14

PRACTICE PAPER

Time allowed: 45 minutes Maximum Marks: 200

General Instructions: As given in Practice Paper - 1.

Section-A

Choose the correct option:

Which of the given values of x and y make the following pair of matrix equal

$$\begin{bmatrix} 3x+7 & 5 \\ y+1 & 2-3x \end{bmatrix}, \begin{bmatrix} 0 & y-2 \\ 8 & 4 \end{bmatrix}$$
?

(a)
$$x = -\frac{1}{3}$$
, $y = 7$ (b) x cannot be determined and $y = 7$

(c)
$$x = -\frac{2}{3}$$
, $y = 7$ (d) $x = -\frac{1}{3}$, $y = -\frac{2}{3}$

2. For any 2 × 2 matrix A if A(adj A) = $\begin{pmatrix} 12 & 0 \\ 0 & 12 \end{pmatrix}$, then $|A|^3$ equals

(a) 12^2 (b) 12^3 (c) 12^4 (d) None of these

Let A and B be two invertible matrices of order 3 × 3. If det(ABA') = 8 and det (AB⁻¹) = 8, then det (BA⁻¹B') is equal to

(a) 1 (b)
$$\frac{1}{4}$$
 (c) $\frac{1}{16}$ (d) 16

4. If $f(x) = \log(\sin x)$ then $f''\left(\frac{\pi}{4}\right)$ is equal to

(a) 2 (b) -2 (c) 1 (d) -1

5. Let $f(x) = 2 \sin^3 x - 3 \sin^2 x + 12 \sin x + 5$, $0 \le x \le \frac{\pi}{2}$. Then f(x) is

(a) decreasing in
$$\left[0, \frac{\pi}{2}\right]$$
 (b) increasing in $\left[0, \frac{\pi}{2}\right]$

(c) increasing in $\left[0, \frac{\pi}{4}\right]$ and decreasing in $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ (d) none of these

6.
$$\int \frac{e^{2x} dx}{\sqrt[4]{e^x - 1}}$$
 equals
(a) $\frac{4}{21} (e^x - 1)^{3/4} (3e^x + 4) + C$ (b) $\frac{(e^x - 1)^{1/4} (3e^x + 4)}{21} + C$

(a)
$$\frac{4}{21}(e^x + 1)(3e^x + 4) + C$$
 (b) $\frac{4}{21}(e^x + 1)(3e^x + 4) + C$ (d) None of these

7.
$$\int \frac{x^{1/2}}{x^3 + a^3} dx$$
 equals

(a)
$$\frac{1}{3} \tan^{-1} \left(\frac{x}{a} \right)^{3/2} + C$$

(b)
$$\frac{2}{a^{3/2}} \tan^{-1} \left(\frac{x}{a}\right)^{3/2} + C$$

(c)
$$\frac{2}{3} \frac{1}{a^{3/2}} \tan^{-1} \left(\frac{x}{a}\right)^{3/2} + C$$

(d) None of these

8. The values of a and b, if the equations $\int (\sin 2x - \cos 2x) dx = \frac{1}{\sqrt{2}} \sin (2x - a) + b$ hold good are

(a)
$$a = -\frac{5\pi}{4}$$
, $b \in \mathbb{R}$

(b)
$$a = \frac{5\pi}{4}, b \in \mathbb{R}$$

(c)
$$a \in \mathbb{R}, b = \frac{5\pi}{4}$$

(d)
$$b = -\frac{5\pi}{4}$$
, $a \in \mathbb{R}$

9. Read the following statements.

Statement I : If f is an even function, then $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$.

Statement II : $\int_{1}^{\sqrt{3}} \frac{dx}{1+y^2} = -\frac{\pi}{12}$

Choose the correct option:

- (a) Statement I is correct but statement II is not correct.
- (b) Statement II is correct but statement I is not correct.
- (c) Both statements I and II are correct.
- (d) None of these

10. The area bounded by the curve $y = x^3$, the x-axis and the ordinates x = -1 and x = 1 is

(a)
$$\frac{1}{2}$$
 sq. unit

(c)
$$\frac{14}{3}$$
 sq. units

(d) None of these

11. The order and degree of differential equation whose solution is $Ax^2 + By^2 = 1$, where A and B are arbitrary constants is

(d) 2, 1

12. The solution of the equation $\frac{d^2y}{dx^2} = e^{-3x}$ is

(a)
$$y = \frac{e^{-3x}}{9} + Cx$$

(b)
$$y = \frac{e^{-3x}}{9} + C$$

(c)
$$y = \frac{e^{-3x}}{9} + C_1x + C_2$$
 (d) None of these

13. Objective function of a LPP is

(a) a quadratic function

- (b) a constant
- (c) a linear function to be optimised
- (d) None of these

14. The probability distribution of X is given by

X	0	1	2	3
P(X)	1/8	3 8	k	1/8

then k is equal to

(a)
$$\frac{1}{8}$$

(b)
$$\frac{3}{8}$$

(c)
$$\frac{1}{4}$$

(d) None of these

15. A die is thrown six times, the chance that exactly 3 times an odd number turn up is

(a)
$$\frac{1}{16}$$

(b)
$$\frac{3}{16}$$

(c)
$$\frac{5}{16}$$

(d) none of these

			2	ection-B	(B1)			
16.	Let R be the relation defined on the set N of natural numbers by the rule x R y iff $x + 2$ $y = 8$, then domain R is							
	(a) {2,4,8}			(1	b) {2,4,6}			
	(c) {2,4,6,8}			(4	d) {1,2,3,4}			
17.	If $f:[1,\infty)\to[3,\infty)$ is given by $f(x)=x+\frac{2}{x}$, then $f^{-1}(x)$ is equal to							
	$(a) \ \frac{x - \sqrt{x^2 - 8}}{2}$	($b) \frac{x}{2+x^2}$	($\frac{x + \sqrt{x^2 - 8}}{2}$	(d) None of these		
18.	Let $f: R \to R$ be a function such that $f(x) = \frac{1}{1+x'}$, then $f \circ f \circ f(x)$ is							
	(a) $\frac{2+x}{3+2x}$	(b) 0	(c) does not exist	(d) None of these		
19.	Which of the following functions from Z into Z are bijections?							
	(a) f(x) = x + 3	($b) \ f(x) = x^3$	($c) \ f(x) = 2x + 1$	$(d) \ f(x) = 2x$		
20.	Let * be binary operation on Z (set of integers) as $a * b = 2 + ab$ then $(2 * 3) * 4$ is equal to							
	(a) 8	(b) 14	(c) 34	(d) None of these		
21.	The value of sin (2 sin ⁻¹ (0.	8)) is					
	(a) sin 1.6	(b) 1.6	(c) 0.96	(d) 4.8		
22.	The greatest and least value of $(\sin^{-1} x)^2 + (\cos^{-1} x)^2$ are respectively							
	(a) $\frac{\pi}{2}$ and $-\frac{\pi}{2}$	(b) $\frac{5\pi^2}{4}$ and $\frac{\pi^2}{8}$	(c) $\frac{\pi^2}{2}$ and $-\frac{\pi^2}{2}$	(d) $\frac{\pi}{2}$ and 0		
23.	If $tan^{-1} y = 4 tan^{-1} x$, then y is not finite if							
	(a) $x^2 = 3 \pm 2\sqrt{2}$	($b) \ \ x^2 = 2 - 2\sqrt{2}$	(c) $x^4 = 6x^2 - 1$	(d) $x^4 = 6x^2 + 1$		
24.	If $\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \frac{3\pi}{2}$ and $f(1) = 1$, $f(p+q) = f(p).f(q)$, $\forall p, q \in R$, then							
	$x^{f(1)} + y^{f(2)} + z^{f(3)} - \frac{x + y + z}{x^{f(1)} + y^{f(2)} + z^{f(3)}}$ is equal to							
	(a) 2	(b) 1	(c) 0	(d) 3		
25.	The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is							
	(a) 27	(b) 18	(c) 81	(d) 512		
26.	Matrix A and B w	ill be inv	erse of each oth	er only if				
	(a) $AB = BA$	($b) \ AB = BA = 0$	(c) $AB = 0$, $BA = I$	$(d)\ AB = BA = I$		
	x+	1 x + 2 x	: + a					
27.	The value of $\begin{vmatrix} x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{vmatrix}$ where a, b and c are in AP is							
	(a) 1		b) -1		c) 0	(d) None of these		
		$\sin A$	$\cos A$	$\sin A + \cos$	os B			
28.	The determinant	sin B sin C	$\cos A$ $\cos A$	$\sin B + \cos B$	os B is equal to			
	(a) $\cos A$		b) -1		c) 10	(d) 0		
29.	Read the following	g stateme	nts.					

Statement I : If $x^y = y^x$, then $\frac{dy}{dx} = \frac{y(x \log y + y)}{x(y \log x + x)}$

Statement II : If $y = e^x$ then $\frac{d^2y}{dx^2} = y$

Choose the correct option:

- (a) Statement I is correct but statement II is not correct.
- (b) Statement II is correct but statement I is not correct.
- (c) Both statements I and II are correct.
- (d) None of these
- 30. The function $f(x) = \begin{cases} \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$ at x = 0
 - (a) is continuous.

(b) has removable discontinuity.

(c) has jump discontinuity.

- (d) has oscillating discontinuity.
- 31. The function $f(x) = \begin{cases} 2 x, & \text{if } x < 2 \\ 2 + x, & \text{if } x \ge 2 \end{cases}$ at x = 2
 - (a) is continuous.

(b) has removable discontinuity.

(c) has jump discontinuity.

- (d) has oscillating discontinuity.
- 32. Let y be a function of x such that $\log(x + y) 2xy = 0$, then y'(0) is
 - (a) 0

(b) 1

(c) 1/2

(d) $\frac{3}{2}$

- 33. Let f(x) be a function such that $f'(a) \neq 0$. Then at x = a, f(x)
 - (a) cannot have a maximum

- (b) cannot have a minimum
- (c) must have neither a maximum nor a minimum
- (d) None of these

34. Read the following statements.

Statement I : $\int_{0}^{1} \frac{e^{x}}{1 + e^{2x}} dx = \tan^{-1} e + \frac{\pi}{4}$

Statement II : $\int_{a}^{b} f(x) dx = \int_{a}^{a} f(t) dt$

Choose the correct option:

- (a) Statement I is correct but statement II is not correct.
- (b) Statement II is correct but statement I is not correct.
- (c) Both statements I and II are correct.
- (d) None of these
- 35. If $\int \frac{dx}{4\sin^2 x + 4\sin x \cos x + 5\cos^2 x} = A \tan^{-1} (B \tan x + C)$, then

(a)
$$A = \frac{1}{4}$$
; $B = \frac{1}{2}$, $C = 1$

(b)
$$A = \frac{1}{2}, B = \frac{1}{4}, C = 1$$

(c)
$$A = 1, B = \frac{1}{2}, C = \frac{1}{4}$$

(a)
$$A = \frac{1}{4}$$
; $B = \frac{1}{2}$, $C = 1$ (b) $A = \frac{1}{2}$, $B = \frac{1}{4}$, $C = 1$ (c) $A = 1$, $B = \frac{1}{2}$, $C = \frac{1}{4}$ (d) $A = \frac{1}{4}$, $B = 1$, $C = \frac{1}{2}$

- 36. If $\int \frac{(\sqrt{x})^3}{(\sqrt{x})^5 + x^4} dx = A \log \left(\frac{x^k}{x^k + 1}\right) + C$, then the value of A and k respectively are
 - (a) $\frac{3}{2}$ and $\frac{2}{3}$
- (b) $\frac{3}{2}$, 2
- (c) $\frac{2}{3}$ and $\frac{3}{2}$
- (d) does not exists

	_	4	(c) $\frac{1}{6}$ sq. unit	10			
38.	Let $y(x)$ be the solution of the differential equation $(x \log x) \frac{dy}{dx} + y = 2x \log x$, $x \ge 1$. Then the value of $y(e)$ is						
	(a) 3	(b) 2	(c) 2e	(d) 0			
39.	The order and degree of o	differential equation $x = 1$	$+\frac{dy}{dx} + \frac{1}{2!} \left(\frac{dy}{dx}\right)^2 + \frac{1}{3!} \left(\frac{dy}{dx}\right)^3 +$	is			
	(a) 1, 2		(c) 3, 2	(d) 1, 1			
40.	$(\vec{a}\cdot\hat{i})^2 + (\vec{a}\cdot\hat{j})^2 + (\vec{a}\cdot\hat{k})^2$ e						
	(a) 1	(b) a	. ,	(d) \overrightarrow{a}^2			
41.	If \overrightarrow{ABCDEF} is regular hexagon and $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{BC} = \overrightarrow{b}$, $\overrightarrow{CD} = \overrightarrow{c}$, then \overrightarrow{AE} is						
	4 6	(b) $\vec{b} + \vec{c}$	4.5				
42.	Unit vectors $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}$ are	inclined at an angle φ and	$d \mid \vec{\alpha} - \vec{\beta} \mid < 1$, if $0 \le \phi \le \pi$, then ϕ may belong to			
	(a) $\left[0, \frac{\pi}{3}\right]$	(b) $\left[\frac{2\pi}{3}, \frac{4\pi}{3}\right]$	(c) $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$	(d) None of these			
43.	If \vec{a} and \vec{b} are two colling	near vectors, then which of	the following is incorrect?				
	(a) $\vec{b} = \lambda \vec{a}$, for some scalar λ .						
	(b) $\vec{a} = \pm \vec{b}$						
	(c) The respective components of \vec{a} and \vec{b} are proportional.						
	(d) Both the vectors \vec{a} and	\vec{b} will always have same of	direction, but different magn	nitudes.			
44.	If the projections of a line segment is	e segment AB on x, y and z a	xis are respectively 3, 4 and	5, then the length of the line			
	(a) $7\sqrt{2}$	(b) √2	(c) 3√2	(d) 5√2			
45.	The two lines $x = ay + b$,	z = cy + d and $x = a'y + b'$, z	= c'y + d' will be perpendi	cular, if and only if			
	$(a) \ aa'+bb'+cc'=1$		(b) $aa' + cc' + 1 = 0$				
	(c) $(a + a')(b + b') + (c + c')$	= 0	(d) $a' + b' + c' = 0$				
46.			/	listances a, b, c and a', b', c'			
	respectively from the orig	gin, such that $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$	$= k \left(\frac{1}{a'^2} + \frac{1}{b'^2} + \frac{1}{c'^2} \right).$ Then the	ne value of k is			
	(a) 4	(b) 1	(c) 5	(d) 7			
47.			where O is origin) are 6, 2, 3				
	(a) $\frac{1}{3}$, $\frac{2}{3}$, $\frac{1}{3}$	(b) $\frac{2}{7}, \frac{5}{7}, \frac{3}{7}$	(c) $\frac{6}{7}, \frac{2}{7}, \frac{3}{7}$	(d) $\frac{6}{7}, \frac{2}{7}, \frac{6}{7}$			
48.	If A and B are two events such that $P(A) = P\left(\frac{A}{B}\right) = \frac{1}{4}$ and $P\left(\frac{B}{A}\right) = \frac{1}{2}$, then $P\left(\frac{A'}{B'}\right)$ equals						
	(a) $\frac{3}{4}$	(b) 1/4	(c) $\frac{2}{3}$	(d) none of these			
49.	If A and B are independ	If A and B are independent events. The probability that the both A and B occurs is $\frac{1}{12}$ and probability					
	neither A nor B occurs is $\frac{1}{2}$, then						

37. The area of the region bounded by $y = \sqrt{x}$ and y = x is

- $(a) \ P(A) = \frac{1}{3}, P(B) = \frac{1}{4} \qquad (b) \ P(A) = \frac{1}{2}, P(B) = \frac{1}{6} \qquad (c) \ P(A) = \frac{1}{6}, P(B) = \frac{1}{2} \qquad (d) \ P(A) = \frac{1}{4}, P(B) = \frac{1}{6}$

- 50. A mapping is selected at random from set $A = \{1, 2, \dots, 10\}$ into itself. The probability that mapping selected is an injective, is
 - (a) $\frac{10}{10^9}$
- (b) $\frac{9!}{10^9}$
- (c) $\frac{9}{10}$

(d) none of these