CBSE Test Paper-03

Class - 12 Chemistry (Coordination Compounds)

- 1. The oxidation number of cobalt in K[Co(CO)₄] is
 - a. -1
 - b. +1
 - c. -3
 - d. +3
- 2. Lithiumtetrahydridoaluminate is represented as
 - a. $Al_2[LiH_4]_3$
 - b. Li[AlH₄]₂
 - c. Al[LiH₄]
 - d. Li[AlH₄]
- 3. Which among the following has trigonal bipyramidal geometry?
 - a. Pentacarbonyliron (0)
 - b. Potassium tetracyanidonickelate(II)
 - c. Tetracarbonylnickel(0)
 - d. Hexaamminecobalt(II) nitrate
- 4. The correct name of the compound $[Cu(NH_3)_4](NO_3)_2$ is
 - a. Cuprammonium nitrate
 - b. Tetraamminecopper(I) nitrate
 - c. Tetraamminecopper(II) nitrate
 - d. Tetraamminecopper(II)dinitrate
- 5. Which of the following complex species involves d^2sp^3 hybridization?
 - a. $[Cr(NH_3)_6]^{3+}$
 - b. [Fe(CN)₆]³⁻
 - c. $[Co(N{H_3})_6]^{3+}$
 - d. $[CoF_6]^{3-1}$

- 6. What is the coordination number of central metal ion in $[Fe(C_2O_4)_3]^3$?
- 7. What are complex compounds?
- 8. Name the metal present in haemoglobin.
- 9. Explain why a chelating complex is more stable than unchelated complex.
- 10. Give IUPAC name of linkage isomer of [(NH₃)₃Pt(NO₂)]Cl.
- 11. Describe briefly the nature of bonding in metal carbonyl.
- 12. Draw the structures of the given:
 - i. cis-dichloro tetracyano chromate III
 - ii. pentaammine nitrite-N-cobalt (III)
 - iii. Hexamethyldialuminium.
- 13. a. What are ambidentate ligands? Give example.
 - b. Write the IUPAC names of the following:
 - i. $K_3[Fe(C_2O_4)_3]$
 - ii. $Pt[(NH_3)_6]Cl_4$
 - c. Draw the structure of cis isomer of $[Co(NH_3)_4Cl_2]^+$
- 14. $[Fe(CN)_6]^{4-}$ and $[Fe(H_2O)_6]^{2+}$ are different colours in dilute solution why?
- 15. Write the formulas for the following coordination compounds:
 - i. Tetraamminediaquacobalt (III) chloride
 - ii. Potassium tetracyanonickelate (II)
 - iii. Tris(ethane-1,2-diamine) chromium(III) chloride
 - iv. Amminebromidochloridonitrito-N-platinate (II)
 - v. Dichloridobis(ethane-1,2-diamine)platinum(IV) nitrate
 - vi. Iron(III) hexacyanoferrate (II)

CBSE Test Paper-03 Class - 12 Chemistry (Coordination Compounds) Solutions

1. (a) -1

Explanation: Potassium ion K⁺ carries a +1 charge. So the overall charge on the given complex is -1. Now CO is a neutral ligand. Hence the oxidation number of Co in this complex is -1.

2. (d) Li[AlH₄]

Explanation: The cation is named first and then the anion. When the anion is the complex then the -ate is added to the name of the central metal. Here there are 4 hydride ligands represented as H⁻ each carries a charge of -1 and hence a total of -4 charge on the ligands. Lithium ion is represented by Li⁺ and carries a +1 charge which means the charge on the complex is -1. In the complex, central metal atom/ion is written followed by the ligands in alphabetical order. Lithium tetrahydridoaluminate(III) is Li[AlH₄].

3. (a) Pentacarbonyliron (0)

Explanation: Iron (Z=26) has an electronic configuration $1s^22s^22p^63s^23p^63d^64s^2$. CO being a strong field ligand, causes pairing of electrons in the d orbital and shifting of 4s electrons to 3d orbital. With a coordination number 5 it results in sp ³ d hybridisation and hence a trigonal bipyramidal geometry.

4. (c) Tetraamminecopper(II) nitrate

Explanation: In ionic compound, cation is named first and then the anion. If cation is the complex then ligands are named first in alphabetical order and then the central metal atom/ion with its oxidation state in paranthesis in roman numerals. Here, NH ₃ (ammine) is the neutral ligand and there are 4 NH ₃ bound to Cu (copper). Nitrate

 NO_3^- is the anion there are two NO $_3^-$ outside the square bracket each carries -1 charge so there is a total of -2 charge on anions and thus the complex carries a total of +2 charge. Since ammine is a neutral ligand so Cu has +2 oxidation state. So, $[Cu(NH_3)_4](NO_3)_2$ is tetraamminecopper(II) nitrate.

5. (b) $[Fe(CN)_6]^{3-1}$

Explanation: In this complex there are 6 CN⁻ ligands means a total of -6 charge on ligands. There is a charge of -3 on the complex so oxidation state of Fe is +3. Atomic number of Fe is 26. So the electronic configuration of Fe⁺³ is $1s^22s^22p^63s^23p^63d^3$. Coordination number of the metal is 6 so the complex has octahedral geometry and since CN⁻ is a strong field ligand so it causes pairing and hence inner orbital complex is formed. So the hybridization is d² sp³.

- 6. Six
- 7. Complex compounds or coordination compounds are those compounds in which the metal atoms are bound to a number of anions or neutral molecules.
- 8. Fe
- Chelating complex is more stable than unchelated complex because there is strong force of attraction between cation and polydenatate ligand as compared to monodentate ligand.
- 10. The linkage isomer is [Pt(ONO)(NH₃)₃]Cl
 IUPAC Name triaminenitrito-o-platinum II chloride.
- 11. The metal carbon bond in metal carbonyls possess both S & P character. The M-C σ bond is formed by the donation of lone pair of electrons on the carbonyl carbon into a vacant orbital of the metal. M-C π bond is formed by the donation of a pair of electrons from a filled d-orbital of metal into the antibonding π orbital of carbon monoxide.

13. a. Ambidenctate ligand. Ligands which can ligate (link) through two different atoms present in it are called ambidentate ligands, e.g. NO_2^- , SCN^- , $M \leftarrow SCN_{Thiocyanato}$

 $\underset{Isothiocyanato}{M \leftarrow NCS}$

- b. i. Potassium Trioxalato Ferrate (III)
 - ii. Hexaamine platinum (IV) chloride
- c. cis- $[Co(NH_3)_4Cl_2]^+$

14. In both the complexes, Fe is in +2 state with the configuration 3d⁶, i.e. it has four unpaired electrons.

As the ligands H_2O and CN^- posses different crystal field splitting energy (Δ_0) they absorb different components of the visible light (VIBGYOR) for d-d transition. Hence, the transmitted colours are different.

- 15. i. $[CO(H_2O)_2(NH_3)_4]Cl_3$
 - ii. $K_2[Ni(CN)_4]$
 - iii. $[Cr(en)_3]Cl_3$
 - iv. $\left[Pt(NH)_{3}BrCl(NO_{2})\right]^{-}$
 - v. $[PtCl_2(en)_2](NO_3)_2$
 - vi. $Fe_4[Fe(CN)_6]_3$