare with F,
and F,.

fo= F =2xyz

f, = Fy= (2 + zcos y2)

f, = Fy=2x%yz+ ycos yz)

f= [Rdy= [(222 + zcos yz) = X222y + sinyz + ol 2)

fo= 2x2°y+g, =fi=2xy7°, g, =0 g=Hhz),

f, = 2x°zy+ ycos yz + W = Fy=2x°zy + ycos yz, H =0

so that, taking h = 0, we have
fx, y, 2) = xPy2% + sin yz.
From this and (3) we get, I = fB)~fA)

o1
f1,7/4,2)-£0,0, 1) =n + Slﬂ-2~7I~O=TC+1

il

I

The assumption in Theorem 3 that D be simply connected is essential and cannot be omitted.

2.14.21Green’s Theorem in the Plane

Double integrals over a plane region may be transformed into line integrals over the boundary of the region
and conversely. This is of practical interest because it may help to make the evaluation of an integral easier. It also
helps in the theory whenever one wants to switch from one kind of integral to the other. The transformation can be

done by the following theorem.

Theorem. 1 (Green’s Theorem in The Plane)
(Transformation between double integrals and line integrals)

Let Rbe a closed bounded region (see Sec. 9.3) inthe xy-plane whose boundary C consists of finitely many
smooth curves. Let F,(x, ) and F,(x, y) be functions that are continuous and have continuous partial derivatives

,C’
%?1 and %/_:% everywhere in some domain containing R. Then.
X

oy _dR
1, £ ) [ 2= ”a“y") dxdy = §, (Fok+ Fydy)

here we integrate along the entire boundary C or R such that R is on the left as we advance in the

direction of integration (See Figure).

, , _ ‘ y
Region R whose boundary is C consists of two parts: C, is traversed

counterclockwise, while C, is traversed clockwise, so that Ris on left
as we advance.

Comment. Formula (1) can be written in vectorial form

1. [ [(cur F)-kdxdy = o Fdr (F=[F, Fl = Fyi + Fy) I
A

F
This follows from the fact that the third component of curl Fis Fo 5; .
X



Example:
Verification of Green’s theorem in the plane.
Green's theorem in the plane will be quite important in our further work. Before proving it, let us get used
to it by verifying it for £, = 2~ 7y, F, = 2xy + 2x and Cthe circle x> + )2 = 1

Solution: :

In (1) on the left we get

[1(52-5, o

il

[[12y +2)-(2y - Ndxdy = 9 [ [ dxdy
R R

= O (since the circular disk A has area ).
Ontherightin (1) we represent C (oriented counterclockwiset) by
| ") = [cost, sin {]
Then r(f) = [-sint, cos .
On C we thus obtain
F, = sin?t-7sint,
F, = 2cos tsint+2cost.

2
Hence the integral in (1) on the right becomes

f AR+ Ryt = [én [(sin? £ - 7sint)(~sint) + 2(costsint + cost)(cost)|at

= 0+7n+ 0+ 2n=9n.
This verifies Green’s theorem in the plane.

2.14.22Triple Integrals : Divergence Theorem of Gauss

In this section we first discuss triple integrals. Then we obtain the first “big” integral theorem, which transforms
surface integrals into triple integrals. It is called Gauss'’s divergence theorem because it involves the divergence

of-a-vector-function:

The triple integral is a generalization of the double integral. For defining this integral we consider a function
fx, y, 2) defined in a bounded closed region Tin space. We subdivide this three-dimensional region T by planes
parallel to the three coordinate planes. Then those boxes of subdivision (rectangular parallelopiped) that lie entirely
inside Tare numbered 1 to n. In each such box we choose an arbitrary point, Say, (0 Y10 Z,) Inbox k, and form the
S

n
o = M Vinzi) AV
i1

where DV, is the volume of box k. This we do for larger and larger positive integers n arbitrarily but so that
the maximum length of all the edges of those n boxes approaches zero as n approaches infinity. This gives a
sequence of real numbers J,H,J,,2 ... We assume that fix, y, 2) is continuous in a domain containing Tand Tis ;
bounded by finitely many smooth surfaces (see Sec. 9.5). Then it can be shown (See Ref. [5] in Appendix 1) that 1
the sequence converges to a limit that is independent of the choice of subdivisions and corresponding points
(xp Yo 2. This limit is called the triple integral of fx, y, z) over the region T and is denoted by 0

[[[fx.y. 230x dy dz or [[[#(x, . 2av
T T

Triple integrals can be evaluated by three successive integrations. This is similar to the evaluation of double
integrals by two successive integrations.

2.14.22.1 Divergence Theorem of Gauss

$r oy o i

Triple integrals can be transformed into sur

C €in 0
conversely. This is of practical interest because one of the okinds of integral is often s:mp!ert,h ' the other:




It also helps in establishing fundamental equations in fluid flow, heat conduction, etc., as we shall see. The transformation
s done by the divergence theorem, which involves the divergence of a vector function F = [Fy, Fy Ryl =Fii +Fyf + Fik,

div F = gﬁ+§-@-+§f§ (Sec. 8.10)
ox  Jdy 9z
Theorem. 1 (Divergence Theorem of Gauss)
Transformation between volume integrals and surface integrals
Let The a closed ' bounded region in space whose boundary is a piecewise smooth orientable surface
S. Let Hx, y, z) be a vector function that is continuous and has continuous first partial derivatives in
some domain containing T. Then.

2 [[faivFav = [[F-naa
T S
where nis the outer unit normal vector of S (pointing to the outside of S, as in Fig. 231).
Formula (2) in Components, using (1) and n = [cos a, cos B, cos Y], we can write (2)
. ofy  dF ok
3% jif[*é)c—+ En + FE drdy dz = féf(ﬁ cosa+F,cosP + F; cosy)dA
since, H F.ndA = H(ﬁdydz + Fydzdx + Fydxdy)
S $
equation 2 may also be written as,
of 0F oF;
3, jﬂ(gﬁgfrﬁ- dx dy dz = g<ﬁ dy dz + F,dz dx + Fydxdy)
Example:

Evaluation of a surface integral by the divergence theorem

Before we prove the divergence theorem, let us show a typical application. By transforming to a triple
integral, evaluate

I = ff(xsdy dz + X’y dzdx + x°z dx dy).
S
where Siis the closed surface consisting of the cylinder x2 + 12 = a2 (0< z< b) and the circular disks
z=0and z= b (x* + )2 < 82,

Solution:

In (3) we now have
Fo= x5 F, = x?y Fy=x%z
Hence, divF = 3x? + x2 + x2 = 552 _
Introducing polar coordinates r, 6 defined byx=rcos®, y=rsino (thus, cylindrical coordinates
r, 8, z), we have dx dy dz = rdr d9 dz, and we obtain

!

t

5x%dx dy dz
]

i

5[ Zi . | i Ofeiﬁorz cos?0 r ar o diz

i

Sbfoa fj *rBcos?0 ar oo

i

4
a ren o _ 5 4
5b-—4~f0 Ccos 8 b = ana



2.14.22.2 Stokes's Theorem

Having seen the great usefulness of Gauss’s theorem, we now turn to the second “big” theorem in this -
chapter, Stokes's theorem, which transforms line integrals into surface integrals and conversely. Hence this theoren:
generalizes Green'’s theorem. It involves the curl,

74/7
e
ik pC
1. curl F = 9 9 9
ox ay 0z r S//Zi\ N
n

FoRK

Stoke's theorem
Theorem. 2 (Stokes'Theorem)

Transformation between surface integrals and line integrals
Let S be a piecewise smooth oriented surface in space and let the boundary of S be a piecewise:

smooth simple closed curve C. Let F(x, V. 2) be a continuous vector function that has continuous first |
partial derivatives in a domain in space containing S. Then

2 [[teur Fy-naa = §_F-risyas
S : :
where n is a unit normal vector of S and, depending on n, the integration around C is taken in the sense

shown in Figure above. Furthermore, r* = dr/ds is the unit tangent vector and s the arc length of C.
Formula 2 can be written in terms of components:

ofFy  OF, of  0F) oF, af:}\
3. g!ﬁ(*—"a?)/\h’f‘(“a*z——“*gjl\/g‘f ”‘a—x“"‘ /\/3 du dv

dy dy
g
= 4§ (Fax+ Fdy+Fl)

where R is the region with boundary curve C in the uv-plane corresponding to S represented by
fu,v), and N = [N, N, Nyl =r xr,
Example 1.
Verification of Stokes’s theorem

Before proving Stokes's theorem, let us getusedto it by verifying it for F= [y, z, X yi+ zj+ xkand Sthe
paraboloid. :

Z=fx,y)=1-(°+) z>0.
Solution:

The curve C is the circle ns) = [cos s, sin s 0] = cos si + sin si. It has the unit tangent vectorfﬁ
r(s) = [-sin s, cos s, 0] = - sin s + cos J. Consequently, the line integral in (2) on the right is simply §

2n . .
$.F-ar = jo [(sins)(~sins)+ 0+ Olds = ~r
On the other hand, in (2) on the left we ncod (verify this)
curlF = [-1, -1, -1]

and N = grad (z - fx, y)) = [2x, 2y, 1]

so that (curl F).N = ~2x - 2y~ 1. From (3) in previous section we

get
[[leut F)-naA = ([(-2x-2y - 1aray Surface S in Example |
S R



= ”(~2r cos O -—2rsine—1)rdrdd
R

where x = rcos 6, y = rsin 0, and dx dy = r dr d8. Now the projection A of Sin the xy-plane is given in

polar coordinates by R:r<10<62n . The integration of the cosine and sine terms over 0 from 0 to 2n

gives zero. The remaining term —1. rhas integral (- 1/2) 2% = —, in agreement with the previous result.
Note well that N is an upper normal vector of S, and 1(s) orients C counterclockwise, as required in
Stokes's theorem.

Example 2,
Green's theorem in the plane as a special case of Stokes’s theorem
Let F=[F, F]=Fi+ F,jbe a vector function that is continuously differentiable in a domain in the Xy-
plane containing a simply connected bounded closed region Swhose boundary Cis a piecewise smooth
simple closed curve. Then, according to (1),
(curl Fya = (curl F)-k = ﬂ:g__gﬁ
ox dy
Solution:
Hence the formula in stoke's theorem now takes the form

(I ("ai 55 J = § (Fax+ Fyay)

This shows that Green’s theorem in the plane is a special case of Stokes’s theorem.




Q.2

Q.3

Q.4

is equal to

(b) e
(d) -1
[ME, GATE-2003, 1 mark]

If P, Qand Rare three points having coordinates
(3,-2,-1),(1,3,4),(2,1,-2) in XYZspace, then
the distance from point P to plane OQR(Obeing
the origin of the coordinate system) is given by

(a) 3 (b) 5
(€7 (d) 9
[CE, GATE-2003, 1 mark]
‘ o+
The value of the function f(x) = [im ——— I8
¥ =0 2x3 —75%
1
a) 0 B) ——
(@) (b) >
© o A
©7

[CE, GATE-2004, 1 mark]

fx=a(@®+sin®)and y = a (1 - cos ), then

Q.

Q.

(9]
w

7

8

The angle between two unit-magnitude coplanar |
vectors F(0.866, 0.500, 0) and
(X(0.259, 0.966, 0) will be

(@ ¢ (b) 30°
(c) 45° (d) 60°
[ME, GATE-2004, 1 mark]

A rail engine accelerates from its stationary §
position for 8 seconds and travels a distance of §
280 m. According to the Mean Value Theorem,
the speedometer at a certain time during
acceleration must read exactly

(@ 0 (b) 8 kmph

(c) 75 kmph (d) 126 kmph s
[CE, GATE-2005, 2 marks] |

Tha Aari ot £t
The derivative of the sym
nf

M
given figure will look like

Q.5

Q.6

dy/dx will be equal to
cos(g)
(o) cos|

(a) sin(?—)
2
0
(d) cot(gj

0
@) tan(EJ
[ME, GATE-2004, 1 mark]

The function f(x) = 2x3 — 3x? — 36x + 2 has its
maxima at

(a) x = -2 only
{c) x =3 only

(b) x = 0 only
(d) bothx=-2andx =3
[CE, GATE-2004, 2 marks]

The volume of an object expressed in spherical
co-ordinates is given by

B nen/3p1 o
V= jo j J/°sing dr dp db. The value of the
intergal is

T 7t
(@ 3 b 5
2
© 5 @ %5

[ME, GATE-2004, 2 marks]

Q.10 The right circular cone of largest volume that ¢al

N

[EC, GATE-2005, 2 marks] §

be enclosed by a sphere of 1 m radius has @
height of
@ 1/3m



11 Forthe function f(x) = x2e™, the maximum occurs
~ whenxisequalto
(a) 2

© 0

(b) 1
(d) -1

A2 1f S= [x dx, then S has the value
1

(a) -1/3
(c) 1/2

(b) 1/4
(d) 1
[EE, GATE-2005, 1 mark]

.13 Changing the order of the integration in the double

8 2
I= j j f(x, y) dydx
Ox/4

integral leads to

sqg
I= j [#(x. y)dxdy. Whatis g?

rp
(@) 4y (b) 162
(©) x (d) 8

[ME, GATE-2005, 1 mark]

Q.14 By achange of variablex (u, v) = uv, y(u, V) = Viu
‘ is double integral, the integrand f(x, y) changes
to fluv, v/iu) ¢ (u, v). Then, ¢ (u, v) is
(a) 2 ulv (b) 2 uv
(c) v@ (d) 1

[ME, GATE-2005, 2 marks]

2 2

Q.15 For the scalar field u = —% + X—-,

3
the gradient at the point (1, 3) is

@ o (b) \/i—

() V5

magnitude of

© -

[EE, GATE-2005, 2 marks]

Q.16 The line integra! de” of the vector
V.(F) = 2xyzi + x°zj + x°yk from the originto the
point A(1,1, 1)
{a) is 1

(b) is zero

(c) is

(d) cannot be determined without specifying path

[ME, GATE-2005, 2 marks]

[EE, GATE-2005, 2 marks] -

Q.17 Value of the integral ;ﬁ(xydy - yzdx), where, cis

C
the square cut from the first quadrant by the lines
x=1and y=1will be (Use Green’s theorem to
change the line integral into double integral)

(a)

(©)

Njw o=
(e}

[CE, GATE-2005, 2 marks]

Q.18 Stokes theorem connects
(a) alineintegral and a surface integral
(b) a surface integral and a volume integral
(c) alineintegral and a volume integral
{d) gradient of a function and its surface

integral
[ME, GATE-2005, 1 mark]
2 .
Q.19 If flx) = 277X+ 3 ihen lim f(x) will be
5x2 ~12x -9 ¥ 8
(8) - 1/3 (b) 5/18
(¢) O (d) 2/5

[ME, GATE-2006, 2 marks]
Q.20 As x increased from —oo 10 o, the function
e ’

flx) =
) 1+

(a) monotonically increases
(b) monotonically decreases
(c) increases to a maximum value and then
decreases
(d) decreases to a minimum value and then
increases
[EC, GATE-2006, 2 marks]

/3
Q.21 Assuming i = —1 and tis a real number, fef-’dz‘
0

is

N 3 1
R S

(©) —;— (Q (o ;Jr(T%

[ME, GATE-2006, 2 marks]



T
Q.22 The integral fsin36d9 is given by
0

(a) 1/2
(c) 4/3

(b) 2/3
(d) 8/3 _
[EC, GATE-2006, 2 marks]

Q.23 What is the area common to the circles r = a and

r=2acos 67?
(a) 0.524 a2 (b) 0.614 a2
(c) 1.047 a2 (d) 1.228 a2

[CE, GATE-2006, 2 marks]

. H_ o
Q.24 The expression V= jo nR° (1 - h/H)? dhfor the
volume of a cone is equal to

@ 7 (o
(b) [.'7R? (1-h/ HY o
(©) jonnr H(1~r/R)dh
2
(cl) ffnr/—/(%%) ar
[EE, GATE-2006, 2 marks]

Q.25 A surface S(x, y) = 2x + 5y - 3 is integrated
once over a path consisting of the points that

Q.28 Vx V x P, where Pis a vector is equal to
(@ Pxvxp-v?p (b) VIP+V(VxP)
(d) V(V.p)-v?p
[EC, GATE-2006, 1 mark]

(©) VPP+VxpP

Q.29 ff(v x P).ds.where Pis a vector, is equal to

() PpPedi (B) Py xv x Pedis

@ [[[vepa
[EC, GATE-2006, 1 mark]

© PV P

satisfy (x + 1)2 + (y - 1)2 = 2. The integral
evaluates to

17
(@) 1742 (b) 5
2
(© \TF? (d) 0

[EE, GATE-2006, 2 marks]

Q.26 The directional derivative of
f(x, ¥, 2) = 2x° + 3y2 + 2
atthe point P(2, 1, 3) in the direction of the vector

a=1i-2kis
(a) ~2.785 (b) -2.145
{c) -1.789 {d) 1.000

[CE, GATE-2006, 2 marks]

Q.27 Equation of the line normal to function
f(x) = (x—8)%3 + 1 at P(0, 5) is
(@ y=3x~5 (b) y=3x +5
(c) By=x+15 (d) 3y =x- 15
[ME, GATE-2006, 2 marks]

(@ 0 (b) 1/6
(c) 1/3 (d) 1
[ME, GATE-2007, 2 marks]
Q.31 lim sin(6/2)
' -0 0
(a)-05 o)1
(c) 2 (d) not defined

[EC, GATE-2007, 1 mark] |

Q.32 The minimum value of function y = x2 in the
interval [1, 5]is
(@ 0
(cy 25

(by 1
(d) undefined
[ME, GATE-2007, 1 mark] §

Q.33 Which one of the following functions is strictly

bounded?
(a) 1/x? (b) e
(c) x2 (d) e

[EC, GATE-2007, 1 mark]

Q.34 Consider the function f(x) = x2 — x - 2. The
maximum value of f(x) in the closed interval

[-4, 4] is
(@) 18 (b) 10
(c) 225 (d) indeterminate

[EC, GATE-2007, 2 mark




5 For the function e™, the linear approximation
ground x = 2 is
(a) (3-x)e?
(b) 1-x
© [3+2V2 - (1+/2)x)e?
(d) e
[EC, GATE-2007, 1 mark]

.36 The following plot shows a function y which varies
linearly with x. The value of the integral

2
J = J.y dx is
1
y
i
3 4
P
/
Z 2 s
a) 1.0 (b) 25
(c) 4.0 (d) 5.0

[EC, GATE-2007, 1 mark]

3 17'ka.37 The area of a triangle formed by the tips of vectors

a,bandcis

(2) =(a-b)-(3-¢) (b) %|(§-5)><(§»5)]

) %(“a‘xExE[ (d)»;(éxE)-’c‘

[ME, GATE-2007, 2 marks]

Q.38 Let x and y be two vectors in a 3 dimensional
space and <x, y> denote their dot product. Then

, <xxX> <xy>
the determinant det )
<yx> <y y>

(a) iszerowhenx and yare linearly independent
(b) is positive when x and y are linearly
independent
(c) is non-zero for all non-zero x and y
(d) is zero only when either x or yis zero
[EE, GATE-2007, 2 marks]

Q.39 A velocity wvector is given as

V =5xyi+2y%} + 3yz°k . The divergence of this
velocity vector at (1, 1, 1) is
(@) 9 (b) 10
(c) 14 (d) 15
[CE, GATE-2007, 2 marks]

Q.40 Potential function ¢ is given as ¢ = x2 - 2. What
will be the stream function () with the condition
y=0atx=y=07

(a) 2xy (b) X% + 2
(c) x% — 2 (d) 2x?y?
[CE, GATE-2007, 2 marks]
(3 _o
Q.41 The Value of lim -
x—8 (,\’ - 8)
1 1
(a) 6 (b) )
1 Nl
(©) 8 (d) 7
[ME, GATE-2008, 1 mark]
Q4o lim x —Sinx |
e x + cogy COUAS
(a) 1 (b) -1
() e (d) — e

[CS, GATE-2008, 1 mark]

Q.43 Consider function f(x) = (x?— 4)? where x is a real
number. Then the function has

(a) only one minimum (b) only two minima

{c) three minima (d) three maxima

[EE, GATE-2008, 2 marks]

Q.44 A point on a curve is said to be an extremum if it
is a local minimum or a local maximum. The
number of distinct exterma for the curve
x4 — 16x3-24+2 + 37 is
(a) O (b} 1
(c) 2 (d) 3

[CS, GATE-2008, 2 marks]

Q.45 In the Taylor series expansion of e* about v = 2,
the coefficient of (v — 2)* is
(a) 1/4 (b) 24/41
(c) €°/4l (d) e*/41
[ME, GATE-2008, 1 mark]



Q.46 Which of the following functions would have only
odd powers of x in its Taylor series expansion
about the point x = 07
(a) sin(x°) (b) sin (x?)

(c) cos (x%) (d) cos (x?)
[EC, GATE-2008, 1 mark]

Q.47 Inthe Taylor series expansion of exp(x) + sin (x)
about the point x = m, the coefficient of
(x~m)?is
(a) exp(n) (b) 0.5 exp (n)

(c) exp (m) + 1 {d) exp (m) -1
[EC, GATE-2008, 2 marks]

o°f
Q.48 Letf=y* Whatis —— atx=2 y=1?

oxdy
(@) 0 (b) In2
1
() 1 @ 3
IME, GATE-2008, 2 marks]

n/4

Q.53 Consider the shaded triangular region Pshownin ‘ _

the figure. What is nydxdy’?
P

H
H

Y

[ME, GATE-2008, 2 marks]

Q.54 The inner (dot) product of two non zero vectors
p and @ is zero. The angle (degrees) between
the two vectors is
@ o (b) 30
(c) 90 (d) 120 ]

[CE, GATE-2008, 2 marks]

o

ftanxdx (b)f 21 Ox Q.55 The divergence of the vector field
0 Ox +1 ~ ~ o
x=y)i +(y-x)] +x+y+ 2k is
1
= 1 (a0 (b) 1
(C) foe * d.x (d) %‘«inxdx \Lz) 2 kd) 3
0 [ME, GATE-2008, 1 mark] §

[ME, GATE-2008, 2 marks]

Q.50 The length of the curve y = §x3/2 between x = 0

andx=1is
(a) 0.27 (b) 0.67
() 1 (d) 1.22

[ME, GATE-2008, 2 marks]

Q.51 The value of the integral of the -function
glx,y) = 4x® + 10y* along the straight line
segment from the point (0, 0) to the point (1, 2) in
the x - y plane is
(a) 33 (h) 35
(c) 40 (d) 56

[EC, GATE-2008, 2 marks]

3x
Q.52 The value of “ (6-x-y)dx dyis
00

(a) 135 (b) 27.0
(c) 405 (d) 54.0

Q.56 The directional derivative of the scalar function 1
flx, v, 2) =x% + 2% + zat the point P = (1,1,2)in |

the direction of the vector g = 37 — 4] s

(@ -4 (b) -2
(c) -1 (d) 1
[ME, GATE-2008, 2 marks]

Q.57 Consider points P and Q in the x-y plane, wit
P = (1,0) and Q = (0,1). The line integra

Q
2[ (xdlx + ydly) along the semicircle with thelin
p

segment PQ as its diameter

(a) is -1

(b)is O

(c) is 1

(d) depends on the direction (clockwise or antf
clockwise) of the semicircle

el
[EC, GATE-2008, 2 marks]



.58 The distance between the origin and the point
nearest to it on the surface 22 =1+ xyis

(a) 1

€ 3

() =~

(d) 2
[ME, GATE-2009, 2 marks]

Q.59 A cubic polynomial with real coefficients

(a) can possibly have no extrema and no zero
crossings

(b) may have up to three extrema and upto 2 zero
crossings

(c) cannothave more than two extrema and more
than three zero crossings

(d) will always have an equal number of extrema
and zero crossings

[EE, GATE-2009, 2 marks]

sinx
Q.60 The Taylor series expansion of \—;T% atx =mis

given by
(x=n) (x-m)’

(a) 1+~—3—!-—+... (b) -1 - T +

2 2

(x-m) (x-m)

(c) 1~ Th' (d) -1 + 3 +..

~ [EC, GATE-2009, 2 marks]
/4
Q.61 J‘ wdx evaluates to

o (+tanx)

(@ 0 (b) 1

(c) In2 (d)1/21n2

[CS, GATE-2009, 2 marks]

Q.62 A path ABin the form of one quarter of a circle of
unit radius is shown in the figure. Integration of
(x + y)2 on path AB traversed in a counter-
clockwise sense is

Y

(@ 5-1

Y
() 5
[ME, GATE-2009, 2 marks] -

Q.63 The area enclosed between the curves y? = 4x

and x° = 4y is
@ < )8
(c) 933 (d) 16

[ME, GATE-2009, 2 marks]

Q.64 fx, y)is a continuous function defined over (x, y)
€ [0, 1] x [0, 1]. Given the two constraints,
x> y2and y > x2 the volume under fx, y)is

y=1 x=y

@) f f(x, y)dxdy
y=0 :y2
y=1 x=1

(b) f f(x, y)dxdy
y=x? x= y?
y=1 x=1

© [ [ fnyydxay
y=0 x=0
y=ix x=\ly

@ | [ feoyaeay
y=0 x=0

[EE, GATE-2009, 2 marks]

Q.65 For a scalar function f(x, y, z) = x2 + 3y + 22
the gradient at the point P(1, 2, — 1)is

(b) 27 +12] ~ 4k

(d) /56
[CE, GATE-20009, 1 mark]

Q.66 For a scalar function f(x, y, z) = x2 + 32+ 222,
the directional derivative at the point

(@) 27 +6/ + 4k

(©) 27 +12] + 4k

P(1,2, - 1) in the direction of a vector [ =] +2K

IS
(@) - 18 (0) —346
© 36 (d) 18

[CE, GATE-2009, 2 marks]



Q.67 The divergence of the vector field

3xzi +2vy [ - yz°k ata point (1,1,1) is equal to

(@) 7 (b) 4
(c) 3 (d)o
[ME, GATE-2009, 1 mark]
{5
Sin —éx
Q.68 The lim —=—= s
X X
(a) 2/3 (b) 1
(c) 32 (d) e

[CE, GATE-2010, 1 mark]

“2n
. 1
Q.69 What is the value of nl[n(1—~n—J ?

(a) O
(c) e

(b) e
(d) 1
[CS, GATE-2010, 1 mark]

Q.70 The function y = 12 - 3x|
(a) is continuous V xe Rand differentiable Vxe R
(b) is continuous ¥ xe Rand differentiable Vxe R
exceptatx = 3/2
(c) is continuous V xe A and differentiable Vxe R

1
Q.73 If & =x*  then yhas a
(@) maximum atx = e
(b) minimum atx = e
(c) maximum atx = ¢!
(d) minimum atx = e~
[EC, GATE-2010, 2 marks]

(@) - (b) ~n/2
(d) m
~ [ME, GATE-2010, 1 mark]

;
Q.75 The value of the quantity P, where P = f,ve"d.r, is

0
equal to
(@) 0 (b) 1
(c) e (d) 1/e

[EE, GATE-2010, 1 mark]

Q.76 A parabolic cable is held between two supports
at the same level. The horizontal span between
the supports is L. The sag at the mid-span is h.
The equation of the parabola is y = 4h(x?/L?),

exceptatx = 2/3
(d) is continuous VYxe R except x = 3 and
differentiable Vxe R
[ME, GATE-2010, 1 mark]

Q.71 Given a function f(x, y) = 4x° + 6)° - 8x - 4y + 8.
The optimal value of f(x, V)
(a) is a minimum equal to 10/3
(b) is a maximum equal to 10/3
(c) is aminimum equal to 8/3
(d) is a maximum equal to 8/3
[CE, GATE-2010, 2 marks]

Q.72 At t = 0, the function (f) = _SJ;_“E has

a) aminimum

b} a discontinuity

¢) a point of inflection
d) amaximum

e~

[EE, GATE-2010, 2 marks]

where x is the horizontal coordinate and y is the
vertical coordinate with the origin at the centre of
the cable. The expression for the total length of

the cable is
/c' 2 Li2 /,)3 2
j 14+64——dx (b) 2 [1+64=——dx
4 . N
L2 2 2 Li2 2.2
j 1+64h f 1+64ﬁ-———d
0

[CE, GATE-2010, 2 marks]

Q.77 The parabolic arc y =+/x, 1<x <2 is revolved

around the x-axis. The volume of the solid of

revolution is
(a) m/4 (b) m/2
(c) 3n/4 (d) 3n/2

[ME, GATE-2010, 1 mark




Q.78 If A=xya, er‘?éy, gSZ\ -di over the path shown
c

in the figure is

y
3_,
C
1..-
0 1/§J'3~ 2/IJ? ’
2
(a) O (b) 73
(©) 1 (d) 243

[EC, GATE-2010, 2 marks]
Q.79 Velocity vector of a flow field is given as

V = 2xyi - x*z] . The vorticity vector at (1, 1, 1)

is
(@) 4f -] (b) 4f -k
(c) i-4j (d) 7 -4k

[ME, GATE-2010, 2 marks]

Q.80 Divergence of the three-dimensional radial vector

field 7 is
(a) 3 (b) 1/r
© i+]+k (d) 3(?+f+/2>

[EE, GATE-2010, 1 mark]

Q.81 Whatis lim 229 equal t0?
\ 80 9

(a) 6 (b) sin ©
(c) 0 (d) 1
[ME, GATE-2011, 1 mark]

(.82 What should be the value of A such that the
function defined below is continuous atx = /27

A COSx

=~ ifx#m/2
fx)= { 52
1 fx=mn/2
(a) 0 (b) 2/
(c) 1 (d) n/2

[CE, GATE-2011, 2 marks]

Q.83 The function f(x) = 2x —x2 + 3 has
(@ amaximaatx = 1andaminimaatx =5
(b) amaximaatx = 1 and aminima atx = -5
(c} only a maxima atx = 1
(d) only aminima at x = 1
[EE, GATE-2011, 2 marks]

Q.84 A series expansion for the function sing is

[ME, GATE-2011, 1 mark]

Q.85 Given i =v~1, what will be the evaluation of the

o /2 COSx +i8inx
definite integral j R am— ¢ 5 O
0 cosx-—isinx

(@ o0 (b) 2
(c) —i (d) i
[CS, GATE-2011, 2 marks]

Q.86 What is the value of the definite integral,

T———1£-~dr7
5 \/; +va-x o
(@ 0 (b) a/2
(¢) a (d) 2a

[CE, GATE-2011, 2 marks]
Q.87 If f{x) is an even function and a is a positive real
number, then faf(x)dx equals
(@) O (b) a
(d) 2j§f<_\»)d,\-
[ME, GATE-2011, 1 marks]

{c) 2a

Q.88 If & and b are two arbitrary vectors with

212
magnitudes aand b, respectively, ’é’xb} will be

egual to

2 -
(a) a2b2—(a b) (b) ab-a-b
(©) agb2+<§ 5) (d) ab+a-b

[CE, GATE-2011, 2 marks]




Q.89 The two vectors [1,

a:[——lqujﬁ],are

1,1} and [1, a, a?], where

2 2

(a) orthonormal (b) orthogonal

{c) parallel {d) collinear
[EE, GATE-2011, 2 marks]
Q.90 lim 1-cosx) .
) =0 X2 1S
(a) 1/4 (b) 1/2
(c) 1 (d)2

[ME, GATE-2012, 1 mark]

Q.91 Consider the function f(x) = | x | in the interval
-1<x< 1. Atthe pointx =0, f(x) is
(a) continuous and differentiable
(b) noncontinuous and differentiable
(c) continuous and non-differentiable

Q.96 The area enclosed between the straight line y = x
and the parabola y = x? in the x - y plane is
(a) 1/6 (b) 1/4
() 1/3 (d) 1/2
[ME, GATE-2012, 1 mark]

Q.97 For the parallelogram OPQR shown in the sketch,

OP=af +bj and OR=cf +dj . The area of the
parallelogramis

Q
R
P
o]
(a) ad - bc (b) ac + bd
(c) ad + bc (d) ab-cd

[CE, GATE-2012, 2 marks]

Q.98 For the spherical surface x2 + y2 + 22 = 1, the unit

(d) neither continuous nor differentiable outward normal vector at the point (_ 1 j
[ME, GATE-2012, 1 mark] NCINER
Q.92 Atx = 0, the function f(x) = x3 + 1 has is given by
(a) amaximum value (b) aminimum value (@) 1. 14 (o) if-iﬁ
(c) asingularity (d) a point of inflection f f J2 \/§/
[ME, GAI!: -2012, 1 mark] o @ 1~ 1. 1 p
c) k e e [ e
Q.93 The maximum value of J3 V3T 3

f(x) = x3 - 9x2 + 24x + 5 in the interval [1, 6] is
(a) 21 (b) 25
(c) 41 (d) 46

[EC, EE, IN, GATE-2012, 2 marks]

Q.94 Consider the function f(x) = sin (x) in the interval
xe [n/4, 7m/4]. The number and location(s) of the
local minima of this function are
(@) One, atn/2
(b) One, at 3n/2

¢) Two, at /2 and 3r/2

d) Two, at /4 and 3n/2

[CS, GATE-2012, 1 mark]

(
(

2 ’C3 4

Q.95 The infinite series T+x+i—t+2t™ 4
21 31 41
corresponds 1o
(@) secx (b) e
(c) cos x (d) 1 + sin®¢

[CE, GATE-2012, 1 mark]

[ME, GATE-2012, 1 mark]

Q.99 The direction of vector Ais radially outward from
the origin, with |A| = k" where 12 = 52 +Y+F
and kis a constant. The value of n for which V -

A=0is
(a) -2 (b) 2
(c) 1 (d) 0

[IN, GATE-2012, 2 marks]

Q.100 Which one of the following functions is
continuous at x = 37

2 f x=3
-1 if x>3

a) fx)=1*""

@ 143 if x<3
3 1

by () 4, if x=3

x)=
W ot xes




C[x+3 if x<3
Clx—4 i x>3
Cifx#3

[CS, GATE-2013, 1 Mark]

Q.101 Afunction y = 5x2 + 10xis defined over an open
. interval x = (1, 2). At 'east at one point in this

dy

interval, == is exactly

dx
(a) 20 (b) 25
(c) 30 (d) 35

[EE, GATE-2013, 2 Marks]

Q.102 A polynomial f(x) = a,x* + a,x® + a,x% + ax - g,
with all coefficients positive has
(a) noreal roots
(b) no negative real root
(c) odd number of real roots
(d) at least one positive and one negative real
root
[EC, GATE-2013, 1 Mark]

/6
- Q.103 The value of f cos*30sin%60 08 is
0

1
(@ 0 ) 2
8

(© 1 @ 3

[CE, GATE-2013, 2 Mark]

Q.104 The value of the definite integral Lex/a—r In(x) dx

is
45 o2 25 4
) gVe g b g 9
o5 4 45 2
“Ve® + = —Ve’ - =
C)9st9 @3 9

[ME, GATE-2013, 2 Marks]

Q.105 The curl of the gradient of the scalar field defined
by V=2x?y + 3y2z+ 47 is
(a) dxya, + 6yz a, -+ 8xa,
(b) 4a_+ 6a + 8a,
(c) ( 4xy+422 )a, +(2x2+6yz )a,+ (37 +8z) a
(d) 0
[EE, GATE-2013, 1 Mark]

Q.106 The divergence of the vector field

A=xd, +ya, +28,is

(b) 1/3
(d) 3
[EC, GATE-2013, 1 Mark]

Q.107 Function fis known at the following points

¥ 10 (03{06(09}1.2]15/1.8/21(24|2.7]3.0
fix) | 0 ]0.09]0.36/0.811.44|2.25/3.24|4.415.76(7.29|9.00

3
The value of fo flx)dx computed using the

continuous atx = 37
(a) 8.983
(c) 9.017

(b) 9.003
(d) 9.045
[CS, GATE-2013, 1 Mark]

Q.108 For a vector £, which one of the following
statements is NOT TRUE?
(@) I V-E=0, Eis called solenoidal.
(b) If VXE=0, Eis called conservative.
(c) f VxE=0, Eis called irrotational.
(d) f V-E=0, Eis called irrotational.
[IN, GATE-2013 : 1 mark]
-x%4,,

Q.109 Given a vector field F = yzxéx - yzéy

the line integral fﬁ"-@? evaluated along a

segment on the x-axis fromx =1 tox = 2is
(@) —2.33 (b) 0
(c) 2.33 (dy 7
[EE, GATE-2013, 1 Mark]

Q.110 The following surface integral is to be evaluated
over a sphere for the given steady velocity vector
field F = xi + yj + zk defined with respect to a
Cartesian coordinate system having i, j and k
as unit base vectors.

J[4(F ricA
S
where Sis the sphere, x° + 2 + 22 = 1 and n is
the outward unit normal vector to the sphere.
The value of the surface integral is
(@) m (b) 2n
(c) 3/ (d) 4n
[ME, GATE-2013, 2 Marks]



Q.111 Consider a vector field A (7). The closed loop
line integral <ﬁ2\~b/7 can be expressed as

(a) @(Vxﬁ)-aé over the closed surface

bounded by the loop

(b) <f;fj>(vﬁ)dv over the closed volume
bounded by the top

(c) fﬂ (V. A)‘dv over the open volume bounded
by the loop

(d) H(Vxﬁ)ﬂé over the open surface

bounded by the loop
[EC, GATE-2013, 1 Mark]

Q.112 lx_ﬂ[,\wsin,\') equal to
(@) - oo (b) O
() 1 (d) e

[CE, GATE-2014 : 1 Mark]

Q.117 The integrating factor for differential equation
%F; +koP = ki Le ™" is
(a) e-/\’;l (b) e*/\’g[

(C) e/ql (d) ekzt
[CE, GATE-2014 : 1 Mark]

Q.118 If a function is continuous at a point,

(a) thelimitof the function may not exist atthe point.

(b) the function must be derivable at the point.

(c) the limit of the function at the point tends to
infinity.

(d) the limit must exist at the point and the value
of limit should be same as the value of the
function at that point.

[ME, GATE-2014 : 1 Mark]

Q.119 Afunction f(x)is continuous in the interval [0, 2].
It is known that f0) = 2) = -1 and {1) = 1.

Lol H
|

Which one of the following statemenis must be

true?
(@) There exists a y in the interval (0, 1) such

that {y) = fy + 1)
(b) Forevery yintheinterval (0, 1), fy)=f2-y)

A (c) The maximum value of the function in the
Q.113 The expression cho - is equal to interval (0, 2) is 1
(d) There exists a y in the interval (0, 1) such
(@) ]ng (b) 0 that f(y) = (2 )/)
(¢) xlog x (d) [CS, GATE-2014 : 2 Marks] 4
[CE, GATE-2014 : 2 Marks]
Q.120 Let the function
Q.114 Lim x-sinx Sing cos0 tano
' ¥=01-C0oSx f(0) = | sin(n/6) cos(n/6) tan(rn/6)
(@) 0 (b) 1 sin(n/3) cos(n/3) tan(n/3)
(c) 3 (d) not defined 7 -
[ME, GATE-2014 : 1 Mark] where 0e [g gJ and (6) denote the |
62r _1 derivative of f with respect to 6. Which of the
Q.115 %m(sin Y)} is equal to following statements is/are TRUE? .
' noom
(a) 0 (b) 0.5 (I) There exists 96(5, 5/} such that
v ’ \
(0 1 (d)2 £(8) = 0.

[ME, GATE-2014 : 1 Mark]

X =300

. 1Y
Q.116 The value of lim (H;} is

(&) In2
{c) e

(b) 1.0
(d) o
[EC, GATE-2014 : 1 Mark]

{(I1) There exists 9 e(g

'(8) # 0.

{(a) lonly
(c) Both i andll

E) such that
3

(b) 1l only
(d} Neither | nor il
[CS, GATE-2014 : 1 Mark]



Q.121 The function fx) = x sin x satisfies the following
equation; (x) + fx) + fcosx = 0. The value of
tis

[CS, GATE-2014 : 2 Marks]

2
Q122 1f y = f(x) is the solution of <% = 0, with the

X

d
boundary conditions y =5 atx =0, and Y 2

dx
atx = 10, f(15) = .
[EC, GATE-2014 : 2 Marks]

~ Q.123 Foraright angled triangle, if the sum of the lengths
k of the hypotenuse and a side is kept constant, in
order to have maximum area of the triangle, the
angle between the hypotenuse and the side is
(@) 12¢ (b) 36°
(c) 60° (d) 45°
[EC, GATE-2014 : 2 Marks]

Q.124 If z=xyIn(xy), then

xéz__i_ya_Z:O y%:Y%
@ *5x "oy ©) 7oy T %y

9z 9z 0z 9z

o yZ 92,2 0
© ¥ 75y @ V5 5y

[EC, GATE-2014 : 1 Mark]

Q125 Let f{x) = x e, The maximum value of the
function in the interval (0, =) is
(a) e (b) e
(c)1-e! (d)y 1+ e
[EE, GATE-2014 : 1 Mark]

Q.126 Minimum of the real valued function
f(x) = (x - 1) occurs at x equal to
(@) —eo (b) O
() 1 (d) oo
[EE, GATE-2014 : 1 Mark]

Q127 The minimum value of the function
f(x) = x*~ 3x% — 24x + 100 in the interval [-3, 3]

is
(a) 20 (b) 28
{c) 16 (d) 32

[EE, GATE-2014 : 2 Marks]

Q.128 For 0 < t < «, the maximum value of the function
f(f) = et - 2e~2 occurs at
(a) t=log, 4 (b) t=1log, 2
(c)t=0 (d) t=log,8
[EC, GATE-2014 : 1 Mark]

Q.129 The maximum value of the function
f(x) =In(1 + x)—x (where x > -1) occur at
X =

[EC, GATE-2014 : 1 Mark]

Q.130 The maximum value of

f(x) = 2x3 = 9x° + 12x -3 in the interval
0<x<3is
[EC, GATE-2014 : 2 Marks]

| 2 (x—12sin(x~1)
Q.131 The value of the inegral J(;(x—1)2 + cos(x 1)
(k) 0
(d) -2
[ME, GATE-2014 : 1 Mark]

2n .
Q.132 If jO |xsinx|dx = kn, then the value of kis equal

to
[CS, GATE-2014 : 1 Mark]

Q.133 The value of the integral given below is
()
(@) ~2rn
(©) -n

b)n
(d) 2n
[CS, GATE-2014 : 2 Marks]

Q.134 The line integral of function F= yzi, in the counter
clockwise direction, along the circle x2 + )2 = 1

atz=1is
(a) —2n (b) -
(¢ n (d) 21

[EE, GATE-2014 : 2 Marks]

2x
Q.135 The value of the integral ffe"+ydydx
00

) H(e? =17

1 1Y
05 )

[ME, GATE-2014 : 2 Marks]

(a) %(6’ -7

(©) %(ez ~e)

Q.136 To  evaluate the double integral
f8 f(m)” 2X =V 4y dy, we make the
0} Jy/2 2

substitution = (g_xélJ and v = % The integral

will reduce to



(a) f;: (Jqu du)dv (b) j; (Lqudu)dv

() 'f; (f;u du)dv (d) f; U;u du)c/v
[EE, GATE-2014 : 2 Marks]

Q.137 Which one of the following describes the
relationship among the three vectors, 7 + j + k|

07 +3] + k and 5 + 6] + 4k?

(a) The vectors are mutually perpendicular
(b) The vectors are linearly dependent

(c) The vectors are linearly independent

(

d) The vectors are unit vectors
[ME, GATE-2014: 1 Mark]

Q.138 Curl of vector F = x272 — 2xy?z] +2y?7%k is
(@) (4y7® +2xy2) + 2627 - 2y 7k
(b) (4yZ% +2x)2) - 262 7] — 22k
(0) 2x2% - dxyz) +6y° 2k
(d) 2x2% + 4xyz) + By° 7%k
[ME, GATE-2014 : 1 Mark]

Q.139 Divergence of the vector field
2zivxy) - vk at(1, -1, 1)is

L=\ 73

Q.143 Thevalue of lim [——:EELW) is ,
r—0{ 28iNx+COSxX T

[ME, GATE-2015 : 1 Mark]

Q.144 lim x"* is

(@) = (b) 0
(c) 1 (d) Not defined
[CS, GATE-2015 : 1 Mark]

Q.145 The value of \“21(1 + 28 s

(@) 0 (b) 1/2
(c) 1 (d) oo

[CS, GATE-2015 : 1 Mark]

Q.146 Let f(x) = x~® and A denote the area of the
region bounded by f(x) and the X-axis, when
x varies from -1 to 1. Which of the following
statements is/are True?
1. fis continuous in [~1, 1]
2. fisnot bounded in [-1, 1]
3. Aisnonzero and finite

(@0
(c) 5

(0o
(d) 6

[ME, GATE-2014 : 1 Mark]

Q.140 Let V- (fv) = %y + y°z + z°x, where fand vare
scalar and vector fields respectively. If
V=yi+ Z] +xk, then V.V is
(@) x2y + 2z + Zx (D) 2xy + 2yz + 2z«
Cx+y+2z (d) 0

[EE, GATE-2014 : 1 Mark]

2x
Q.141 Iim(1+j—) is equal to

x-ye0 X
(@) e (b) e
(c) 1 (d) e?
[CE, GATE-2015 : 1 Mark]
2
Q.142 The value of lim 1:99%(35—)- i
x—0 2x
(@ 0 (b) 1
2
1 . e
(c) " (d) undefined

[ME, GATE-2015 : 1 Mark]

(b) 3 um‘y'
(d)1,2and 3
[CS, GATE-2015 : 2 Marks]

VP W o WP PO
(&—2omy

(c) 2and 3 only

Q.147 A function f(x) = 1 — x? + x3 is defined in the
closed interval [~1, 1]. The value of x in the open
interval (-1, 1) for which the mean value theorem
is satisfied, is
(a) -1/2
(c) 1/3

(b) -1/3
(d) 1/2
[EC, GATE-2015 : 1 Mark]

Q.148 While minimizing the function fx), necessary
and sufficient conditions for a point x, to be @
minima are

() '{xp)>0andf"(x)=0

(b) '(xg)<0and f7(xq)=0

(©) F(xg)=0andf”(xg)<0

[CE, GATE-2015 : 1 Mark]




At x = 0, the function fx) = |x| has
a) a minimum

b) a maximum

c) a point of inflection

d) neither a maximum nor minimum

[ME, GATE-2015 : 1 Mark]

0 If the sum of the diagonal elements of a 2 x 2
symmetric matrix is -6, then the maximum
possible value of determinant of the matrix
is

[EE, GATE-2015 : 1 Mark]

1 Which one of the following graphs describes the

function f(x) = e>(x2 + x + 1)?
f(x) fx)
@ |\ (b)
f(x) f(x)
d
© © \ A~
x \/ x

[EC, GATE-2015 : 2 Marks]

(.162 The maximum area (in square unit) of a rectangle
whose vertices lies on the ellipse x2 + 4)° = 1
is___ ,

[EC, GATE-2015 : 2 Marks]

'Q.153 The contour on the x - y plane, where the partial
derivative of x2 + 2 with respect to y is equal
to the partial derivative of 6y + 4x with respect

to x, is
(@ y=2 b)) x=2
C)x=y=4 dx-y=0

[EC, GATE-2015 : 1 Mark]
1 1
Q.154 If for non-zero x, af(x) + bf(-—) = —— 25 where
X

X

2
a # b then J'f(x)dx is

[a(lnz 25)+f%9}

CFar

' [ qome- 25)~%t3}

L a(21n2 25)+f%‘3}

(d) A a(l n2- 25)—%}

[CS, GATE-2015 : 2 Marks]

Q.155 Consider an ant crawling along the curve
(x — 2 + y° = 4, where x and y are in meters.
The ant starts at the point (4, 0) and moves
counter-clockwise with a speed of 1.57 meters
per second. The time taken by the ant to reach

the point (2, 2) is (in seconds)
[ME, GATE-2015 : 2 Marks]

(Q).156 Consider a spatial curve in three-dimensional
space given in parametric form by

°
x(t) = cost, (1) = sin £ 2() = =, Ostsg

The length of the curve is
[ME, GATE-2015 : 2 Marks]
Q.157 The volume enclosed by the surface f(x, y) = &
over the triangle bounded by the lines x = y;

x=0; y=1inthe xy plane is
[EE, GATE-2015 : 2 Marks]

ay
(2.158 The double integral ”f(x, y) dx dy is equivalent
00

fo
xYy ay

@ [[fcy)ydcdy (b) [[f(xy)dxdy
00 Ox

(o) [ [t y) dx dy
00

[IN, GATE-2015 : 1 Mark]

Q.159 The directional derivative of the field
ulx, v, 2) = x° — 3yz in the direction of the

vector (7 +/-2K) at point (2, - 1, 4) is

© [[ftxy)ay ax
O x

[CE, GATE-2015 : 2 Marks]




Q.160 Curl of vector V(x, y, 2) = 2x%i + 32°j + y3k at
X = y =7 =1Is
(a

) - (b) 3i
()31—%

(d) 3i - Bk
[ME, GATE-2015 : 1 Mark]
Q.161 Let ¢ bé an arbitrary smooth real valued scalar
function and V be an arbitrary smooth vector

valued function in a three-dimensional space.
Which one of the following is an identity?

(@ Curl(¢V)=V(9Div V)
() DivV =0

x=1
y=F and1 <t<3
=3¢t

The value of the integral is

[ME, GATE-2016 : 2 Marks) |

Q.168 rlzm(\/n2+n~-\/n2+1)is wwwwwwwwww ‘
[IN, GATE-2016 : 1 Mark]

log,(1+ 4x)
. Ly ==e 7
(©) Div Curl =0 Q.169 T is equal to
(d) Div (q)V) =¢DivV (@) 0 () 1
12
[ME, GATE-2015 : 1 Mark] 4
Q.162 The magnitude of the directional derivative of ©) 3 () 1
the function f{x, y) = x® + 32 in a direction normal [ME, GATE-2016 : 1 Mark]
to the circle x? + 2 = 2, at the point (1, 1), is
(a) 443 () 542 Q.170 Im V¥ +x—1-xis
c) 742 (d) 92 (@) 0 (b) e
[IN, GATE-2015 : 1 Mark] (c) 12 (d) — oo
[ME, GATE-2016 : 2 Marks]
Q.163 The value of [[(3x — 8)2)dx + (4y ~ Bxy)y],
c
(where Cisthe boundary of the regionboundary 171 What is the value of lim . 4 57
byx=0,y=0andx + y=1)is R
[ME, GATE-2015 : 2Marks]
(a) 1 (o) ~1
(c).0 (d) Limit does not exit

Q.164 The surface integral “%(Qxi—?)yj)-ndS over

S
the sphere given by x° + )2 + 22 = 9 is
[ME, GATE-2015 : 2 Marks]

(1m5nm§ﬁﬁlﬂ=

x—4 X —

[CS, GATE-2016 : 1 Mark]

Qwsanmiﬁﬁiﬁ:

=4 x -

[CS, GATE-2016 : 1 Mark]

Q.167 A scalar potential @ has the following gradient :
Vo = yzf+x2]+ xyk. Consider the integral

J.Cch.dF on the curve 7= xf+yj+zk The

curve Cis parameterized as follows :

[CE, GATE-2016 : 1 Mar

Q.172 Given the following statements abouta functi
f:R— R, select the right option:

P: If f(x) is continuous at x = x,, then it
differential at x = x;.

Q: I fix) is continuous at x = x, then it may n
be differentiable at x = x,,

R: If fx) is differentiable at x = x,, then itis als
continuous at x = x,.

a) Pis true, Qs false, Ais false

b) Pis false, Qs true, Ais true

c) Pis false, Qis true, Ais false

d) Pis true, Qis false, Ris true

[EC, GATE-2016 : 1 M

(
(
(
(



173 The values of x for which the function

x2-8x—4
) = X +3x—4
is NOT continuous are
{(a) 4 and ~1 (b) 4and 1
(c) —4 and 1 (d) -4 and -1

[ME, GATE-2016 : 1 Mark]

174 Consider the plot f(x) versus x as shown below.
fx) A+2

-5 ! +5 X

Suppose F(x) = J‘;f(y)dy. Which one of the
following is a graph of F(x)?

+5

0 X

[EC, GATE-2016 : 1 Mark]

Q.175 Let f(x) be a polynomial and g(x) = f(x) be its
derivative. If the degree of (f(x) + f~x)) is 10,
then the degree of (g(x) ~ g(-x)) is

[CS, GATE-2016 : 1 Mark]

Q.176 As x varies from -1 to +3, which one of the
following describes the behaviour of the function
flx) =33 - 3x2 + 17
(a) f(x)increases monotonically.
(b) fx)increases, then decreases and increases
again.
(c) f(x) decreases, then increases and
decreases again. ‘
(d) f(x) increases andthen decreases
[EC, GATE-2016 : 1 Mark]

Q177 Let f: [-1, 1] = R, where f(x) = 2x3 - x4~ 10.
The minimum value of f(x) is
[IN, GATE-2016 : 2 Marks]

Q.178 The maximum value attained by the function
fx) = x(x-1) (x~ 2) in the interval [1, 2] is
[EE, GATE-2016 : 1 Mark]

Q.179 The optimum value of the function
fix) = x* - 4x + 2 is
(@) 2 (maximum)

(c) 2 (maximum)

(b) 2 (minimum)
(d) =2 (minimum)
[CE, GATE-2016 : 1 Mark]

Q.180 The quadratic approximation of
fix) = x* - 3 —5 a the point x = 0 is
(@) 3x?-6x-5 (b) -3x2 -5
(c) -3x*+6x-5 (d) 3x2 -5
[CE, GATE-2016 : 2 Marks]

Q.181 The angle of intersection of the curves x2 = 4y
and y? = 4x at point (0, 0) is
(a) & (b) 3°
(c) 45° (d) oo°
[CE, GATE-2016 : 2 Marks]

Q.182 How many distinct values of x satisfy the
equation sin(x) = x/2, where x is in radians?
(a) 1 (b) 2
(c) 3 (d) 4 ormore
[EC, GATE-2016 : 1 Mark]

Q.183 The value of the line integral (f)ﬁ- r'ds,where C
c

is a circle of radius 7; units is

Here, Fx,y)=yi + 2x jand 7 is the UNIT
tangentvector on the curve Cat an arc length s

froma reference pointonthe curve i and | are

the basis vectors in the x-y Cartesian reference.
In evaluating the line integral, the curve has to
be traversed in the counter-clockwise direction.

[ME, GATE-2016 : 2 Marks]

Q.184 A straight line of the form y = mx + ¢ passes
through the origin and the point (x, y) = (2, 6).
The value of mis ‘
[IN, GATE-2016 : 1 Mark]

1 -

Q.185 The integral [

is equal to .
0 \/(1 - -’C)

[EC, GATE-2016 : 1 Mark]




(2.186 The value of Jm 1 dx + wwdx is
0 14x° 0 x
@ 5 o)n
3n
(c) Y (d) 1

[CE, GATE-2016 : 2 Marks]

Q.187 A triangle in the xy - plane is bounded by the
straight lines 2x = 3y, y = 0 and x = 3. The
volume above the triangle and under the plane
X+yY+2z2=06Is .

[EC, GATE-2016 : 2 Marks]

Q.188 The area between the parabola x° = 8y and the
straight line y = 8 is .
[CE, GATE-2016 : 2 Marks]
Q.189 The integral g%ff(x +y +10)dx,dy, where D
D

denotes the disc: x° + y2< 4, evaluatesto ___.
[EC, GATE-2016 : 2 Marks]

Q.190 Suppose C is the closed curve defined as the
circle x° + ¥ =1 with C oriented anti clockwise.

The value of <ﬁ(xy2dx +x°ydy) over the curve

Q.194 The vector that is NOT perpendicular to the
vectors (i + [+ k) and (i + 2/ + 3k) |

(0) (~i + 2/~ K)
(d) (4i + 3j + 5K) .
[IN, GATE-2016 : 1 Mark] §

s .

(@ (i-2j+Kk)
{c) (0i + Of + Ok)

Q.195 Which one of the following is a property of the [
solutions to the Laplace equation:
V=07
(a) The solutions have neither maxima nor minima &
anywhere except at the boundaries.

(b) The solutions are not separable in the
coordinates.

(c) The solutions are not continuous.

(d) The solutions are not dependent on the

boundary conditions.
[EC, GATE-2016 : 1 Mark]

Q.196 The value of the line integral
[(2xyPdy +2°ydly + d2)

~
[

along a path joining the origin (0, 0, 0) and the f
point (1, 1, 1) is

(@) 0 (b) 2
C equals . (c) 4 (d) 6
C, GATE-2016-2Marks] — ~[EE, GATE-2016 . T Mark] &
Q.191 The area of the region bounded by the parabola  .197 The line integral of the vector field .

y=x?+ 1 and the straight line x + y = 3 is

59 9
(@) ry (b) >
10 7
(©) 3 : (d) 5

[CE, GATE-2016 : 2 Marks]

Q.192 The region specified by {{p, ¢, 2):3 < p <5,
n

7
3 <@< 7 3<z<4.5} in eylindrical coordinates

has volume of ______.
[EC, GATE-2016 : 2 Marks]

(2.193 Consider the time-varying vector

I = x15cos(wt) + y5sin(wt) in Cartesian

coordinates, where @ > 0 is a constant. When
the vector magnitude |7 is atits minimum value,
the angle 6 that I makes with the x axis (in
degrees, suchthat0<6<180)is ___ .
[EC, GATE-2016 : 1 M

~
3 WA LSRR I B L =

F = 5xzi +(3¢° +2y)] + x°zk alongapathfrom
(0,0,0)to (1,1, 1) parameterized by (t, 12, f)is -

[EE, GATE-2016 : 2 Marks] §
Q.198 Let x be a continuous variable defined over the

_e“".

interval (—eo, 00), and f(x) = e "¢ . The integra

glx) = ff(.\')d.\' is equal to

(a) e° (b) e
(C) e—e" (d) e—.\'
[CE, GATE-2017 : 1 Mark

Q.199 The divergence of the vector —yi + xJ |

[ME, GATE-2017 : 1 Mark




0 The surface integral “ﬁ-ﬁﬁ@ over the surface

s

(=]

S of the sphere x*+y2+72=9, where

F=k+yi+x+2j+(y+2kand A is the
unit outward surface-normal, vields _____ |
[ME, GATE-2017 : 2 Marks]

3 _sin(x) |

.201 The value of ]’—':%‘L“;— "
@0 (6) 3
© 1 (d) ~ 1

[ME, GATE-2017 : 1 Mark]

‘.202 A parametric curve defined by

0 < u<1is rotated about the x-axis by 360
degrees. Area of the surface generated is

@ 5 OF:
{c) 2n (d) 4n

[ME, GATE-2017 : 2 Marks]
~ Q.203 For the vector V =2yzi +3xz + dxyk . the

value of V‘(VXV) is
[ME, GATE-2017 : 2 Marks]

Q.204 If V is a non-zero vector of dimension 3 x 1,
then the matrix A = VV7 has rank =
[IN, GATE-2017 : 1 Mark]

Q.205 The angle between two vectors X, =[2614]7
and X, = [-12 8 16] in radian is :
[IN, GATE-2017 : 2 Marks]

Q.206 Let x and y be integers satisfying the following

equations.
2+ Y2 = 34
¥+ 2y = 11

The value of (x + y) is ‘
[EE, GATE-2017 : 1 Mark]

Q.207 Let ¥ - 2y + 1 = x and \/;er: 5. The value

of x+Jy equals____

(Give the answer up to three decimal places).
[EE, GATE-2017 : 1 Mark]

U fmuy :
X = cos(?)y:sm(7] in the range

x, x<1 1-x x<0
Q.208 Let g(x) = {x+1, oo and f(x):{ »

X x> 0
Consider the composition of fand gi.e. (fog)
(x) = g(x)). The number of discontinuities in

(fog) (x) present in the interval (= e, 0) is:
(a) 0 (b) 1
(c) 2 (d) 4

[EE, GATE-2017 : 2 Marks]

Q.209 Let [ = ”RWZdWY, where R is the region

shown in the figure and ¢ = 6 x 10~ The value
of I equals . (Give the answer up to
two decimal places.)

Y
10

1 5 X
[EE, GATE-2017 : 1 Mark]

Q.210 A function f(x) is defined as f(x)

e’ x < 1 ,
= , , where x € R which
Inx+ax“+bx, x=1

one cf the following statements is TRUE?

(a) f(x) is NOT differentiable at x = { for any
values of aand b.

(b) f(x) is differentiable at x = 1 for the unique
values of aand b,

(¢) f(x)is differentiable at x = 1 for all the values
of aand bsuchthata+ b= e

(d) f(x) is differentiable at x = 1 for all values of
aand b.

[EE, GATE-2017 . 2 Marks]

Q.211 The smaller angle (in degrees) between the
planes x + y+z=1and 2x -~ y + 2z=0is

[EC, GATE-2017 : 1 Mark]



x(x2-23)

Q.212 The minimum value of the function fx) =

W —

in the interval - 100 < x < 100 occurs at x =

[EC, GATE-2017 : 2 Marks]
Q.213 The values of the integrals

1

1(1
f[j dy} dx and f[f
5 o(x
are
(a) same and equal to 0.5
(b) same and equal to - 0.5
(c) 0.5 and - 0.5 respectively
(d) ~0.5 and 0.5 respectively

[EC, GATE-2017 : 2 Marks]

(x+y)

Q.214 If the vector function

F=a(3y- kaz)+a, (kyx-22)- &, (ksy + 2)

Q21811 f(x)= Rsin[%j+8, f[%J _3 and

ff(x)dx ~ 7, then the constants R and S
0

are, respectively

2 16 2
and — —and0
(@) ~ and— (0)
4 4 16
(c) — and 0 (d) — and —
T s T

[CS, GATE-2017 : 1 Mark]

oy =ox® 4
Q.219 The value of llm~—3~—2-~
X1y — 3.\‘ + 2
(@is 0 (b) is —1
(c) is 1 (d) does not exisl

[CS, GATE-2017 : 2 Marks]

An

Q.2

is irrctational, then the values of the constants OLet w= 7 (x, y), where x and y are functions
ki, k, and k;, respectively, are . . aw
(3)0.3, - 2.5 0.5 (b) 00,3.0,2.0 of t. Then, according to the chain rule, o is
(c)0.3,0.33,0.5 (d) 4.0,30,2.0 equal
[EC, GATE-2017 : 2 Marks] o owdx  dw dt ’ oW ax . Iw dy
a R IOy
Q.215 Let I = f(22dx+2ydy+2xdz) wherex, y, zare dx dt dy o ox df -~ dy o
o ivz%+a_wgz dw ox dway
real, and let Cbe the straight line segment from (c) ox of oy d d) o a[ dy ot

point A: (0, 2, 1) to point B: (4, 1,~1). The value
of I'is
[EC, GATE-2017 : 2 Marks]

Q.216 Let f(x) = e** ** for real x. From among the
following, choose the Taylor series approximation
of f(x) around x = 0, which includes all powers
of x less than or equal to 3,

3
(@ 1 +x+x*+x° (b) 1+x+—2—x2+x3

3

(c) 1+x+§-.\'2 +;g-x

(d) 1 +x+3x2+7x°
[EC, GATE-2017 : 2 Marks]

Q.217 A three dimensional region R of finite volume
is described by
X+ pP<A0<zg1,
where x, y, z are real. The volume of R (up to
two decimal places) is

[CE, GATE-2017 : 1 Mark]

Q.221 The divergence of the vector field V= x2 + 29
+Z%atx =1, y=22z=31is
[CE, GATE-2017 : 1 Mark]

Q.222 The tangent to the curve represented by y = x Inx
is required to have 45° inclination with the x-axis.
The coordinates of the tangent point would be
(@) (1,0) (b) (0, 1)

© (1.1) d) (V2.2)
[CE, GATE-2017 : 2 Marks]

Q.223 Consider the following definite integral:

The value of the integral is




nd n°
(a) By} (b) 5
73 73
(c) 18 (d) 1

[CE, GATE-2017 : 2 Marks]

).224 Two cars Pand Q are moving in a racing track
continuously for two hours. Assume that no
other vehicles are using the track during this
time. The expressions relating the distance
travelled d (in km) and time t (in hours) for both
the vehicles are given as
P d=60t
Q. d=60t?
Within the first one hour, the maximum space
headway would be
(@) 15 km at 30 minutes
(b) 15 km at 15 minutes
(c) 30 km at 30 minutes
(d) 30 km at 15 minutes

[CE, GATE-2017 : 2 Marks]

: . tanx
Q.225 “m[ 7 x] is equal to .
v2

X300

[CE, GATE-2017 : 1 Mark]

Q226 The minimum value of the function
3
X
f(x)z[“é“J”x oceurs at
(@ x=1 (b) x = -1

1
(b) x=0 (d) x:j@j

[ESE Prelims-2017]

Q.227 The value of the integral fzn(m—g———) ae is
0 \9+sin’g
2n
@ g (b) 210 =
) J10n d) 2n

[ESE Prelims-2017]

Q.228 Which of the following statements are correct
regarding dot product of vectors?

1. Dot product is less than or equal to the
product of magnitudes of two vectors.

2. When two vectors are perpendicular to each
other, then their dot product is non-zero.

3. Dot product of two vectors is positive or
negative depending whether the angle
between the vectors is less than or greater
than m/2.

4. Dot product is equal to the product of one
vector and the projection of the vector on
the first one.

Select the correct answer using the codes given

pelow:

(@ 1.2and 3only  (b) 1,3 and 4 only

(c) 1,2and4only  (d) 2, 3and 4 only

[EE, ESE-2017]

Q.229 At the point x = O, the function f(x) = x3 has
‘(a} local maximum
(b) local minimum
(c) both local maximum and minimum
(d) neither local maximum nor local minimum
[CE, GATE-2018 : 1 Mark]

Q.230 The value of the integral jgxcosz xdx is

7[2 7[2

@ % ) 7
2

©) 1‘2— () p?

[CE, GATE-2018 : 2 Marks]

d
Q.231 The solution of the equation X*—y+y:0

dx
passing through the point (1, 1) is
(a) x (b) x2
(c) x (d) x2

[CE, GATE-2018 : 1 Mark]

Q.232 The value (up to two decimal places) of a line

integralfﬁ(r’)‘a_r', for F(r)= x°7 + y2] along C
C

whichis a straight line joining (0, 0) to (1, 1)is __.
[CE, GATE-2018 : 2 Marks]




Q.233 According to the Mean Value Theorem, for a
continuous function fx) in the interval [a, b],
there exists a value & in this interval such that

b
j f(x)dx =

(@) fE)Xb-a)
(©) fa)b-¢)

(b) f(b)E - a)
(d) 0
[ME, GATE-2018 : 1 Mark]

Q.234 The value of integral
{pr -Ads
s
over the closed surface S bounding a volume,
where 7 = xi + yi + Zk is the position vector and

fi is the normal to the surface S, is

(@) Vv (b) 2V
(c) 3V (d) 4V
[ME, GATE-2018 : 2 Marks]

Q.235 The divergence of the vector field

U=e" (oos Vi + siny]') is

(o) e* cosy + e'siny
(d)y 2 &siny

—

ay 0
(c) 26T cos y

2 2
Q.238 Let f(x, y):%@L, where a and b are
crrt'rn‘l(——“éiat =1and y= 2, the
onstants. - ay X = V=2, n
the relation between aand bis

b b

o q = -

() a=7 (b) a=7

(c) a=2b (d) a=4b

[EC, GATE-2018 : 1 Mark]

Q.239 The value of the directional derivative of the
function o (x, y, 2) = xy? + yz° + z¥? at the point
(2, -1, 1) in the direction of the vector
p=i+2j+2kis
(a) 1
(c) 0.93

(b) 0.95
(d) 0.9
[EE, GATE-2018 : 1 Mark]

Q.240 Let f be a real valued function of a real variable
defined as f(x) = x -{x]. where [x] denotes the
largest integer less than or equal tox. The value

125
of j flx) dx is (up to 2 decimal places).
0.2

[ME, GATE-2018 7 1 Mark]

Q.236 For a position vector 7 = xi + j + zk the norm

of the can be defined as

Ir| = m Given a function ¢ = Inf7],

its gradient Vo is

vector

.
@ 7 (b) W

. 7
(c) == (d) ‘7’3

[ME, GATE-2018 : 2 Marks]

(
1

o] T

Q.237 Taylor series expansion of f(x):Jl'e \ jdz‘
0

around x = 0 has the form
fx) = ay + ax + ax® + ..
The coefficient a, (correct to two decimal places)
isequalto ______
[EC, GATE-2018 : 1 Mark]

[EE, GATE-2018 : 1 Mark]

Q.241 Let fbe a real-valued function of a real variable
defined as f(x) = x2 for x = 0, and f(x) = —x? for
¥ < 0. Which one of the following statements is
true?

(a) f(x)is discontinuous at x = 0.

(b) f(x) is continuous but not differentiable at
x=0.

(c) fix) is differentiable but its first derivative is
not continuous at x = 0.

(d) f(x) is differentiable but its first derivative is
not differentiable at x = 0. ‘

[EE, GATE-2018 : 1 Mark]

Q.242 As shown in the figure, C is the arc from the
point (3, 0) to the point (0, 3) on the circle
X2 + y?2 = 9. The value of the integral

[ (4% +2yx) dx +(2xy +x%) dly s (upto 2
C

decimal places).




(©,3)

(3,0)

[EE, GATE-2018 : 2 Marks]

Q.243 Let f(x) = 3x® - 7x% + 5x + 6. The maximum

value of f(x) over the interval [0, 2] is
1 decimal place).
[EE, GATE-2018 : 2 Marks]

(upto

Q.244 Consider the following equations
aV(x,
£3%) = px% + )P + 2xy
dx

oV(x,
a(;)/) =x?+ g2 + 2xy

where p and g are constants. V(x, y) that
satisfies the above equations is

3 3
(a) p%+q%+2xy+6
3 3
X a2
(b) P +a3 +5

3 .3
%+q—y-3—+x2y+xy2+xy
3 3
(d) p%—w%ﬂzwxyz
[IN, GATE-2018 : 2 Marks]

© p

Q.245 Given F = (22 - 2) 7 — 4yz] + 4x22%k the vale
of the line integrall fﬁ-df along the straight line
C

cfrom(0,0,0)to (1,1, 1)is
3
16
-5
12

(@) (b) 0

(c) (d) -1

[IN, GATE-2018 : 2 Marks]

/4 ,
Q.246 The value of f g xCos(x?) correct to three

decimal places (assuming that n = 3.14) is

[CS, GATE-2018 : 1 Mark]

2 2
Q.247Ifu=log[x Y ] what is the value of
x+y
au  du
ou oUn,
ox +y8y‘
(@ 0 (b)
() u (d) eu

[ESE Prelims-2018]
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(a)

Solution by Coordinate Geometry:

This problem can be done through coordinate
geometry formula or through vectors.

Given,P (3, -2, -1)

Q(1,3,4)
R(2,1,-2)
0(0, 0, 0)
Equation of plane OQR s,
X=x Y-y, Zz-z
RTh VemYs L4y g
BTR Ve 23—
x-0 y-0 z-0
1 3 4 -0
2 1 -2

ie. 2x-2y+2=0
Now L distance of (x,, y,, z,)
fromax+ by+cz+d=0is given by

aX1+by1+CZ1+d
NEI

Therefore, 1 distance of (3, -2, -1) from plane
2x -2y + z = 0is given by

[2><3~2><(-2)+(~1)

JP (-2 1 7

(b)

X3+ x?
f, = “m e
) x~>6[2x° ~7x°

Since this has % form, limit can be found by

repeated application of L' Hospitals rule.

. 3x° + 2x
f(x) lim e
x=0| 6x° ~ 14x

| Bx+2
lim
x>0 12% — 14

6x0+2 1
T [12x0-14] T 77

it

i

(c)

Given, x = a0 +sin0), y= a(1- cosp)

dx dy .
i a(1 + cos0), e asind
dy _dy/d6 _  asing
dx ~ dx/de  a(1+cose)
. (8 0
2asm(-2-)ocos(—2—)
a><2cosg[h]
2
(a)
Putting

f{x) = 6x2-6x -36 =0
= x2-x-6=0
= x=30r-2
Now  f(x)=12x -6
and (3) = 30> 0 (minima)
and  f(-2) = -30 < 0 (maxima)
Hence maximais at x = -2 only.

(a)

2nm/31
v= [ [[rPsino-ar-cp-ab
000
2n /3 /,3 1
- J J{~} sind d¢ do
0 0 3 0
127{
= 5 ] [Feos ¢l ap
0
11 2 1 1 n
= ~X§X£Q@ = §X§X27C = *§
(c)
p = 0.866i +0.500] + Ok
& = 02597 +0.966] + 0k
PO = ﬁ’*fjcose
Here, |P| =1q| =1 (unit magnitude)

50.(0.8667 +0.5] +0k)-(0.2597 +0.966 | +0k)

= (0.866) + (0.5 x1/(0.259)% + (0.966)2 - cos6




0.866 x 0.259 + 0.5 x 0.966

h(4-3h) = 0

r2+h2-2h+1=1
ré=2h-H

Volume of the cone, V = %nrz h

V= Zn-rh="Tion? o)
3 3
av = 2
ah 3( :
av - ' .
s 0 for minima and maxima
4h-3h% =0

cosf =
Jix A _ 4 0
= 0.707 -3
0 = 45°
V" = 5(4-&7)
8. (d)
Since the position of rail engine S(#) is continuous h=0:V" = an >0 minima
and differentiable function, according to Lagranges 3
mean value theorem hed o M maxima
At twhere 0 < t< 8 such that 3" 3
, ). A8)-50) (280-0) *. Yolume is maximum when x = 4
St = v(i) = 850 " (8.0 m/sec 3
280 1. (a)
= ~8—m/sec flx) = x2 e
4 2 -x - -
280 3600 Flx) = x%(~e™) + e~ x 2x
= - Xw Kmph =126 kmph - = 7 (2x ~ x2)
where v(1) is the velocity of the rail engine. Putling f(x) = 0
e*2x~x%) =0
9. (o) 67 x(2-x) =0
Given function has negative slope in +ve half and x=00rx= 2 are the stationary poinis.
+ve slope in -ve half. So its differentiation curve Now,  f"(x) = &= (2 - 2x) + (2x - x2) (~e™)
is satisfied by (c). = e (2 2x - (2~ x?))
= e*(x? - 4x + 2)
atx=0,/(0)= e0(0-0+2)=2
Since f"(x) = 2is > 0 at x = 0 we have a minima.
Nowatx =2f"(2) =2 (22-4x 2+ 2)
=e (4=-8+2)=262<0
- atx = 2 we have a maxima.
10. (d) 12.
h
X :
2 {2 = 12
re+(h-172=1 13,




16.

Yy
y=2
(8,2)
Now, =4y
24
[:f f(x, y) dx dy
00
q=4y
(a)
o, o
55_\/ 5 =Y
a@a v
and du  u?
oy 1
dv U
ox ox
g ou dv
and ¢ (u, v) dy dy
du dv
v u v v 2v
= -”*!; ;1 = Z;4'z;==—a—
v U
(c)
R
U= 5 + 3
gradu = i ;U /'—u—x+2y/
ox oy 3

A(1,3),grad U = (1)/+(~32-~3J/ Y

VP +22 =5

|gradu| =

(a)

= 2xyz, f = x%7, f, = x2y
By integraning, we get

f = Potential function of V = x%yz
-~ line integral of the vector function from point A
(0, 0, 0) to the point B(1, 1, 1) is

= f(B) - f(A)

= (x2yz)1'1,1 - (ngz)(0,0,0)
1-0=1

il

17.

18.

19.

20.

(c)

Green's Theorem s

foc + vay - U(a‘g a¢jddy

ay
y
(1, 1) y=1
] R :
(0,0) x
x=1
Here = {)(xydy v2dx)
o]
= f(-y?)dx + (xy)dy
C
¢ = _yQ’\V =xy
dy a¢
—_— =, ——~:—2
dx ay Y

Substituting in Green’s theorem, we get,

= | i

y=0x=0

2y dx ady

1
jfwmw
y=0x=0

1

1

1

3

[ By ay= [ Byay=7
y=0 y=0

1t

(a)
Aline integral and a surface integral is related by
Stoke's theorem.

(b)

Lt f(x) =

x—3 x =3

Lt 2% —7x+3
5x2 ~12x -9

0
Here this is of the form of (aj

So, applying L-Hospital's rule
4x -7 5
Lt | ——— = 2
.\’——)3(10){""12} T

(a)
e (1+e)-e "
e
(1+¢) (1+¢€%)
since e~ is +ve for all values of x, f(x) is +ve for
all values of x and hence f(x) monotonically
increases. '




21. (a 2 2
(a) = 2@(Sin6)| n+5x/§(—cose)’ "
/3 ' e“ /3 0 0
] = f e dt {T] = 02 (sinZn—sinO)w5J§(0082n~cosO)
0 do
{COSI‘%—Z’Sim‘:‘n/g 11 43 1 = 242(0-0)~ 5/2(1-1=0
= | = = =i
I o if2 2 26. (c)
= 2x? 2+ 2%, P(2,1,8), a=i-2k
_{_’1+\/§jl‘{\/§+iiJ f 2ra+3y-f+z a(f ), a=i
a2 T2 e :'_f 97 = 4xi + 6y + 2
) \2i ’ax+fay+kaz xi +Byj + 2zk
22. (c) atP2,1,3)Vi=4x2xi+6x1x/+2x3xk
T = 8i + 6/ + 6k
I'= fsm 6-do directional derivative of fin direction of vector
0 a=i-2kis
T . . . .
5 N\ . nothing but the component of gradf in the direction
£(1—cos 6)sinodo, )
Let cosh = ¢ of vector a and is given by ""a"l ~grad f
—sind db = dt,
ate =0, {=cos0 =1 i-2k ,
] = T——= M 8 ' 6 + 6k
at=m t=cosm=~1 (\/12“2)2} (8i + 6 )
v (—2)
+1
1
= _[(1_ L -
So, [ = :[1(1 )it - \/5(1.8+O,6+( 2)6)
= 178
3 = 7= = —1.
= [—~L :(‘L_lj__(_j_f_l) \/_5_
3 3
-t 27. (b)
o —] Given—fx) = (x =8)2°* + 1
'=3%373 2
| o) = S (=8 ,
23. (d) Slope of tangent at point (0, 5) !
Area common to circles,
2 -1/3 1
r=a m- §(O - 8) =~
and r=2acosbis 1.2284° Slope of normal at point (0, 5)
24, (d) mo= -t =3
We consider options (a) and (d) only, because ! m
these contains variabler, as variable of integration. Equation of normal at point (0, 5)
By integrating (d), we get y-5=3(x-0)
1/3 m a®H, which is volume of a cone. = y=3x+ 5
25. (d) 28. (d)
x+ 1= 2coose i ¥y-1= Dsing From property of vector triple product.
x=2c0s0-1: Y= J2sin6+1 Ax(BxC) = (A-0)B-(A-BC
o and putting, A=V, B=V & C=P
= £(2Jécose-2+5@sxne+5»3)o‘8 We gel, VxVx P = (V-P)V-(V-V)P
2 = V(V.P)-v?pP
= [ (2v2c0s6 +5v25in6)ab

e




31.

32.

33.

(a)
”(VX P)-ds=§P.di (stokes Theorem)

(b)
x 1 )C2
Lt € —‘( + x -+ —2v\]
x—=0 _x3

0
This is of the form of (aj

Applying L’ Hospital rule

) x2
e ~(1 + x+ —2-]
Lt (Qj

x-0 XS 0
R
x>0 Ox
T
x—0 B 6
(a)
1 . (0
2753 1 sing/2 1
!im»~—-1~—a:~|m :—2—20,5
60 0% 260 6/2
(b)
Given, y = x?
ay
gr = 2x=0atx=0
d2
SX < 2 whichis +ve
dx -0
so we have a local minima atx =0
at x=0, y=0
butsince x =0¢ [1,5]
it is not a candidate for minima or maxima in that
range
At the end point x = 1
y =1
at second end pointx =5
y=25

So, ahsolute minimum value of function in [1, 5]
is 1.

(d)
Fromthe graphs below, we can see that only g x?
is strictly bounded

Y y
—w—-—”’”ﬂ’m/
x = ‘-
y=e
v
X
y y
Y= ) x —
y:\Z y:é
34. (a)
fx) =x? —x-2=(x+ 1) (x-2)
flx) =2x-1=0
. _ 1
70
flx) =2
1
Ml=]=2 >0
2]
1
So at x = E'

35.

36.

we have a local minima so this is not a candidate
for maxima in range [-4, 4].
Now  f(-4) = 18
f(+4) = 10
so maximum value inrange [-4, 4} is 18,

(a)

The Taylor’s series expansion of {x) allowed x = 2 is
Y

fx) = f(2) + (x = 2) F(2) + 9——;?« (2 ..

For linear approximation we take only the first two

terms and get

flx) = f(2) + (x~ 2) F(2)

flx) = e*and f(x) =~

flx) = e?+(x-2)(~e?) =(3-x) e?

Here,

(b)

Equation of line with slope 1 and y - intercept of 1

is, ‘
Y=x+1




] = Lzy dx = ff(xﬂ) dx

(x+1)2 ’

> 9-4)=25

N -

37. (b)
From C, draw CN L AB. From right-angled ACAN,

SiNA = ‘—C—M— = |CN = |AQ] sinA.,

= Vector x, i + x, jand Yy i+ y, jare lineary
dependent.

-~ Linear dependence = D=0

So,Linear independence = D=0

i.e. is negetive or positive.

However, [notice that here
D= (x, y; —x, y, it cannot be negative].
So,Linear independence = Dis positive.

since

= 39. (d
AC @ 4
V =5xyi+ 2y%+ 3yz°k = v,i + Vof + Vak
1 5 dvy dv, dvy
Area of AABC = EIABIX[CM div(V) = ?J;+—dy+65 =5y + 4y + 6yz
::%MBHAqgnAzéggxzq at(1.1, )div(V) =514 4.1+ 61.1= 15
40. (a
C(©) (&)
L
dx oy
2x = 2‘1{
L o
Ala) N B(b) Y=2x+y+c
. o Wf(o,O):O+C:O
From above figure, AB=b~a and AC=¢c-a. and Y = 2xy
L2 - o o
So,Area of AABC = ~kb—abdc~aﬁ 41. (b)
2 (x - 8) = h(say)
= %l(a»E)x(a—c)‘ = x=8+h
3
Choice (b)is correct. - im W
h—0 h
38. (b) 0
Xox x-y Above form in the (-) by putting the value h=0
Let D=1 ' 0
yoxoyry Applying L' Hospital rule
Let X=x01+X, ) : ;
y:y1i+ij 1(8+h)(§_1J 1 2
X x=x2+x2 [img.._.____:~(8)“§___i
! 2 h—0 1 3 12
v y=yE+yf "
X Y=x%4+ Y, Y, 42. (a)
. xf+xt Xo+ Yy Vo i XSinx 1-sinx/x
) Y X H Y Ye Yyt FPeX+C0SX  aselicosx/x
= (xf + X 7)) + y22)—(x1x2+ Va¥o)? lim (1~Sinx/x)
x—oo
= (0 Yy =3 1)? T
Now, D=0 1= lim sinx
XoYy=x1 Y, =0 xoe  x 1-0 ’
= A A 14 lim 998% 140




43, (b)

fix) = (x? - 4)?

Flx) = 2(x2 - 4) x 2x = 4x(x?~4) = 0
x =0, x=2and x = -2 are the stationary pts.

P (x) = 4[x(2x) + (x*—4) x 1]
= 4[2x% + x°2— 4] = 4[3x? - 4]
= 12x°- 16
7(0) =~16 <0 (somaxima atx = 0)
f(2) = (12)22-16=32>0
{so minima at x = 2)
f(=2) = 12(-2)°-16=32>0

(so minima at x = -2)
. Thereis only one maxima and only two minima
for this function.

44, (d)
y = 3x% -~ 16x°-24x? + 37
d
& = 12x3 - 48x2-48x =0
dx
x(12x°-48x ~48) =0
x=0
or 12x4-48x - 48 =0
~-dx -4 =0
4+ /16+16
x = 0
4+ 4+ 42
VB _4xalB_ | o
2 2
2
dY . 36x2 - 96x - 48
ax®
Now atx =0
2
dY _ _agz0
adx

2

d
at1i@also%¢0
dx

-, There are 3 extrema in this function.

45. (c)
f(x) in the neighbourhood of a is,

s Z bn(r—
n=0

f
where, b, = f—w(i)
n!
A(x) = e¥; f¥(2) = e?
f(2) ¢
. o OV p = - =
~Coefficientof (x - 2)*= b, = IR

46.

47.

48.

it

(a)

3 5 7

sinx = X~ x —L'F E
[ |
2 x4 Ne i
= 1- -t :
COS x = L@ lﬁ 6
2 e x1o L4
2 _ -
From this,sin x= = * L§ [_5 17
. 4 x8 12
COoS x° = e
SRR AT:
So, sin x? and cos x2 have only even powers of x
- x9 15
Similarly,sinx® = x° ===+ ~— ...
ilarly,sin x® = x L3 |_5
8 x12
cosx®= 1- L2 [ﬁr .....

So, only sin(x®) has all odd powers of x.
-, correct choice is (a).

(b)
f(x) = ' + sinx
We wish to expand about x =7
Taylor's series expansion aboutx = g is
flx) = fla) + (x—a) f'(a)
A_Q_QZWwij_wS

ol 3 @)

Nowabout x=1n

(x—n)
|

fx) = f(r) + (x—-7) F(m) + F(m) +

21
fll(n)
2!

The coefficient of (x - m)? is

flx) = ' + sinx

f(x) = "+ cosx

f(x) = €~ sinx

() = e"~sint=e"~0=¢e"

The coefficient of (x — mn)? is therefore

Here

eT[
20

(c)

= 0.5 exp(n)

fo= ¥

Treating x as cor}l/stant, we get
at
ay

Now we treat y as a constant and get,

%f 0

Ly a1 x= 1
30y = ax(y x) =yl 4 xy* Hny

xyx~1




49.

whose valueatx = 2

andy=1is=12-0(1 1 2yp1) = 1, 50,
(d)
Choice (a) [tanxax = log+/2

8§ Otm—nin

dx m

Choice (b) f
0

Choice (c) f X € 0
0

Integrating by parts, taking u=x and dy = g~ dx
wegetdu=drand v = —g
So, fxe‘xdx = x(-e7) - f—e*‘ x = —x@> —g=
=~ (x 4 1) o
N The equation of the straight line with x - intercept
Novvfx ey = [~ (x + N =1 = 2and y-intercept = 1 s
0
Y
1 2 1
Choice (d f O =IN0=-IN1T=-00—0=_ o x
o = y=1-3
Since, only(d) Is unbounded, (d) is the answer, = Xx=2-2y
50. (d 12-21) e Zy]
(@ f (xy dx)dy = f )
= 200 o—0 =)
3
'y
dy = x 12 = fE(Q“ZY) ay i
dx 0
length of the curve is given by 1 ‘
= [ov(-yf ey = 2 i
f 1+( ) dx = f\/1+ ax 0

51.

x =
= F(H X)WJ =
3 x=0

(a) 54,

Equation of straight line from point (0,0) to (1,2
is

2-0

)/*Oz ((1 O))(X*-O)
or Y =2x

g(x, y) = 4x3 + 10y4

= 4x% 4+ 10 (2x)* = 453 1 1604

1 [ 4 5!
L o [4x 160x7
J(4x + 160x )O’x ~[T+ 5

0 \ Jio

Altemative!y We may also write thig integral as

2
1

f f rydy dx which is also = —
5 6
(c)

P.O =0

P.Q =1P 0] coso
if P.G =0

=[Pl 10| cosg =g

Since, Pand Q are non-zero vectors
= Cos6 =0

= 8 =9



58.

(d)
div{(x =i +(y=2)]+ (x+ y+ 2k

x%(x~y)+—a%(y—x)+»§-z~(x+y+z):3
(b) j
of . of . of

grad f= —i+— K =2xi+4yj+ Kk
X

J*+ ==
a oy a9z
atpoint A1, 1,2), grad F=2i+4j + k
Now directional . derivative of fat P(1, 1, 2) in
direction of vector a = 3i - 4/ is given by

a 3i—4j L
[q) grad’= [Jﬁg—/}@zw/m

- z:-(3><2~4><4+0) =2

(b)
Taking f(x, y) = xy, we can show that, xdx + ydy,
is exact. So, the value of the integral is
independent of path

= 2f5(x dx+y dx) ©1

1
= o[ x e+ 2fy dy
0

’ 1
:2% =0
1 0

or Integral = f(Q) - A(P)
= [xy](o, 17 [x)/]“‘ o)~ 0-0=0

0
2

(1,0

(a)
Let the point be (x, y, z) on surface 22 = 1 + xy
Distance from origin = /

= =0 +(y-0P +(2-0F

= x° P+ 2°

i
=
N
+
~

N
+

—
+

< |
~

[since z°2 = 1 + xyis given]
This distance is shortest when [ is minimum we
need to find minima of x% + y? + 1 + xy

Let U=x?+y?+ 1 +xy
ou
— = 2x +
ox rry
u
3y =2y +x

59.

60.

9}_{ =0 and % =0
ox oy
= 2x+y=0 and2y+x=0
Solving simultaneously, we get
x=0 and y=0
is the only solution and so (0, 0) is the only
stationary point,

9%u
Now, [= —5 =2
ox®
S = o’ = i
©oxdy
KT
[ = -§:2
ay©
Since rt=2x2=45%2=1

We have case 1, i.e. either a maximum or
minimum exists at (0, 0)

Now, since r= 2 >0, soitis a minima at (0, 0).
Now at x=0, y=0,

Z= JI+xy = 140 =1
So, the point nearest to the origin on surface
22 =1+xyis (0,0, 1)

The distance I = \Jg2 42 4 £ =1

So, correct answer is choice (a).

(c)

An n'" degree polynomial bends exactly n - 1
times and therefore can have a maximum of
n-1 extremas. Also an n" degree polynomial
has at most nroots (zero crossings). So a cubic
polynomial (degree 3) cannot have more than 2
extrema and cannot have more than 3 zero
crossings.

(b)

Let, x—m=1

2 tA
f(t): - -3*;“*574"'
= 1+(X—n)2~<an)4+




61. (d) /2
[ G+yP(rae = [ (cos6+sing)? 1.do
0

v a . a
Since, fo fx) cix = jo fla- x) dx path AB
n/41—taﬂxd /2 \ 2 .
= fo 1+ tanx x _ = f(sm26+cos 0 + 2sin6 cos6)ab
0
1-—tan(@—~x]o’x /2 '
) J-n/4 4 = [ (1+sin26)do
0
1+tan(g—x) ' 0
_ e+(—00526)”/2
. tan A-tan B - 2 b
Sincetan (A-B) = ———— =
etan ( ) T+tanAtan B . 1[ n
; = ———{C0S 2= ~ cosO]
(tang—tanx e 2 2
i S — LI D
T+tan—tanx 2 2 2
[ = fn/4 = 4 = dx
’ tan” —tanx 63. (a) |
14 4 Curve 1: y? = 4x
1+tan~§tanx Curve 2: x? = 4y i
) - Intersection points of curve 1 and 2 :
[1-tanx
1* _ T 2 = == , =
_ fnm—_wtanxJ dx Vo= A= ayay 8\0
0 H-l—tanf y*=8x8y= y(y3-64)=0
| 1+tanx Solution y=4andy=0
then x=4 x=0

w/4 (1+tanx) - (1- tanx)
= f Therefore intersection point are A(4, 4) and 0(0, 0)

0 (1+tanx)+(1-tanx) *

The area enclosed between curves 1 and 2 are

= | waztanx ) " tanx i given by
0 2 0 2
/4 1 =4y y
= [log(sec x)]; ©)
: (4, 4) i
- ln(sec%} ~In(sec 0) 7A
= In(v/2) ~In(1) = In (2¥2) -0 - x
= -1- In2
2 Y =4x i
62. (b) @
Path AB: x% + y2 = 1 % %
X = Cos 0 Area = f yidx — f Vo dx |
Y=sno6 * S
Along path AB 8 varies from 0° to 90° [0 to /2] 4.2
I = ~sz O’x
0
B 4 4
2xa/z ) 3
T 78/2, 3x4|,
4,30 (47 16
= —(4) T e
3 3 x4 3




64

65.

66.

67.

Alternately, the same answer could have been
obtained by taking a double integral as follows:

4
2Jx
Required Area = ”x;fdx dy
O ———

)
fl 2 16
= J"Q\/—__x_ C/x B
4 3
0
(a)
2
x =y
L yz-x
E }/:1 x=Yy
0 ! ,[y:o,[xzyzf(/\',y)dx dy

f=x*+3y2+22°
of .of of
= = ._ m— k.._._..
Af = grad f la.x+/ay+ Py
= i(2x) + j(By) + k(4Z)
The gradient at P(1, 2, 1) is
=i(2x 1)+ j(6 X 2) + k(4 x-1)

= 2+ 12~ 4k
(b)
of .of. , of
LU s
A= g 5y 552
here f=x2+3)2+22

Af = i(2x) + j(By) + k(42)
atp(1,2, -1 Af= i(2x 1)+ j(6 x 2) + k{4 x-1)
=20+ 12j— 4k '
The directional derivative in direction of vector a
=i- |+ 2kis given by
i—j+2k

a .
— .grad f = (21 + 12) - 4k)
lal P (=17 +2°
1
= —={(12+(-1)-12+2(-4
\/é( -7 (~4)
18
_ ——==-3J6
- b
(c)
Vector field,
f=3xzi+2xy) -y k

68.

69.

70.

= Vi + Vo) + gk
Divergence of vector field
(2% 1%
v, I Vs

V() =V fe 2
Biv(f) > oy oz

_ 90314 0 97
= ax[SxZ,H ay[Qxy]+ az[ 2y7° ]

=32+ 2x ~2zy
Div ()l 4 3= 8(1) +2(1)-2(1)(1) =3
(a)
sin %x sin 'Z‘X\
lim = lim [3Jg
x—0 x gxm)o 2, 3
2\ 2
- MM Si==
<>[3j :
(b)

2n n 2
i (-2 = ym (2]
n-—seo | n n-—3o0 n

H
|
3.—
=1
8
N
i
o J
&../"
7

i
@
Y

(c)
y=l2-8x] =2-3x 2-3x20
=3x-2 2-3x<0

2
Therefore, y=2-3x x< 3

= 3x ~ 2 x>*§

Since 2 - 3x and 3x — 2 are polynomials, these
are continuous at all points. The only concern is

atx:g

3

o 2 2
Lefthmﬁatx:g152-~8><§:O.
o 2 2
R|ghtt|mttatx::—8~|83><§w2::0

(2 2
A%loo 3% 2 =

Since, Left limit = Right limit = f(%)

2
Function is continuous at 5 .



2 o
Now, at x = 3 LD = Left derivative = - 3 t 10
RD = Right derivative = +3 °3
LD # RD 72, (d)
S _
- The function yis not differentiable at x = 3 1) = sint
So, we can say that y is differentiable VxeR, !
3 5
o e
except at x = 3 1) = 31 t5!
71. (a) 2
f(x, y) = 4x2 + 6y2 - 8x — 4y + 8 )= d=gpt g
of 3 :
= 8x-8 ) 2t 4t ,
of
o= =12y -4 o 4
ay (1) = _§+-5_'
Puting, & = 0and - =0 AU E=0, () =0, () < 0
dx y .. f(t) attains maxima.
8x-8=0and 12y~4=0
73. (a)
Given x=1landy=— oY =

yis therefore continuous V xe R
Now since 2 — 3x and 3x - 2 are polynomials,
they are differentiable.

. 2
only concernis at x = 3

The minimum value is

1 1 1
f(1, éj :4><12+6><3—2~8><1—4><§ +8

1

3
So the optimal value of f(x, y) is a minimum equa|

1Y) ) o
1 = |isthe only stationary point.

3
2
| Ox /} 1

3

9% J
_axdy [1’ l\}

[ ~2
f
t= ”a"g'} =12
L9y L
i 3}

s

Since, rt=8x12=96
s =0
Since, rt> s°,

we have either a maxima or minima at (1, %J

. of
also since, r = |- 5|
ox 1 l}
"3

J is a point of minima.

= 8 > 0, the point

1

L3

-

Taking log on both sides,

1
y:;logx
dy 1 1
0T +logx-[—x—2J
1
:?(1—logx)
X
, dy
utting — =0
puting o
1
— (1-logx)=0
X
= logx =1
= x = eis a stationary point
a2y 171 o o
N :?XL_;J+( ~ogx)x(—x—3
1 1
:——g[1+2(1~!ogx)}:——§~(3~2Iogx)
X X
Py | 1 1
L =-——x (3-2loge)=—— <0
[dxzwze e ge e

So, at x = e, we have a maximum.




dx 17"
= |tan x
,"[°1+x [ l‘”
= tan(eo) - tan1(—eo)
L 2
T2 2]
(b)
]
P= fx e dr dx
0
Integrating by parts:
et u=x,
dv = e* dx
au = dx,
V= fe" dx = 6*

Now, juo’v: uv — f\/du

fxe"' dx = x e* - jexdx
=x e —-e'+¢

_fx €' dx = [xe*-e']}

=(1-e'-€")-(0- &~
=0—(-1)=1

(d)

Length of curve y = f(x) betweenx = aandx = b
is given by

X
here, y = 4hz—2~ (i
dy x
e = 8hZ§
since, y=0atx=0
L
and y=hatx= P

(As can be seen from equation (i), by substituting
x=0andx=1L/2)

77.

- 78.

LI2

1 ({y
. = 1+ — | d
o 2(L.engthofcab!e)* (J; ( XJ X

L2 \2
= f\/1+(§—2~xj dx
0 L

L/2
/ h2X2

Length of cable = Zf 1+ 64 dx
0

L4

(d)

The volume of a solid generated by revolution about
the x-axis, of the area bounded by curve y = f(x),
the x-axis and the ordinates x = a, y = bis

b
Volume = J.ndex
a

Here,a=1,b=2andy= [y = y2=x

2
Volume = fwx-dx
1
572
| X _ Tl 2P
“n'{?l = g[x l
Tr2 3
:'2‘[2 1]::27'[
(c)
y
34 S R
ooop Q
O yE 23

di = dxa, + dyéy
A-dl =xydx +x2dy
P-Q:. y=1,dy=0

213 2

Q“""** X
iA'w ZV&XleEEVﬁ 2

2/\3




2 29 50 23) . 4
Q""R: = = 4 d = O P '_____+ N k""‘“ . A .
X 3 x (zax /ay+ azj (xz+y/+zk)
R 3 2
73T 2 4 8 o 9y 9z
l = e d = 8—-1 = — o T ~
£A {[ 5] Y B-1=3 x Tay Ty
=1+1+1=3
A-8:y=3, dy=0
s up 81. (@)
J'A.7: fodx hmw=1
R 2/N3 6—0 6
3 xgl"/@ 3(‘1 4] -3 82. (c)
= NS = o e e e e
2 2\3 3 2 If f(x) is continuous at x = .725
1
S~Pix= —,dx=0
3 im AcOsx _ f(zj:1 0
n T 2
Pﬁ“*ﬁ(qzd L (1-3)= 22 TEe
£A L L e == i
So, Since the limit is in form of o We can use
- Q. _, B _ s_ _ P_ _ . . . .
EﬁA d1=fA o+ fA' i+ .[A R fA' ; L hospﬁgls rule on LHS of equation (i) and get
c P 0 o < o —ASINX
- v fim =1 i
1 8 3 2 st =1
D = e e e e e :'I
2 3 2 3 -
=  ASInN= =1
79. (d) 2
) — ~ ~ = }\4: 1
Velocity vector = V/ = 2xyi — %7 J
The vorticity vector = curl (velocity vector) 8. (c)
/ __, Y x)=2x-x+3
= Cur! (V) f/(x) - 2~ 2,’5 = O
h ik = x = 1is the stationary point
fﬂ(x) - __2
- 0 0 0
=V X = —_ —_ —— ) -
Vel 3y 3z = r=-2<0 |
oy —x’z 0 S0 at x = 1 we have a relative maxima.
84. (b)
9 2
= "“(O)"-"("x Z)Jl 3 2
[8}/ 92 Sin g = 6*8—+¥e—...
0 d © )} 30 5!
-~ —(0) - —2x
[8x( ) 2z 85. (d)
d _2y_ 0 "2 CoSx +iSinx 12 giv /2
+ 5—(".\‘ z) - —(2xy) |k f—-————r—dx - J‘ Oy = feQ""dx
* 4 COSx—isinx e !

= x°7 + [~2x2 - 2x]/2

at(1,1,1), by substitutingx=1, y=1and z= 1,

we get,vorticity vector = | — 4k

80. (a)

= 5117[44] (since &™ =-1)
2

a—— —-—-:l

2 i




90,

91.

(b)

Let [= |
’([\/;4—\/8—)6

a a
since [f(x)ck = [f(a-x)dk
0 o

e
fx+ia-x
)+ (Hh=2= J‘\/—+\/§.;

=5 21 = de

= 2 = a
= I=3a/2

(d)

If f(x) is even function then

ff(x)dx = ZTf(x)dx

0
(b)
Given [1, 1,1]and [1, a, a?]
1 /3
hence == ——t |
a=w 2+j2
a® = of
~ Sothe vectors we
=[1,1,1]
and v=[10 07

=1T+0+w=0
So u & vare orthogonal.

(b)

lim 1-cosx _ 1-cos0 0
Souse [’ Hospitals rule

im (1- C;)Sr) _ im sinx _0
x—0 X =0 2x 0

So use L'Hospitals rule again

- Im [cosx} _ 1
x50 2 2

Now uv=1-1+1 - w+1. 0

92.

93.

left limit = 0
Right limit = -0 = 0

a x=0

f0) =0
Since left limit = Right limit = f(0)

So |x|is continuous at x = 0

Now, LD = Left derivative (at x = 0) = ~1
RD = Right derivative (at x = 0) = +1
LD = RD

So |xj is not differentiable at x =0

So lxl is continuous and non-differentiable atx =0

flx) = %% + 1
Put f(x)=20
= 3x° =0
= x = 0 s the only critical point
at this critical point
f(x) = 6x

f{0) =6x0=0
Now (x)=6 and
SO f”(0) = 6 which is non zero.
Since the first non zero derivative value occurs at
the third derivative which is an odd derivative,
this function has a point of inflection at x = 0.
(€)
We need absolute maximum of
f(x) = x3 - 9x2 + 24x + 5in the interval [1, 6]
First find local maximum if any by putting 7/(x) = 0.
ie. Fx) = 3x2~18x +24 =0
6. ¥*-6x+8=0
x=24
Now  f“(x) = 6x-18
f(2)=12-18=-6<0

(So x = 2 is a point of local maximum)
and f(4) = 24 -18=+6>0

(So x = 4 is a point of local minimum)
Now tabulate the values of f at end point of interval
and at local maximum point, to find absolute
maximum in given range, as shown below:

x | f(x)

1121

2125

6] 41
Clearly the absolute maximaisatx = 6
and absolute maximum value is 41.

o s




94. (b) The area of parallelogram OPQRin figure shown
above, is the magnitude of the vector product
- ]ﬁ"xéﬁ’
STCZ_E — ~ %
o T 74 g OP = a +by
o T . A
T P e o H
-Zf’ 5 \\N:// OR = €+
i j Kk
OPxOF = |a b 0]=0i+0]+(ad- bo)k
From the plot of sin x given above, we can easily ¢do
see that in the range [n/4, 7n/4], there is only one "O_ﬁxbﬁ‘ = P+ 02+ (ad-beff = ad- be
local minima, at 3n/2.
98. (a)
95. (b
(b) . s Py 2=
e = T+x+i 1 ... o, v 2)=x2+ 2+ 22-1=0
2 3l of » af+ of
(By Mclaurin’s series expansion) grad f = . i +@/+é§ k
96. (a) = 2xi +2y j+27k
The area enclosed is shown below as shaded: I
The coordinates of point Pand Q is obtained by a[”“f—ﬂO]
solving J2' 2
~ 204
y
grad f= —=i +—/+2x0xk
2o 2
= J2i+2 j+0k
\ lgradfl = V24 2=J4=2
\\\\\\ The unit outward normal vector at point P is
1
- n= rad f
Q@, 0) !grad f](g Jap
y=x 1 , AN B
and y = x? simultaneously, = E(JEG'FJ§/)"“7§I+‘7§/
ie. x =x?
= x(x-1)=0 99. (a)
= x=0, x=1 | Al = k"
Now,x=0 =y=0 whichispt Q(0,0) 7
andx=1=yy=12=1 whichis pt P(1, 1) = A=kfn7
SommmmMm?s 1 VA= V. (k" 1F)=0
= fxdx _fx«?dx We have, V- (0A) = (V) - A+ ¢(V - A)
o0 K[V -7+ 1(v-7)] =0
2 1 3 1
{L}_L}_l_l_l .
2 L3, 2 3 8 K@nmmﬂ4§~7+&””J=O
97. (a) (n=1)r=8r243m-1=9Q

[(h-9+3]"" =0

n=-2




00. (a)
2 if x=3
if x>3

Cif x<3

x-1
x+3

fim f(x) = lim 253 2
x-337 x—=37

lim f(x) = limx-1=2

x-3% x—3*
Also, f(3) =2
hm f(x) =

x~3"
So it is continuous atx = 3
option (a) is correct.

101. (b)

.

lim f(x) = {3)

¥—-3"

"+ xis defined open interval x = (1, 2)
T<x<?2

dy
- <30
20 < o

- (d)
Using R-H criterion

*la a -a
P la, g
| A
x| a
x| ~a,
Where A = S %
a3

So, from the above table it is clear that there is
atleast one sign change in the first column. So,
at least one positive and one negative real root.

103. (b)
Let 30 =t
3 x df = dt
at
ag = —

3

104. (c)

6
6=

TE/2 4 .3 df
= fo cos*t-sin 21-3

- %J‘;E/Zcos“t‘(QSim‘cost)3 -dt

/2 .
= §jn cos*t-sin’t-cos® tat
3 Jo

- gj;/zcos7isinatdt
_8[ 6422 ] 1
3110-8-6-4.2| 15
e
I = f\/;lﬂxdx
’
u=1Inx av = Jxdx
1 3/2
du= —dx : dv= [Jyrdr=2
X §
2
fudv = uv—jvdu
e 32\ e a2
flnx-\/;dx . mjl_x_.._.ldx
’ 3/2 1 13/2 X

105. (d)

3/2~£(e

3/2
-1
5 )

Curl of gradient of a scalar field is always zero.

106. (d)

VxV V=0
”m..a.é\.f;+a_AX_+.QéZ;
VAT O T ey Tz

J d d
V.4 = ”é;(x)+’§);()/)+5z”(z)—1+1+1

3

A
bV}
i




107.

(d)

4

1 3 3
= —X3X |1V ==x=n(1)" =7
T ol
) 111. (d)
0.8 oo
. / According to Stoke’s theorem
0.09F-—--» ' bé c E S‘SAE?/?=I(VXA)5§
a i E c s
0 03 06 09 x—»r
Area of region ais 112. (c) .
=73 xbasexheight:i x 0.09 x 0.3 im (x+sinx) ~ ¥ :1+O:1
Area of region bis oL i 1
sinx
1 ' — =
=5 height x (base1 + base?) Since, I!Tm ¥ 0
113. (a
= le.Sx(0.09+O.36) (@)
2 fregion o i 1 Fform}
Area of region cis a—q(]] o 0
1
5 xheight x (base 2 + base 3) Use L-Hospital Rule (Note: Differentiate numerator
) and denominator w.r.t, o keeping x as constant.)
= =x0.3%(0.36 +0.81)
2 N lim ,’Calﬂx - [ng
3 1 a—0 1
[fx)de = = (0.3) % (0.09) + = (0.3) x (0.09 +
5 2 114. (a)
1 X —Sinx
0.36) + - +5 (0.3) x (7.29 + 9.0) = 9.045 Lto1 o
x>0 71— Sx
ion (d)i t
option{d)is.correct, Applying L' Hospital’s rule
108. (d) 9 (emsing)
Option (d) is not true as irrotational vector has Lt dx * _ |t (=cosx)
cross product as zero. Thus for vector to be x=0 d (1~ cosx) x50 sinx
irrotational V x £ = 0 dx
0
109. (b) (Itis still of = form)
To find: f/f- di along a segment on the x-axis , _ '
fromx=110x =2 Again applying L' Hospital’s rule
i.e. y=0, z=0, dy=0and dz=0 5’"(1"00395) Sirx 0
= = a A 22 X = = =
fF'dZ = Jn(ygxa_r—yzay—x a,) x!;to d 9 sin) x':)tOCOSx 1 0
(&.0x + &,dy + 4,0z) dx
= [ yPxch - yzdy - %z 115. (b)
Putting, y=0, 2=0, dy=0 and dz=0 (ezx —9) 0
We get, o Sindx , it is of 0 from
IF' ar = Applying L’ Hospital's rule,
110. (a)

2l w-Fav
)

26> 2x1 1
—04cosdy 4x1 7 2




110,
(@

120.

IF = el =gt

. (d)

f(x) is continuous at any point

it U ) = Lt flx)=fa)

x—d

(a)

As y e (0, 1); f(y) varies from -1 to 1 similarly
f(y + 1) varies from +1 to ~1

~Let glx) = f(y)-fy+1);ye(0, 1)

we get, g(x) = O for some value of x

i.e. f(y) = f(y + 1) for some ye (0, 1)

fly)=f2-y)onlyaty=0and y = 1
~ In(0, 1) we cannot say f(y) = (2 - y)

We cannot conclude that the maximum value of
f(y)is 1in (0, 2)

As ye (0,1); f(y) varies from-1to 1 and - f(2 - y)
varies from 1 to —1
~Let glx)=fy)+f2~-y);ye (0, 1)

glx) = O for same value of x
i.e. f(y) = =f(2 - y) for some y e (0, 1)
But the difference between yand 2 — y should be
less than the length of the interval 2 is not possible.

(c)
sing Cos9 tano
f0) = |sin(n/6) cos(n/6) tan(n/6)
sin(n/3) cos(n/3) tan(n/3)
f(n/6) = O
Since if we put 6 = 1/6 in above determinant it will
evaluate to zero, since | and Il row will become
same.
fin/3) = 0
Since ifwe put 8 = 1t/3 in above determinant it will
evaluate to zero, since | and iIl row will become
same.
So f(nf6) = f(n/3). Also in the interval [r/6, n/3] the
function f(8) is continuous and differentiable (note
that the given interval doesn't contain any odd
multiple of n/2 where tan 8 is neither continuous
nor differentiable).

Since all the three conditions of Roll's theorem
are satisfied the conclusion of Rolls theorem is
truei.e.

:d6 e (—g— g—] such that £(8) = 0 is true
Now the statement

n 7
i 36 e (E —3—] such that £(8) =0

is also true, since the only way it can be false is
if £(8) = 0 for all values of 8, which is possible
only if f(8) is a constant which is untrue.
Therefore, both (1) and (I1) are correct.

121. Sol.

flx) = x sinx
f(x) = x cosx + sinx
f{x) = (~x sinx + cosx) + cosx
(x) + fx) + tcosx = 0
= —x SiNx + COSX + COSX + x Sinx + £ cosx = 0
= (2+ Hcosx=0

122. Sol.

= t+2=0
= =-2
2
dx
dy _
a;“‘ 1
= C =2
y=Cux+C,
at x=0
y=5=C,
y=2x+5

at  y(15) =2x 154 5 = 35

123. (c)

=
Given that, x+\/x2 +y2 = k (constant)




x% 4+ y? = (k-x)?
V2 = K2 - 2kx

1
A , A= —.x-
rea Xy

2
A2 = XZ(kZ—ka)

2
Let,  f(x) = A2 = xz(k2—2/<x)

Flx) = ?}(2k2x~6kx2)
f(x) =0
2k - 6kx? =0
X = 5 0
3
At X = at , Mx) <0
3

. ) k
.. Areais maximum at x =§

ok® K
y2 = k?— =

(x) = —e¥~ (6™ - xe™)
=207 + x6¥ = €¥(x ~ 2)
(1) = —e"which is < 0
So at x = 1, we have a maximum.
The maximum value is
f(1) = 1e'= !

126. (c)
fx) = (=23 = (Fx—1)°
As f(x) is square of ¥y 1 hence its minimum

value be O where atx = 1.

127. (b)
flx) = x* - 3x° - 24x + 100 xe[-3, 3]
fx) = 3x°-6x-24
flx) =0 atx=4-2
Critical points are {-3, -2, 3}
f(-3) = =27 -27 + 72 + 100 = 118
f(-2) = -8-12+ 48 + 100 = 128
f(3) =27-27-72+ 100 = 28

3 3 Hence f(x) has minimum value atx = 3 whichis 28,
k
. 128. (a)
V3 f(ty = e'- 272
tan = L=43 F(f) = —e+ 4e72!
x For maximum value f{f) = 0
6 = 600 ~f e
fH=0=-e"+ 4
124. (c) = deP=et
aZ { xy 464 = 1
-~ = yin(xy)+=- -
o yin(xy) xyxy t=log,4
0z ' ) 129. Sol.
o = yngxy)+1] ()
’ 1
f ——-1=0
9z - xln(xy)+~x—x><x x) 1+ x
ox xy
0z 1-1-x
- = i = O
P x[in(xy) +1] i) i
’ X&)z y 0z
ere VAN r o
9x oy T+ x
125. (a) x =0
flx) = xe™ i
flx)=e*~xe*=0 (x) = .
e(1-1) = oo ()
= x=1 (since e™ =0 only when x = e« which (0) =-1<0

does not belong to the given interval) flx) have maximumvalue atx = 0
Now, we need to check whether atx = 1, we have f0) = hg(1+0)-0=0
a maximum, minimum or saddle point. foax = O




:130. Sol.
fix) = 2x° - 9x2 + 12x - 3
flx) = 6x2 - 18x + 12
flx) =0
6x°~18x+12=0
x2-3x+2=0
x=12

Hence critical points are {0, 1, 2, 3}.
f(x) attains its maximum value at one of these

points.
f(0) = -3
(1) =2
f(2) = 1
f(3) =6
- 131. (b)

2 N2l
]:J- (x 12) sin(x—1) o
o(x=7"+cos(x-1)
Takingx~1=27 = dx=dz
forx=0z->-1andx=2,z—-1

1 2
- 2Z sinz dz
J,z°+cosz
2
ot f(z) =
Z°+c0osz
v 5
zZsinz
f-2) = ——5——
Z¢+cosz
f(z) = — f(2) function is ODD.
I=0
132. Sol.

2n
— J [xsinxldx = Kp
0

n 2n
= [Jrsins|dx+ [ |xsin|dx = Kp
0 7t

n 21
= [xsine dr + [ ~(xsinx)dr = Kp
0

7

= (~xsinx + sinx)) ~ (~xsinx +sinyf" = Kp
= 4p = Kp
= K=4

133, (a)

n
J'xz CoSx O = x° (sinx) - 2x (-—COSx)+2(~sinx)g
0

= 0+2n(-1)-0=-2n

134. (b)

F = yzi
- |9 9 9
VxF =15 3y 9z
yz 0 O
= i(0)-j(0-y) + k(0-2)
=0 +y)-zk

By Stokes theorem,
J',E.df = f(Vx/?)-ﬁds
c

wn

(yi = zk)-k ds

Since z=1

where S is surface area of x2 + y2 = 1
S=mn(1P=n

135. (b)

20 x
I= fi:J‘e”ydyjldx
0Lo

fe"*ydy - ex+ydyl; N2 PN

0
2
I = f(62‘~ex)dx
0
2
[= 262 —ef
1, 4 2
= (" -1 —(e? -1
2( )—( )
14 1 5
= =@ ——=e"+1
d 2
= %e4~92+~ = —(e* -2 +1)
1.2 42
L
I 2(@ )
136. (b)
8( (y/2)+1 _
|| (2" y)dx dy
o\ y/2 2
2x -y




x_}é/, - VxF = i[4yZ® + 2xy?] - [[22¢%]
dx = au + k[-2y%z - 0]
al x= 221 = (4y2® + 2xy2) - (2x%2)] - (2y22)k
2 139. (c)
D y B . . .
U= -£5—=0 E = x°zi +xyf-yZ°k
L, 0 d d
at x = —+1 e 22 A o 2
VF = g (D)) 07)
. 2(}_2/”)”)’ vy V-F =207 +x - 2yz
2 2 fVEl Ly =2x x4 1-2x -1 x 1
8l 1 T
Thus, integral becomes f{’[uo’u}dy =2+1+2=5
0L 140. (a)
Vo= )—/— o ~ a IS
> V= yi+ZzZ+xk
e = dy=2av V) A V) oy ppr s 2
2 ox oy 0z
y=0;v=0;y=8,;,v=4
: of _of of 5 .
NN T 7
A1 AT 1 yax+zay+x82 X2y + Y2z + Z%x (i)
= || Juci |x2av = [{ [2udu|av e
0Lo 0Lo 7 af= (e 2410 KO
ox dy oz
137. (b) Nf o mg e
U Af= TS (i)
T VA= R ay 0z
For linear dependency, det | 2 3 1| must be
From equations (i) and (i)
56 4
Zero. V.-VFf =x°y + Yz + 7%
A=1(12 6) 18 5)+1(12 15)
=6-3-3=0 141. (d)
~. There three vectors are linearly dependent. ' 2
y= hm(1+—)
138. (a) x—>00 x
B o= 2727 _oy2st 2,3) '
F = x"z°%1 - 2xy°z] + 2y“Z R ogy = lim 2xlog(1+1)
- - T X—yeo X
i J K
- 9 9 3 Which is in the form of e x 0.
VX o 9 0z T {this into — f it
: 0 convert this into — form, we rewrite as
22 -2xyP 278 0
= i|=—(2y%2%) + —(2xy®2) 2log 140
oy 0z . . x
‘ = logy= lim *‘————1/—*-—-
210 23 0 25 ¥ *
=2 —_—
/[ay(”) 5, Z) .
T3 A N » Now itisin — form.

A%

+ kt-é;(MQxy Z)m@(x z°)

e




143,

144.

145.

Using L' Hospital’s ruie

. 1-cos(x?)
lim ———a—=
x—0 2x
putting thex — 0

0
we get 0 form

Applying L’ Hospital rule

2xsin(x?)

= lim
8x°

x-0

: 2
. Sintx

Sol,

im ~sinx m 0
x—0\ 28iNx+ cosx = 0 2sin0+coso,) 1

(Note: Since the function is not evaluating to 0/0
not need to use L’ Hospital's rule)

(c)

—sin0 } 0

y = hmx

X0

log y = lim logx'*

log y = lim logx
Xdo0 X
/oo form, use L' Hospital's rule
. 1x
log y = lim—
X—yoo
log y=0 =y =1
(c)
lim (1+ x%)°
X300
. 2
og y = lmlog(l+ A" = jim 1000
X-p00 =300 eA

146.

147.

oofeo form apply L’ Hospital's rule
1

5 (2x)
=  log y= lim Jil}»———
X—yoe e
= lo - lim _..g_i____
9V e

Again we are getting eo/eo form apply L’ Hospital's
rule '

2
= im
g y = x—ee (14 x2)e" + €% - 2x
log y = E =0
= Y
(c)
1
fx) = ==
Ix

Statement 1: fis continuous in [-1, 1]. Let us
check this statement.
We need to check continuity at x = 0

=1
Left lirnit “YTS f M}T&\/ﬁ h—aoa\/: S
1 1
Right. limit = tli)ng 3 MJS mof =+oo

Left limit # Right fimit

s Statement 1 is false.

Statement 2: fis not bounded is [-1, 1]. Since
at x = 0 it goes to — and +« the function is
not bounded.

. Statement 2 is true.

Statement 3: A is non zero and finite.

0 1
fx“T/BdY J’x~1/3dx

z 0
_ g[xz/sﬁ E[xm]:)

31418123
2 2
So Ais non zero and finite.

-, Statement 3 is true.

(b)
Since f(1)# f(—1), Roll's mean value theorem does
not apply.
By Lagrange mean value theorem
f(y-f(-) 2

o)==y 73]

A% +

w

+

3
e




—2x + 3x% = 1 (x) =e1-2x)— e*(x - x?) = e* (1 = 3x + x?)
1 1 Atx =0, (x) =1 (so we have a minimum),
X =1 -
3 ’ Atx=11(x)= —«% (so we have amaximum),
rliesin (-1,1)  =x= 3 _ Only curve (b) shows a single local minimum at
x =0 and a single local maximum at x = 1.
148. (d) :
f(x) has a local minimum at x = x, 162. Sol.
if fxy) =0 |
and  "(x,) >0 :
149. (a) !
y ~ _45 _________ -2y
Px| E
<— Minima 5
¥ : 2x {
150, Sol. xE 4 dy? =1
Area of rectangle
b = LDy =
Consider a symmetric matrix A = F } = 2x - 2y = 4xy
b d Let f= (Area)®
' — 24,2
Givena+ d=-6 —16;)/ )
Al = ad- b2 = dx (1 —x%)
ce 42 A2
Now since b? is always non-negative, maximum (v - —/4y )
determinant will come when b2 = 0 flx) = 0
So we need to maximize d > 4
= - =0
|A] = ad-0 SoL46 =]
=ad=ax-(6+a)=-a?-6a 4(2x~4x3) = 0 !
d|A| 1
M R P We get, x=*
o 2a-6=0 g 7?
= a = -3 s the only stationary point o1
y= ft—
V38
{ d?| A q 11
da s NG «/—8—
we have a maximum at a = -3. 153. (a)
Since a+ d = -6, Corresponding value of d = -3, Partial derivative w.rt.
Now the maximum value of determinant is 0 ( 2,2
—X + ) == 2
|Al = ad=-3x-3=9 Yoyt V=Y
Partial derivative w.r.t.
151, (b) 0
fx) = 02+ x + 1) ¥ o= (By +4x) =4
Flx) = e+ 1) - e*(x2 + x + 1) From given condition
= o (1-22) = 6 (x) (1 - ) | 2y =4
Putting f(x) = 0, we get = y=2

x=0 o x=1




165.

af(x)+b f(lJ _ 1o ()
X

X

1
Putx = < in equation (1)

a f(lj thf(x) =x-25 (2)

| Equation (1) x a — equation (2) x b

a
(1) xa: = a*(x)+baf =~ 2oa

X

@) xb: = ab%wtbzf(x) = bx - 25b

2Pf(x) - BPf(x) = ? oSa-bxt 25

fix) = 2 bx +25(b - a)

X

= (& - b?) -

= flix) =

1 a
——bx+25(b-a
awbg[x x ( )}
2

1 3

a -b
= 21 {aan 25&+@]
a° - b 2
= 1 alln2 — 25)+@]
a - b 2
Sol.
m
(0,0) J(z@o
(x-2)2+ (y2) = (2)%, isacircle of radius 2 mand

centre at (2, O)
Time to reach from (4, 0) to (2, 2) is

Distance
Speed

7
= 4 ). 4 )T = 2 8eC

157 157 157

time =

156.

1567.

Sol.

S= f"/Q ( 9[-2—)2 ot

H
O”*—-‘a%

.

+
TN
?—M ~
N—

(S

Hi

+
TN
:—lmi ~
S

5=
N

Sol.

1
Volume = Hf(x,y)dx dy = ffe" dxdy
00

1
ay = j(ey -1 dy

i
©
=<
r
=
i

(e—-1)-(1-0)
e-1~-1=e-2=0,71828

1

2 2
= [f(x)- dy = 5 2{a~fl-d.r—bj.x-dx+25(b~a)]1~d,\} 158. (c)
1 a~b 1 X / d

f(x, y) dx dy

—
1}
O
O Sy

Limit of x:
Lowerlimtx=0
Upper limtx =y
Limit of y:
Lowerlimty =0
Upperlimty=a
By change of order of integration limt of y
Limitofy:
Lowerlimty=x
Upperlimty=a
Limt of x:
Lower limitx =0
Upperlimtx=a

(0,0)

S0, [=

O ey
o Ce——

f(x, y) dy dx




159. Sol.

Vil = 2+ 6]
ux, y, z) = x2 - 3yz : -
Vu= 2 - 37/~ 3yk 4] = Vara-2ov2
A 40t af . 2+2] f+4]
VUl o 4 4y = 41 +12/ -3k A = =17/
Directional derivative, 2v2 V2
ik . Magnitude of directional derivative
= (4 +12] - 3k).L 1 =
( ) J6 =(21+6/)(l+j]
_4-12-6_ 14 V2
V6 V6 ) %_@: 78_5 _ 45
= ~1£ =-5715
163. Sol.
160. (a) JUa-8y2d + (4y-6xy)ai), € s
i /k ¢
9 9 0 boundary of region bounded by x = 0, y=1and |
Curl of vector = % 3y oz R
2 372 )P Using Green's theorem
3 9 = P(de+Qo’y)
= 1| Z(°) L (32 )
oy 0z 0 ap
0 d
19,30 (0.2 fj(—--Mded
~f|=—(y)— (2
505 2]
3 3 Here, P=3x-8)2
+k[—-—(322) — (2x2)} Q= 4y - 6xy
a oy aVa)
=1[3y=62]=J[0 I+ KO + 0] % = -6y
Atx=1,y=1and z=1 9P
Curl=i3x12-6x1)=-3; 5}7=—16y
el = [[(~6y - (~16y))day
DivCurl V =0
= (c)is correct option. = H10ydxdy
1 1 1
162. (a)

fx, ) = x2 + 3)2

¢=x%+)2-2 and point P= (1, 1)

Normal to the surface,

*a(b “8(1) » o
St =Dy + 2
Vo lax”ay 2xi + 2y

V‘bfarm 1) =2 +2/

the normal vector is &= 27 + 2]

Magnitude of directional derivative of f along &

at(l, )is= v.f.3

Vi= zg—f+]§i—2x1+6y/

2
= 1ofdxo ? = 5£dx(1-x)
1
1= 5[(1-x)°.dx = 1.6666
0

164. Sol.
Accodring to gauge divergence theorem

1 1, s
J{{E(gﬂ_gyj).nds = ;J‘duvergence (9xi ~ 3yj)., dv

[9- 3]&%%&3]

1
T
3 [given]

6><Q7c><27 =216

Al




- 167.

168,

Letx—4 =tnotasx— 4

So the requires limitis lim sint) = 1

t-—>0
. Sol.

lim sin(x — 4)

x—4 x4

Letx—4=tnotasx— 4

So the requires limit is lim sin@) =1
t—0

Sol.
J.V¢~d“ = f(szJr xZP + xyk) x
c c

= f yzdx + xzdy + xydz
. C

= f dxyz) = (xy2)

Giventhatx =t y= 2, 7z = 312
3 3
= (t-£ -3t2)[1 = S(sz’)[1

=3(35-1)=36-3
=729-3=726
Sol.
Lt Vn?+n-vn?+1
N300

[ 2 [ _
= Lt NI AoV ] ( n2+n+x/n2+1)

”"""(\/n2 +n+Jn? +1)

N +n-n® -1

.. Lt -
e n? 4+ 41
- Lt n-1
[Hwn\/H ! +n\/1+—l
I
]
n —
= Lt n
e (77 1
n[ T+ =+ 1+
n n
1
o141 2

169.

170.

171.

172.

(c)

Lt
x20 g% 1

1

-4
It 1+4x
x>0 363x

(c)
Lt Vel +x—1—x

u(r"i)(f*“?)

¥ \/x2+x~1+x
2 2
X +x—1-x

Lt

X”“’\/x2+x+1+x

Lt x -1
Hw\/ 11
x =+ +x

In(1+ 4x_)_ 0/0 form

_4
3

(d)

. xy . 0
N lim lim =0
05y ( 5 +sz

(ie., putx=0andthen y = 0)

Sim =Y im[ =9 )¢
(ii) -0 x? 4+ 2 x>0\ x2 4 0
(i.e., put y=0and then x = 0)
. xy . x(mx)
o | !
(i) ;l:% X2 4y r50 32 +m?x®

(i.e., put y = mx)

Hm( 7 )— i
el 14 m? ) 14 m?

which depends on m.

(b)
Pt fix) is continuous at x = x,, then it is also
differentiable at x = Xg

Q: If fix) is continuous at x = Xy, then it may or
may not be derivable at x = Xg

R 1f fx) is differentiable at x = x,, then it is also
continuous at x = x,

Pis false
Qis true

Ris true

Option (b) is correct




173. (c)

for minima and maxima

P -Bx—4 ' flx) =0
f(x) = m is not continous 6x2—4x3 =0
when 243-2x) =0
¥ +3x-4=0 3
(x+ )x—1) = 0 x=0.07
x=-41 f'(x) = 12x ~12x% s
174. (c) for x=0, f”(0) =0
F"(x) = fx) which is density function 3 ,
F/(x) = fx) < O when x < 0 for x=3 ’w(‘éj = 18-27=-9 <Omaxima -
F(x) is decreasing for x < 0 at x=-1, f~-1)=-2-1-10=-13
F'(x) = fix) >0Owhenx >0 at x=1, f1)=2-1-10=-9
F(x) is increasing for x > 0 Atx = -1, function attains global minimum value
175. Sol.. with f(x) ., = =13. '
If f(x) + f(—x) is degree 10 178. Sol.
x) = amx10 + agxg ....... + ax + &g flx) = x®-3x%+2x [1, 2]
flex) = @ipx© - ag®. . .~ ap + & f(x) = 3x%—6x + 2
10 g f(x) = O for stationary point
Ax) + H(—x) = Ggx~ +agx~ +. ..+ & 1
Now g(x) = f(x) = 108,;x° + 98,38 + . . .+a, stationary points are Hﬁ
g(=x) = f'(=x) = =10a,5x° + 9agx® + . . .+a, ’
g(x) - g(-x) = 20a,,x° + . . . only 1+:/-§ lies in [1, 2]
Clearly degree of (g(x) — g(-x)) is 9. 1) = 0
176. (b) f2) = 0
1 2
(%)= 35
Maximum value is O.
1 179. (d)
flx)=0
= 2x-4 =0
= x = 2 (stationary point)
fx) = 3~ 3x2 + 1 x)=2>0
F(x) = 3x% - 6x = f(x)is minimum atx =2
Flx) =0 e, (2P-4(2)+2=-2
32— 6x = 0 +. The optimum value of f(x) is =2 (minimum)
3x(x-2)=0 180. (b)
x=02 The quadratic approximation of f(x) at the point
f(x) = 6x~6 x=0Is
At x=0 f7(0) = -6 me.lx'ima ; 2
x=2 f(2) = 6 minima fix) = f(0)+ ~1~!f’(0)+ Ef”(())
177. Sol. 2
fix) = 2% - x4~ 10 in [-1,1] = (-5)+x{0}+={-6}
f(x) = 6x% — 4x3 = -3x2_5 |




181.

182.

183.

(d)

Given curve
x° = 4y
and VP = 4x
ay
2 T dx
(&
= \dx)gg =0 (say)
d
2y L =4
(&)
= dx (00 = <=M
1
Letm, = v Wherem'=0
my—m »—1 0-1/
tan 0 = T+mym,| m+m1 0+0|
n
= —=90°
=0 5
(c)

Hence 3 solutions.
Sol.

i

F’dx:fﬁ,df = [Rax+Fay
[

- [ 522y

Fo=y F, o= 2x
= [[2 ~ Detaaty
R
%r? ?f@.:g
day dx
= ﬂdxdy

i

i

4
Area of the circle with radius “\/’;

ﬂ(i)z_nlﬁ_']G
W) Tr T

(i)
(il

184.

185.

186.

Sol.
Y=mx+c
passing through (0, 0)
0=0+¢c = ¢c=0
y=mx
passmg through (2, 6)
6=2m
m=3

Sol.

&
)

1
1
4{2 —dk
= 2T = -2(0-1)= 2
(b)

I
e

[tan“1 x]:

-1

it

taneo—tan g =
2

1

and  L(sinx) =

. L(smx)
X

i

H

i

~sx SiNx

= e
~—>f0

s° 41

Jm !
S 52 41
(Using “division by x”)

[tan‘1 s]:

-1

dx

tan™ e~ tan'(s) = cot™(s)

—dx = cot™'(s)

(Usmg definition of Laplace transform)

Put s = 0,

we ge’(f de = cot” (O):E

1+\’

187. Sol,

d+f

i

sinx
~—-~O’x =




Volume = f f _f dzdxdy

= | [ zdydx
32/3x
:J f (6-x~y)dydx

2
[6y xy *—Xz—j

2/3x
dx

0

8
=|2x2 -2 =18-8 =
o5

190.

191.

2n

8 . 1
—S—(cose +Sin6)a0 + o (f) 5. (4)ch

i
¥l
O'““')SJ

270 1
(sin® - cosB) } + — 20(2m)
2n

0

N N
M- ¥l
wloo cofoo

-(0-1) +20) 0+20=20

Sol.
By Green'’s theorem

fxy2dx+x2ydy = ff(%(xzy)
R

- [[@xy-2¢)=0
A

d
- Loy >] ddly

(b)

At the point of intersection of the curves,

y=x*+1andx+y=23ie., y=3-x wehave
X2+ 1=83-x

188. Sol. :/xz_r»_g_g
Parabolais x°= 8y = x=-2tand3—-x=x2+ 1
2
y= % and straightis y = 8 ~-Required areais ” dydx 1
H ,
At the point of intersection, we have 1 3-x ;
2 = ’!._'_2 !jj‘ B 2+1dy:ldx
X 8 = X«x
ol ;
8 = [,{3—x¥—(x2+1\dx
= x=-8,8and y=28 St A /
5 3 2 1
8 x I =2
. Required area is Ix:_8(8‘—§] dx [ 3 2 +2x]_2 a
NI 2 ‘ 192. Sol.
= Zfo[B_?J dx ( 8—~é— is even functson} 5 2/4 45 - 5
v= | ffpdpdd)dz_:jj‘[j
=3, _mz=3
2T 256 s GE
= 2|8x -] =-—=85.33 sqg.units
24| 3 45ml4 nld 45
_ f 8- apolz = B9[] - 2l
189. Sol. 3/”/8
Put x = rcosd = 8&—1‘4)(4.5_3) = 8-Z.(15) = 4712
y = rsing 8 8
CixC@/ = erfCﬂa -19:3. E;C)L
on 2
_ ijj(r(cose+sine)+10)rdrde I= #15coswt + J5sinwt
2n 49 I7] 2 N2
22 = \/(15COSLOZ‘) + (bsinwt)
L 2¢ i ( -
- '(H)(r (cos8 + sind) + 10r) drcb = 2950092 0i 7 25 ot
= /25 + 200cos? ot
1 (ZI . [ra 2 21"“ r2\\|2 II‘IS minlmurr \,:L\An el
:W\J(COSB“PSI”@)L—“ C/6+10J “‘“J de} [ vt wnel CoOsSTWwi = U
2nl 4 3 ol 2l or 8 = et =90°

) ¥




94. (d)
We know that if 8 and b are perpendicular
then &b =0
options (a), (b), (c) are perpendicular.
options (d) is not perpendicular.

36. (b)
f/?-ar

where, F

i

xy? 7+ 2x2y7 +k

VxF =0

(F isirrotational = F is conservative)

F= W
((p is scalar potational function)
G = 2xy
¢, = 2x?
o, =1
= O0=x°V +z+ C

where, F is conservative

(i11) (117)

J.ﬁa q):xzyg—{-z ’ =
- oL
7. Sol.
F= 5xzi +(3x° +2y)] +x°Zk
= f/f-ar
c
= f5xz dx +(3x% +2y) dy + x* zdz
c
x=1t y=F£ z=tt=0t01
ok = dt
dy = 2tdt, dz=dt
= ; 51at + (3 + 202Vt ot + ot
- j;(5t2+11t3)dt
52 1] 5 11
- | = —
3 4 5 3 4
= ?—?——441
12
8. (b)
f(\‘) = e—*,\’"e*'\’ = e”x‘e'eﬁx

y(x) = [fo)dx = [e7e™ dx

199.

200.

201,

202,

Let e¥ =t
- dx = dt
[ = [e!(—ot)
~{
e
o V:T("d)
= 8"[

Sol.
F = -yi +xj
_ 0 )
v F =g
=0+0=0
Sol.

F=+yi+@x+2/+(y+ 2k
VE = L 2t Lye )
ox ay 9z

=1+0+1=2

By Gauss divergence theorem
[[F-pdS _ [[v-Fav _ [[2av
1

v
= 2V where Vis volume of x% + 2 + 22 = 9

= 2(—2—%(3)3) = 226.08
(d)
3 . \,
lim 230X (QformJ
x->0 X O
2 —
lim w =0 -cos O
x>0 1
=0-1= -1
(c)
cos(zcﬂj » sin(’ﬂ]
r T 2 ) Y= T
x4+ 2=
It represents a circle in x-y plane.
0gug (given range)
0gx<1,0<y<
S0, 0<£6< T
2

Thus, we will get a quarter circle in x-y plane and
when rotate by 360°, we get a hemisphere
. Area of hemisphere = 2n(r)2 = 2n x (1)2 = 2n




203. Sol. 208. (a)

By vector identities x)=1-x x<0
div (curl F)=0 glx) = —x; x < O(Both are continuo,
for x < 0)
204. Sol. : , .
_ ‘ , , fog(x) is continous for x < 0
Since V is non-zero vector of dimension 3 x 1 , . . ,
The composite function of two continous functiof
Therefore, . .
_ . is always continous.
<
p(A) = min {p(V), p(V7)] Therefore the inumber of discontinuities are zerg -
< min {1, 1}
<1 209. Sol.
Since Vis non-zero. Hence p(A) = 1 I = Cnygdx ady
205. Sol. 5 2x
B B = Cf f xy?dy dx
Xpo= 20 +6/ + 14k x=1y=0
Yo = 127 + 8] + 16k 5 3\ [2*
_ = ij[y—] dx
5. F
cosh = —?:—: 1 0
la”bl 5 8Y3 5 \4
o - Clx=——dx=cCl8 o
(2F +6] + 14K)(~127 + 8] + 16k) 3 3
V4 +36 + 196144 + 64 + 256 o 5
X
| 484224 248 . - C'Zg(?J
(15.36)(21.54) 330.8544 o 1 .
8 1
0 = cos-1(0.7495) = 41.45° = *3—(54 *g] = 5 (625-02))
= (0.723 radians g
= 5(6x10‘4)(625“0.2)
206. Sol.
X+ 2y=11 = (0.99968
2x% + )2 =34 N 1
2011 =22 + 2 =34 ftx) = e X<
242 + 8y? — 88y + 2 ~ 34 = 0 Inx+ax® +bx x>1
9}/',z "88}/ + 208 =0 f(x) “fﬁ)
x = —0.54, x ¥
x=11-2(4) = 3 T Sl Chd ) B
X = 3, y = 4 -1 X—1 =1 1
x+y=3+4=7 ’ RHD Lt f(x)—jﬁ)
1 X —
207. Sol. )
Vo oy s 1- - L Inx+ax +i>x~a+b
(yaT)Z:x \/; +,V=5 ,r~+11 X —
= 1 = \/; \/—x— + 1 4+ bx = —+2ax + b
Sl - SNE—— U P
y=1+ \/; 2\/; =4 x->1 1
V=147 =3 Jr =2 LHD = RHD.
=3 x =4 " fx) is not derivable at x = 1

Il

x4y = 443 = 5730



. Sol.
If 0 is the angle between

ax + by +cz+d =0
ax + by + ¢,z + d, = 0 then
0 aa, + byb, +CiCy
cos 0 =
\/af + b7+ 02 \ag + b2 + ¢
1 r

a, = 1 by=1 ¢ = d, = -1
a,=2  by=-1 ¢,=2  d,=0
o (@) + (=9 +(1)(2)

VO + (0 + (P (2 + (-1 + 2

= J3V9 33 B
0 = cos“1(~1-—) = 54.73°
3
2. Sol.
1
f(x) = ._;.x(xg _3 = "—(X3_3Y)
, Tia2 2
F(x) = g(Sx ~38) =" —1
Flx) =x2 -1 =0
= x =% 1
f(x) = 2x
At x = 1,f"(1}y =2 =0 = minima
At x = =1,f"(-1) = -2 < 0 = maxima

Minimum value of f{x) in [-100, 100] is given by

Minimum {£-100), {100), f1)}
Minimum {- 333433.3, 333233.3, - 0.666}
= - 33835433.3

Hence the minimum value occurs at x = - 100

Also graph of the function will be like
f(x)

-\ o /
/ 1.0 /B0

11
x—y
_ dydx
Integral 1, = H(}H}/)s

iy 2x 1
_ - dx
) M(wf (x+y)2)dy}

3. (¢)

214.

215,

‘ 1 1
= flox] ——— +( ) dlx
0 2(x+y) o x+Y o
1 1
- [ dx=—[»1—J =05
O(X+1)2 x+1 0
and Integral
11 Xy
- dx |dy
- £[£<x+yf J
11
- J‘[.[ L =4 de]dy
0 0'(X+}/) (X+Y)
= JI{: ~1 + 2y :r y
oLx+y) 20+ y) |,
I -1
= ~-l— || =-05
{(Hy)z [V“JO

Option (c) is correct.

(b)
EF = a@y-ka)+ a,(kox - 22) - a,(ksy + 2)

vxF =0 (irrotational)
a, A, a,
P T )
X ox ay 0z

By ~kiz kpx =2z —(kyy + 2)

. 9
= a, [—a%-[-(kay +2)] - 55 kex = ZZ)J

~a, [“a%[—(ks)““ )] aa By - k@)]

9z
A1 d 0 '
+4, [é;(kyc ~2z) - 5—;(3)/ - k1z)J

al-ks + 2]~ a,lkl+a,lk,-3] =0

= kKy=2 ki =0 k=3
or kKy=0,k =3, k=2
Sol.

A0, 2, 1) and B4, 1, 1)
The equation of the line AB is

x=0 y-2 3-1

= = =l say
4-0 1-2  -1-1
x = 4t oy =t 2 2= 20+ 1
de = 4dt ; dy =-~dt ; dz = -2dt

t varies from 0 to 1




! | 218. (c)

= [2(-21 +1) 4dit + 2(—t + 2) (~a) + 2(41) (~2it) -
0 Given, fx) = Rsm[z—jqus i
; :
= [(- 161 + 8.+ 2~ 4~ 161)c (1
0 f(g} = 2 ~A2)
1
(=30t + 4)it ! oR
£ [fx)ak ~ = G
2 1' Now we need to find Rand S
= ——302+4l‘ =-15+4=-1
)
0 F(x) = F?cos(—é«jw
216. (c) ’ .
About x = 0 f’(g) = RCOS[Z)X—= V2
fx) = e* e n ) .
2 3 4 ($} => —= X = = \/é
[T A, | Ty A A V2 2
21 3 20 3l 4
2 JCZ;l x6 3 x5 x7 - = E
= Xt —t =t FxtxT At t
2 6 2 6 Nowff J{HSIH—-&—S] dx
RIS R 6 6 1ot 36 utting = we get
32,73 4  (mx
= 1+x+§x +-6—x J.f(x)dx = j; ‘n(ZJdX+Ide
217. Sol. mj
cos| ==
iy A= 2 TSy = :2—005{-}+ox
7 b T
Q 2
Putting limit 0 and 1
P(0.0.2) z
' \\/} ff (COS———COS(O)) +S(1-0)= %? "
y -8 2R
—O0-N+S = —
let x>+ V=1 nz( ) n
t2 = ZS

Here revolution is about z axis

1
volume of region R = fn(PQ)de
0

Here PQ is radius of circle at some z, which is

given by

4
Put A = - and solve for §
= S=20

4
So, R = - and S = 0 is answer.

. (©)

oxl =2 1-2+1
fim 2 _
PQ = \V +y2 J3x3—3x2+2 T 1-3+2
(PR =x2+ 2 =2 = 0/0 form

so,volume of region R
1 4|t
nz
= fntZdZ fnzs = =
0

R
40 4

=0.7853

7x% -
So, use L’ Hospitals rule = lim - 5 19
1 3x° - 0x

_7-10 -3

= o0

3-6 -3




220.

221.

222.

223.

224,

(c)

w= f(x, y)
By chain rule,
aw _ow dr ow dy
at ox df 9y dt
Sol.
v o= %%+ 2%+ 2k
hediig B 8 8 4 J -~ on 3% 47
vV = {5;1+$/+5~/<J [x i +2y j+Zﬂk}
=2x + 6y + 42°
At (1, 2, 3),
VYV =2 + 6(2)2 + 4(3)3
= 134
(a)
ay
= —:m +1
tan 9 o x
tan45° = Inx + 1
T=Inx+ 1
=3 Inx =0
x =1

Putting x = 1 in the eq. of curve,

we get y = 0.
(a)
Let, sinx=t
d
AN
Vi-x?
/2 3 n/2 3
I = ftzdt:{i—} =
0 3 5 24
(a)
Space headway,
S=60t-60t
as
— = -1 =0
i = 60 20t =
t= 0.5 hr = 30 minutes
a?s A
— =-120 x 0 (Maxima)
dt

~.Maximum space head
S = 60 x 0.5~ 60 x (0.5 = 15 km

225.

226.

227.

Sol.
Lt tsmx (Applying L'Hospital rule)
x50 x° - x
[pSetx _sec®0_ 1
=02¢% -1~ 0-1 -1~
(a)
3
fx) = %—Mx
We will find the first 2nd derivative
2
fx) = %—~ =x? -1
and  F'(x) = 2

to determine minimum value of x,

put f(x) =x*~1=0givesx = 1 or ~1

Forx = 1 only, f“(x) > 0 which means minimum
value of the function exists forx = 1.

Alt: this guestion can be directly solved by putting
given values of x.

(a)

gf‘ 3 -  3sec?e
9+sinfe 5 9sec? 0+ tan® o
j 3sec’ 0 _ M2 3sec? @
5 9sec®6+tan®e 5 9+10tan®e
/2 2
15 9sec 6 40
0 —+tan‘e
10
Limits
Let, tan® =t J 0=0 1=0
sec? 0 do = at 6=g f—> o0
12 “f at
=T >
073 (57, 2
10
=12 ] tan 1L
0] 3" 3
J10 V10 |
- ﬁ_[ﬁmo}_%&
Ji0l2 J10



228. (b)

Dot product of two vectors A and Bis defined as
= |Al 1Bl cos®,,
1. Dot product will be less than or equal to the
product of magnitude of two vectors.

2. For perpendicular vector 6, = 90°, dot product
=0.

3. 1f8,, < 90° the dot product is positive and for
6, > 90° the dot product is negative.

4. Acos 6, is projection of vector A on vector B
thus dot productis product of one vector and
projection of the vector on first one.

Thus 1, 3 and 4 statements are correct.

229. (d)

fx) = x®atx=0
y

B X

Point of inflexion

/

Atx = 0, the function y = x3 has neither minima
nor maxima.

230. (b)

T -
The value of Jfo ¥ COS? xChx

fn(_)£+ xCOSZx) dy
0\ 2 2

xsin 2x COs 2x)

i

l —t

n° 1(1 )
= — =] ——
4 2la7
_
T4
(c)
ay
Yax Y =0
dy
xdx =y
dy dx

1 -
f"dy == —-de
X
Iny = ~lnx + ¢
when y="1x=1
c=0
1 -1
= V= ; =X
232. Sol.
F=xT+y]
[F.ar = [G37 + y2T) (T + )
= foO’erde
(0,0)to(1, 1) lineis y = x
1
- fx2dx +x%Ch = fozdx
0
1
3
= Q[LJ - 2067
3 3
0
233. (a)
b
[, o = fx)b-a)
234, (c)
By Gauss Divergence Theorem
J(,7-fs =[], -7
= f”vs dv =3y
235. (c¢)
U= e‘cosyi+e  siny]
L _ 0 0
V-u ™ (U1)+.8—J;(U2)

0 0 [ .« .
= 5;(8" -Cosy)+a7(ef ~smy)
= €°Cosy + 6" cosy

V.U =26 cos y
236. (c)
d=1Inr
Vb = V(nr)

) = In(r) f’(r):—:-




237. Sol.

{0y =0
7(0)
82 = 2‘ -—O
238. (d)
ax2+by2 X )2
f(x, y) = -~—~=a(~)+b(—~j
xy )4 X
o Fz_b_ﬂ _a_op
Orlag LY 2l 2
i = !:—*a-g"i-p*:l --24p
Wl oy 4
of _ of
ox oy
a -4
So, 5_2[3 = 4+b
i% = 3b
4
a=4b
39. (a)
O=x)° + yz2+ 2¢°
Vo= 790, 7 g9
¢ lax+/8y+ 0z
= 7(y2+2xz>+/_'(2xy+22)+ E(2y2+x2)
Voo = I (1+4)+](-4+T)+k(-2+4)
= 57 -3/ +2k
P =1+2]+2k
Pl = J1+4+4=3
The directional derivative of ¢(x, y, z) at (2, -1, 1)
in the direction of 5 is Vq’a{P'J’%
B T+2f+2k
= (51 -3 +2k).(—-“*\:3—“*j
_ 5-6+4_?
-3

240. Sol.

241.

242,

243.

1.25 1 125

[ f)yax = [ (e=[dde+ [ (x—[x])cix

0.25 025 1

1‘.25 ) —{ Jl [x]dx + 1f5[x]de

0.25

1.25 1.25
[deer j m]

0.25 0.25 1

1.25° [ (0.25)
_ | 2) —(< 2)]—(O+O.25)

it

I
—
=
s

I
TN
NTEa W
N

%[(1 5625 - 0.0625) |- 0.25
=05

I

(d)

2x x=0
x<0

() = 2 x=20
YT v<o

The first derivation of f (i.e) f/(x) is not derivable
atx = 0.

Sol.
P4+ =9
x =3 cos6
y = 3sind
dy =-3sinB A
dy = 3cosh ab
0 varies from 0 to nt/2

j(y +21y)dx+(2xy+ X )dy

nf (9sin® 6+18smecose)( ~-3sin6dh)

o +(18sinBcosd + 9cos” 0)(3cos6) db

Sy

2 —07sin’0-545in20c0s0 "
o L+54sinbcos? 0+ 27cos’ 6

=0

Sol.

fix) = ~7x° +5x + 6

x) = 9A ~-1x+5
=18x- 14

in[0, 2]



fx) =0 246. Sol.

¥-14x+5=0 n/4
o105 fo xcos(x%)dx
x =1 Let, t=x2
(1) = 18 =14 = 4 > 0 minima o dt=2xdk
x = 055 | geo ot
£(0.55) = ~4.1 < 0 maxima = FEYE D
Maximum {Q), f0.55), f(2)} - %
Maximum {6, 713,12} = 12 whenx =0, t=0and when x = Z, f=(z)
244, (d) ' So required integral reduce to
From trial and error method, we can found that, (/4 5
) ) ol 4)
option (d) is correct. f costdt = [sint]]
0
245. (d) 2
c=y=z = sm(z) - sin(0)
= dx = dy=dz

2
- sin(—g—) = 0.28898
[Fai = [(x*=2y)dx - dyzdy + 4xz0iz ~ 0.289
. c

1
= [(x7 -2 - 4x® + 4x®) 247. (b)
0 24y
3 51 47 U= tog( -J is non-homogeneous
3 o 2 Jo 4 Jo y_ Xy o
T I FHuy=e" = iy is homogeneous function of!
degree

N=xu +yu,

U
- nff_u)_:1i:1
F'(u) e"
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