Volume (English Medium)

Exercise

Solution 1:

- 1. 1 kilolitre = 1000 litre
- 1000 cu cm = 1000 mililitre
 1 cu cm = 1 ml
 1000 cu cm = 1 × 1000 mililitre
- 3. 1 cu m = 1000 litre
 1 cu m = 100 × 100 × 100 = 10,00,000 ml
 10,00,000 ml = 1000 litre ...(1000 ml = 1 litre)
- 4. 1 cu cm = 1 mililitre
- 5. 1 litre = 1000 cu cm
 1 litre = 1000 ml
 1 ml = 1 cu cm
 1000 ml = 1000 cu cm
- 6. 4 cu m = 40,00,000 cu cm
 - 1 cu m = 10,00,000 cu cm
 - 4 cu m = 40,00,000 cu cm
- 7. 8 litre = 8,000 cu cm
 - 1 litre = 1000 cu cm
 - 8 litre = 8000 cu cm
- 8. 1 cu m = 1 kilolitre
 - 1 cu m = 10,00,000 ml ...(1 cu cm = 1 ml)
 - 1 cu m = 1000 litre ...(1000 ml = 1 litre)
 - 1 cu m = 1 kilolitre ...(1000 litre = 1 kilolitre)
- 9. Formula to find volume of a cube is I3
- 10. Formula to find volume of cuboid is $I \times b \times h$

Solution 2:

Sr. No.	Length	Breadth	Height	Volume
(1)	15 cm	15 cm	15 cm	<u>3375 cm³</u>
(2)	20 cm	15 cm	10 cm	<u>3000 cm³</u>
(3)	<u>10 m</u>	<u>10 m</u>	<u>10 m</u>	1000 m ³
(4)	35 cm	15 cm	8 cm	<u>4200 cm³</u>
(5)	9 m	9 m	9 m	<u>729 m³</u>

Calculations:

- (1) Volume of a cube = $|^3 = 15 \times 15 \times 15 = 3375 \text{ cm}^3$
- (2) Volume of a cuboid = $1 \times b \times h = 20 \times 15 \times 10 = 3000 \text{ cm}^3$
- (3) Length, breadth and height can be found from volume only in case of cube, not in case of a cuboid
 Now, volume of a cube = l³
 ∴ Length of a cube = ∛Volume = ∛10 × 10 × 10 = 10 m³
- (4) Volume of a cuboid = $1 \times b \times h = 35 \times 15 \times 8 = 4200 \text{ cm}^3$
- (5) Volume of a cube = $|^3 = 9 \times 9 \times 9 = 729 \text{ m}^3$

Solution 3:

Given :

Length of the cuboidal tank = 20 m Breadth of the cuboidal tank = 15 m Height of the cuboidal tank = 2 m Volume of a cuboid = $1 \times b \times h$ \therefore Volume of the cuboidal tank = $(20 \times 15 \times 2) \text{ m}^3$ = 600 m³ Thus, the volume of a cuboidal tank is 600 m³.

*The question has been rectified.

Solution 4:

Given:

Length of the cuboidal cement block = 30 cm Breadth of the cuboidal cement block = 23 cm Height of the cuboidal cement block = 12 cm Volume of a cuboid = $l \times b \times h$ \therefore Volume of the cuboidal cement block = (30 × 23 × 12) cm³ = 8280 cm³ Thus, the volume of the cuboidal cement block is 8280 cm³. *The question has been rectified.

Solution 5:

Given: Length of the cuboidal salt-pan = 30 m Breadth of the cuboidal salt-pan = 10 m Height (depth) of the cuboidal salt-pan = 10 cm = 0.10 m Volume of a cuboid = $l \times b \times h$ \therefore Volume of cuboidal salt-pan = (30 × 10 × 0.10) m³ = 30 m³ Thus, the volume of the cuboidal salt-pan is 30 m³. To find the capacity of tank, convert the volume of the tank (30 m³) into litres. Volume of 1 m³ = 1000 litres \therefore 30 m³ = (30 × 1000) = 30,000 litres. Hence, 30,000 litres of sea water can be contained in the salt-pan.

Solution 6:

Given:

Length of the cubical tank = 3 m Volume of a cube = I^3 \therefore Volume of cubical tank = (3 × 3 × 3) m³ = 27 m³ Hence, Volume of the cubical tank is 27 m³ To find the capacity of tank, convert the volume of the tank, 27 m³ into litres. Volume of 1 m³ = 1000 litres \therefore 27 m³ = (27 × 1000) = 27,000 litres. Hence, 27,000 litres of water can be stored in the tank.

Solution 7:

Given: Length of the cuboidal box = 30 cmBreadth of the cuboidal box = 20 cmHeight of the cuboidal box = 10 cm

Volume of a cuboid = $l \times b \times h$:. Volume of cuboidal box = (30 × 20 × 10) cm³ = 600 cm³

Length of the cube = I = 5 cm Volume of one cube = I^3 :: Volume of each small cube = $(5 \times 5 \times 5)$ cm³ = 125 cm³

Now, number of smaller cubes that can be arranged in the cuboidal box $= \frac{\text{Volume of the cuboidal box}}{\text{Volume of one cube}}$ $= \frac{6000}{125}$

= 48

Hence, 48 cubes can be arranged in the box.

Solution 8:

Given: Length of the cuboidal milk tank = 2 m = 200 cmBreadth of the cuboidal milk tank = 50 cmHeight of the cuboidal milk tank = 40 cm

Volume of a cuboid = $I \times b \times h$: Volume of a cuboidal milk tank = $(200 \times 50 \times 40)$ cm³ $= 4,00,000 \text{ cm}^3$

Total quantity of milk in the tank = 4,00,000 cm³ $1 \text{ cm}^3 = 1 \text{ ml}$ $\therefore 4,00,000 \text{ cm}^3 = 4,00,000 \text{ ml}$

Now, each milk packet contains 200 ml of milk.

Thus, number of packets that can be filled with milk in the tank

Milk in the tank Milk in each packet = 4,00,000 200 = 2,000

Hence, 2,000 packets of milk can be filled.

Solution 9:

Given:

Length of the bigger cuboidal box = 45 cmBreadth of the bigger cuboidal box = 30 cm Height of the bigger auboidal box = 20 cm

Volume of a cuboid = $I \times b \times h$:: Volume of the bigger cuboidal box = $(45 \times 30 \times 20)$ cm³ $= 27000 \text{ cm}^3$

Given: Length of the smaller cuboidal box = 15 cmBreadth of the smaller α boidal box = 6 cm Height of the smaller cuboidal box = 4 cm

:: Volume of the smaller cuboidal box = $(15 \times 6 \times 4)$ cm³ $= 360 \text{ cm}^3$

Now, number of smaller boxes which can be arranged in medicine box Volume of bigger cuboidal box

Volume of one smaller cubodal box

 $=\frac{27000}{360}$

= 75

Thus, 75 smaller boxes can be arranged in the bigger box.

Practice – 1

Solution 1:

Let 'l' be the length of the cube. Volume of a cube = length × length × length = l^3 \therefore Volume of a cube of length 20 cm = (20 × 20 × 20) cm³ = 8000 cm³ Hence, the volume of the cube is 8000 cm³.

Solution 2:

The box is cuboid in shape.

Let 'l' be the length, 'b' be the breadth and 'h' be the height of the cuboid. Volume of a cuboid = $l \times b \times h$ \therefore Volume of the cuboid with dimensions 2 metre \times 3 metre \times 1 metre = $(2m \times 3m \times 1m)$ = $6 m^3$ Hence, the volume of the cuboidal box is $6 m^3$.

Solution 3:

Let 'l' be the length of the cube.

Volume of a cube = length × length × length = I^3 \therefore Volume of a cube of length 12 cm = (12 × 12 × 12) cm³ = 1728 cm³ Hence, the volume of the given cube is 1728 cm³.

Solution 4:

Let 'l' be the length, 'b' be the breadth and 'h' be the height of the cuboid. Volume of a cuboid = $l \times b \times h$ \therefore Volume of given cuboid = $(10 \times 8 \times 6) \text{ m}^3$ = 480 m³ Hence, the volume of the cuboid is 480 m³. *The question has been rectified.

Solution 5:

Let 'l' be the length of the cube. Volume of a cube = length × length × length = l^3

∴ Volume of a cubic stone of length 40 cm = $(40 \times 40 \times 40)$ cm³ = 64000 cm³ Hence, the volume of the cube is 64,000 cm³.

Solution 6:

Volume of a cuboid = $I \times b \times h$ \therefore Volume of the cuboidal brick of length 24 cm, breadth 10 cm and height 8 cm = $(24 \times 10 \times 8)$ cm³ = 1920 cm³ Hence, the volume of the brick is 1920 cm³.

Solution 7:

Volume of a cuboid = $l \times b \times h$ \therefore Volume of a cuboidal compass box of length 16 cm, breadth 4 cm and height 2 cm = $(16 \times 4 \times 2) \text{ cm}^3$ = 128 cm^3 Hence, the volume of the compass box is 128 cm^3 .

Solution 8:

Volume of a cuboid = $l \times b \times h$ \therefore Volume of a cuboidal tank of length 3 m, breadth 2 m and height 6 m = $(3 \times 2 \times 6) m^3$ = $36 m^3$ Hence, the volume of the tank is $36 m^3$.

Practice - 2

Solution 1:

There are two boxes, and both the boxes have a cuboid shape.

Volume of a cuboid = $l \times b \times h$:. Volume of the bigger box = (80 × 60 × 40) cm³ = 192000 cm³

Volume of cube = 1³

:. Volume of one small cubical box = $(20 \times 20 \times 20)$ cm³ = 8000 cm³

Now, number of small boxes which can be arranged in the bigger box

= Volume of bigger box Volume of one smaller box = 192000 8000 = 24

Hence, 24 smaller cubical boxes can be arranged in the bigger cubcidal box.

Solution 2:

The brick is a cuboid. Volume of a cuboid = I × b × h .: Volume of cuboidal brick = 25 cm × 10 cm × 8 cm = 2000 cm³

Length of earth dug out from the cubical pit = 2m = 200 cm Volume of a cube = 1^3 .: Volume of the earth dug out from the cubical pit = $(200 \times 200 \times 200)$ cm³ = 80,00,000 cm³

Now, number of bricks which can be made from the earth dug out

 Volume of earth dug out Volume of one brick
 = 8000000 2000
 = 4000
 Hence, 4000 bricks can be made from the earth dug out from a cubical pit.

Solution 3:

Volume of a cuboid = $l \times b \times h$ \therefore Volume of the cuboidal tank = 3 m \times 2 m \times 2 m = 12 m³ To find the capacity of the tank, convert the volume of the tank 12 m³ into litres. Now, 1 m³ = 1000 litres \therefore 12 m³ = (12 \times 1000) = 12,000 litres. Hence, 12,000 litres of water can be stored in the tank.

Solution 4:

Volume of a cuboid = $l \times b \times h$... Volume of a cuboidal box of length 51 cm, breadth 36 cm and height 18 cm = $(51 \times 36 \times 18)$ cm³

Vdume of ane aubaidal compass box of length 17 cm, breadth 9 cm and height 2 cm = $(17 \times 9 \times 2)$ cm³

Now, number of compass boxes which can be arranged in the box

 $= \frac{\text{Volume of the box}}{\text{Volume of one compass-box}}$ $= \frac{51 \times 36 \times 18}{17 \times 9 \times 2}$ $= \frac{3 \times 4 \times 9}{1 \times 1 \times 1}$ = 108

Hence, 108 compass boxes can be arranged in the box.

Solution 5:

Volume of a cuboid = $1 \times b \times h$ Length of the cuboidal iron tank = 100 cm Breadth of the cuboidal iron tank = 80 cm Height of the cuboidal iron tank = 60 cm

:. Volume of the cuboidal iron tank = $(100 \times 80 \times 60)$ cm³ = 4,80,000 cm³

To find the capacity of the cuboidal iron tank, convert the volume of the tank into litres. Volume of $1000 \text{ cm}^3 = 1$ litre

:: 4,80,000 cm³ =
$$\left(\frac{4,80,000}{1000}\right)$$
 litres = 480 litres

Hence, the tank would contain 480 litres of kerosene. * The question has been rectified.