Chapter - 2

(Polynomials)

Key Concepts

Constants : A symbol having a fixed numerical value is called a constant.

Example : 7, 3, -2, 3/7, etc. are all constants.

Variables : A symbol which may be assigned different numerical values is known as variable.

Example : $C = 2\pi r$ C - circumference of circle

r - radius of circle

Where 2 & π are constants. while C and r are variable

Algebraic expressions : A combination of constants and variables. Connected by some or all of the operations +, -, X and \div is known as algebraic expression.

Example : $4 + 9x - 5x^2y + \frac{3}{8}xy$ etc.

Terms : The several parts of an algebraic expression separated by '+' or '-' operations are called the terms of the expression.

Example : $x^3 + 2x^2y + 4xy^2 + y^3 + 7$ is an algebraic expression containing 5 terms x^3 , $2x^3y$, $-4xy^2$, $y^3 \& 7$

Polynomials : An algebraic expression in which the variables involved have only nonnegative integral powers is called a polynomial.

(i) $5x^3 - 4x^2 - 6x - 3$ is a polynomial in variable x.

(ii) $5 + 8x^{3/2} + 4x^{-2}$ is an expression but not a polynomial.

Polynomials are denoted by p(x), q(x) and r(x) etc.

Coefficients : In the polynomial $x^3 + 3x^2 + 3x + 1$, coefficient of x^3, x^2, x are 1, 3, 3 respectively and we also say that +1 is the constant term in it.

Degree of a polynomial in one variable : In case of a polynomial in one variable the highest power of the variable is called the degree of the polynomial.

Classification of polynomials on the basis of degree.

	degree	Polynomial	Example
(a)	1	Linear	x + 1, $2x + 3$ etc.
(b)	2	Quadratic	$ax^2 + bx + c$ etc.
(C)	3	Cubic	$x^3 - 3x^2 + 1$ etc.
(d)	4	Biquadratic	$x^4 - 1$

Classification of polynomials on the basis of no. of terms

No. of terms		Polynomial & Examples.		
(i)	1	Monomial - $5, 3x, \frac{1}{3}y$ etc.		
(ii)	2	Binomial - $(3 + 6x)$, $(x - 5y)$ etc.		
(iii)	3	Trinomial- $2x^2 + 4x + 2$ etc.		

Constant polynomial : A polynomial containing one term only, consisting a constant term is called a constant polynomial the degree of non-zero constant polynomial is zero. **Zero polynomial :** A polynomial consisting of one term, namely zero only is called a zero polynomial.

The degree of zero polynomial is not defined.

Zeroes of a polynomial : Let p(x) be a polynomial. If $p(\alpha) = 0$, then we say that α is a zero of the polynomial of p(x).

Remark : Finding the zeroes of polynomial p(x) means solving the equation p(x)=0.

Remainder theorem : Let f(x) be a polynomial of degree $n \ge 1$ and let a be any real number. When f(x) is divided by (x - a) then the remainder is f(a)

Factor theorem : Let f(x) be a polynomial of degree n > 1 and let a be any real number.

(i) If f(a) = 0 then (x - a) is factor of f(x)

(ii) If (x - a) is a factor of f(x) then f(a) = 0

Factor : A polynomial p(x) is called factor of q(x), if p(x) divides q(x) exactly.

Factorization : To express a given polynomial as the product of polynomials each of degree less than that of the given polynomial such that no such a factor has a factor of lower degree, is called factorization.

Example : $x^2 - 16 = (x + 4)(x - 4)$

Methods of Factorization :

Factorization by taking out the common factor

e.g.

 $36q^3b - 60a^2bc = 12a^2b (3a - 5c)$

Factorizing by grouping

$$ab + bc + ax + cx = (ab + bc) + (ax + cx)$$
$$= b (a + c) + x (a + c)$$
$$= (a + c) (b + x)$$

Factorization of quadratic trinomials by middle term splitting method.

$$x^{2} + bc + c = x^{2} + (p + q)x + pq$$

= $(x + p)(x + q)$

Identity : Identity is a equation (trigonometric, algebraic) which is true for every value of variable.

Some algebraic identities useful in factorization:

(i)
$$(x + y)^2 = x^2 + 2xy + y^2$$

(ii) $(x - y)^2 = x^2 - 2xy + y^2$
(iii) $x^2 - y^2 = (x - y)(x + y)$
(iv) $(x + a)(x + b) = x^2 + (a + b)x + ab$
(v) $(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$
(vi) $(x + y)^3 = x^3 + y^3 + 3xy (x + y)$
(vii) $(x - y)^3 = x^3 - y^3 - 3xy(x - y)$
(viii) $x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)$
 $x^3 + y^3 + z^3 = 3xyz$ if $x + y + z = 0$

Section - A

- Q.1 Which of the following expressions is polynomial?
- (i) $x^{5} 2x^{3} + x + 7$ (ii) $y^{3} - \sqrt{3}y$ (iii) $5\sqrt{z} - 6$ (iv) $x - \frac{1}{x}$ (v) $x^{108} - 1$ (vi) $\sqrt[3]{x} - 27$ (vii) $x^{-2} + 2x^{-1} + 3$ Q.2 Write the degree of each of the following polynomial.
 - (i) $2x \sqrt{5}$ (ii) $3 x + x^2 6x^3$ (iii) 9 (iv) $8x^4 - 36x + 5x^7$ (v) $x^9 - x^5 + 3x^{10} + 8$ (vi) $2 - 3x^2$
- Q.3 (i) Give an example of a binomial of degree 27.

(ii) Give an example of a monomial of degree 16.

(iii) Give an example of trinomial of degree 3.

Section - B

Q.4 If
$$p(x) = 5 - 4x + 2x^2$$
 find (i) $p(0)$ (ii) $p(3)$ (iii) $p(-2)$

Q.5 Find the zeros of the polynomials given below :

(i)
$$p(x) = x - 5$$
(ii) $q(x) = x + 4$ (iii) $h(x) = 6x - 1$ (iv) $p(x) = ax + b$ (v) $r(x) = x^2 + 3x$ (vi) $l(x) = x^2 + 2x + 1$

- Q.6 Find the remainder when $f(x) = 12x^3 13x^2 5x + 7$ is divided by (3x + 2)?
- Q.7 Show that (x + 5) is a factor of the polynomial

 $f(x) = x^3 + x^2 + 3x + 115$

Q.8 Find the value of a for which (x - a) is a factor of the polynomial.

 $f(x) = x^5 - a^2 x^3 + 2x + a - 3$

Section - C

Q.9 Factorize the following expressions.

(i)
$$5x^2 - 20xy$$

(ii) $5a (b + c) - 7b (b + c)$
(iii) $x(x - y)^2 + 3x^2y (x - y)$
(iv) $6ab - b^2 + 12ac - 2bc$
(v) $x^2 + \frac{1}{x^2} + 2 - 2x - \frac{2}{x}$

Q.10 Factorize :

(i)
$$9x^2 - 16y^2$$
 (ii) $x^3 - x$

Q.11 Factorize:

a(a-1) - b(b-1)

- Q.12 Factorize following expressions.
 - (i) $x^2 + 9x + 18$
 - (ii) $x^2 4x 21$

(iii)
$$x^2 - 9x + 18$$

(iv)
$$x^2 - 19x + 78$$

- Q.13 Calculate (997)² using algebraic identities.
- Q.14 Calculate 103 X 107 using algebraic identities.
- Q.15 Expand $(2a + 3b + 4c)^2$.
- Q.16 Factorize $4x^2 + y^2 + z^2 4xy 2yz + 4xz$.
- Q.17 Expand (i) $(4a + 5b)^3$ (ii) $(5x 3y)^3$
- Q.18 Evaluate (i) $(95)^3$ (ii) $(106)^3$
- Q.19 Factorize (i) $x^3 + 64$ (ii) $27x^3 + 125y^3$ (iii) $8a^3 - 27b^3$ (iv) $1 - 64a^3$

Section - D

Q.20 Factorize $a^{3} + 27b^{3} + 8c^{3} - 18abc$ Q.21 Factorize $(p-q)^3 + (q-r)^3 + (r-p)^3$ Q.22 Find the product $(3x - 5y - 4)(9x^{2} + 25y^{2} + 15xy + 12x - 20y + 16)$ Q.23 If If x + y + z = 9 and xy + yz + zx = 23 then find the value of $(x^{3} + v^{3} + z^{3} - 3xvz)?$ Self Evaluation Q.24 Which of the following expression is a polynomial? (b) $\frac{x-1}{x+1}$ (c) $x^2 - \frac{2}{x^2} + 5$ (d) $x^2 + \frac{2x^{3/2}}{\sqrt{x}} + 6$ (a) $\sqrt{x} - 1$ Q.25 Degree of zero polynomial is (c) not defined (d) none of these (a) 1 (b) 0 Q.26 For what value of k is the polynomial $p(x) = 2x^3 - kx^2 + 3x + 10$ exactly divisible by (x + 2)? (a) $\frac{-1}{2}$ (b) $\frac{1}{2}$ (c) 3 (d) -3 Q.27 The zeroes of the polynomial $p(x) = 3x^2 - 1$ are (a) $\frac{1}{3}$ (b) $\frac{1}{\sqrt{3}}$ (c) $\frac{-1}{\sqrt{3}}$ (d) $\frac{1}{\sqrt{3}}$ and $\frac{-1}{\sqrt{3}}$ Q.28 If $\frac{x}{y} + \frac{y}{x} = -1$ where $x \neq 0$, $y \neq 0$ then find the value of $x^3 - y^3$. Q.29 If (x+2) and (x-1) are factors of (x^3+10x^2+mx+n) then find value of m & n? Q.30 Find the value of $(369)^2 - (368)^2$ Q.31 Find value of 104 X 96 Q.32 If a + b + c = 0 find value of $\left(\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\right)$? Answers

Q.1 (i), (ii), (v)

Q.2	(i) 1	(ii) 3	(iii) 0		(iv) 4	(v) 9	(vi) 2
Q.4	(i) p (0) = 5	(ii) p(3) = 11		(iv) 21			
Q.5	(i) <i>x</i> = 5	(ii) $x = -4$		(iii) x=	1/6	(iv) $x = -b/c$	а
	(v) $x = 0, x =$	= -3	(vi) <i>x</i>	= -1, -	-1		
Q.6	remainder =	1					
Q.8	a = 1						
Q.9	(i) $5x(x-4y)$						
	(ii) $(b + c)(5a - 7b)$						
	(iii) $x(x-y)[(x-y) + 3xy]$						
	(iv) $(b + 2c)(6a - b)$						
	$(V)\left(x+\frac{1}{x}\right)\left(x\right)$	$\left(x+\frac{1}{x}-2\right)$					
Q.10	(i) $(3x + 4y)$	(3x - 4y)	(ii) <i>x</i> ((x + 1)(x + 1)	x – 1)		
Q.11	(a-b) (a+b-1)					
Q.12	(i) $(x+6)(x+3)$						
	(ii) $(x - 7)(x + 3)$						
	(iii) $(x-6)(x-3)$						
	(iv) $(x - 6)(x - 6)$	x – 13)					
Q.13	994009						
Q.14	11021						
Q.15	$4a^2 + 9b^2 + 16c^2 + 12ab + 24bc + 16ac$						
Q.16	$(2x - y + z)^2$						
Q.17	(i) 64 <i>a</i> ³ + 12	$25b^3 + 240a^2b$	v + 300	ab ²			
	(ii) 125 <i>x</i> ³ – 1	$27y^3 - 225x^2$	y + 135	$5xy^2$			
Q.18	(i) 857375 (ii) 1191016						
Q.19	(i) $(x+4)(x^2-4x+16)$						
	(ii) (3x+5y)(9	9x ² -15xy+25y ²	2				
	(iii) (2a — 3b	$(4a^2 + 6ab +$	- 9b²)				

	(iv) $(1 - 4a)(1 + 4a + 16a^2)$
Q.20	$(a + 3b + 2c)(a^2 + 9b^2 + 4c^2 - 3ab - 6bc - 2ac)$
Q.21	3(p-q)(q-r)(r-p)
Q.22	$27x^3 - 125y^3 - 64 - 180xy.$
Q.23	108
Q.24	(d) $x^2 + \frac{2x^2}{x^{\frac{1}{2}}} + 6$
Q.25	(c) not defined
Q.26	(d) -3
Q.27	(d) $\frac{1}{\sqrt{3}}$ & $\frac{-1}{\sqrt{3}}$
Q.28	0
Q.29	m = 7, n = -18
Q.30	737
Q.31	9984
Q.32	3

21
