Chapter 1 Relations and Functions

EXERCISE 1.1

Question 1:

Determine whether each of the following relations are reflexive, symmetric and transitive.

(i) Relation R in the set $A = \{1, 2, 3, ..., 13, 14\}$ defined as

$$R = \{(x, y) : 3x - y = 0\}$$

(ii) Relation R in the set of N natural numbers defined as

$$R = \{(x, y) : y = x + 5 \text{ and } x < 4\}$$

(iii) Relation R in the set $A = \{1, 2, 3, 4, 5, 6\}$ as

$$R = \{(x, y) : y \text{ is divisible by } x\}$$

(iv) Relation R in the set Z of all integers defined as

$$R = \{(x, y) : x - y \text{ is an integer}\}$$

- (v) Relation R in the set A of human beings in a town at a particular time given by
 - (a) $R = \{(x, y) : x \text{ and } y \text{ work at the same place}\}$
 - (b) $R = \{(x, y) : x \text{ and } y \text{ live in the same locality}\}$
 - (c) $R = \{(x, y) : x \text{ is exactly 7cm taller than } y\}$
 - (d) $R = \{(x, y) : x \text{ is wife of } y\}$
 - (e) $R = \{(x, y) : x \text{ is father of } y\}$

Solution:

(i) $R = \{(1,3),(2,6),(3,9),(4,12)\}$

R is not reflexive because (1,1),(2,2)... and $(14,14) \notin R$.

R is not symmetric because $(1,3) \in R$, but $(3,1) \notin R$. [since $3(3) \neq 0$].

R is not transitive because $(1,3),(3,9) \in R$, but $(1,9) \notin R.[3(1)-9 \neq 0]$.

Hence, R is neither reflexive nor symmetric nor transitive.

(ii) $R = \{(1,6), (2,7), (3,8)\}$

R is not reflexive because $(1,1) \notin R$.

R is not symmetric because $(1,6) \in R$ but $(6,1) \notin R$.

R is not transitive because there isn't any ordered pair in R such that $(x,y),(y,z) \in R$, so $(x,z) \notin R$

Hence, R is neither reflexive nor symmetric nor transitive.

(iii) $R = \{(x, y) : y \text{ is divisible by } x\}$

We know that any number other than 0 is divisible by itself.

Thus, $(x, x) \in R$

So, R is reflexive.

 $(2,4) \in R$ [because 4 is divisible by 2]

But $(4,2) \notin R$ [since 2 is not divisible by 4]

So, R is not symmetric.

Let (x, y) and $(y, z) \in R$. So, y is divisible by x and z is divisible by y.

So, z is divisible by $x \Rightarrow (x, z) \in R$

So, R is transitive.

So, R is reflexive and transitive but not symmetric.

(iv) $R = \{(x, y) : x - y \text{ is an integer}\}$

For $x \in \mathbb{Z}$, $(x,x) \notin R$ because x-x=0 is an integer.

So, R is reflexive.

For, $x, y \in Z$, if $x, y \in R$, then x - y is an integer $\Rightarrow (y - x)$ is an integer.

So, $(y,x) \in R$

So, R is symmetric.

Let (x, y) and $(y, z) \in R$, where $x, y, z \in Z$.

 \Rightarrow (x-y) and (y-z) are integers.

 $\Rightarrow x-z=(x-y)+(y-z)$ is an integer.

So, R is transitive.

So, R is reflexive, symmetric and transitive.

(v)

a) $R = \{(x, y) : x \text{ and } y \text{ work at the same place}\}$

R is reflexive because $(x, x) \in R$

R is symmetric because,

If $(x, y) \in R$, then x and y work at the same place and y and x also work at the same place. $(y, x) \in R$.

R is transitive because,

Let
$$(x,y),(y,z) \in R$$

x and y work at the same place and y and z work at the same place.

Then, x and z also works at the same place. $(x, z) \in R$. Hence, R is reflexive, symmetric and transitive.

b) $R = \{(x, y) : x \text{ and } y \text{ live in the same locality}\}$

R is reflexive because $(x,x) \in R$

R is symmetric because,

If $(x, y) \in R$, then x and y live in the same locality and y and x also live in the same locality $(y, x) \in R$.

R is transitive because,

Let
$$(x, y), (y, z) \in R$$

x and y live in the same locality and y and z live in the same locality.

Then x and z also live in the same locality. $(x, z) \in R$. Hence, R is reflexive, symmetric and transitive.

c) $R = \{(x, y) : x \text{ is exactly 7cm taller than } y\}$

R is not reflexive because $(x,x) \notin R$

R is not symmetric because,

If $(x, y) \in R$, then x is exactly 7cm taller than y and y is clearly not taller than x. $(y, x) \notin R$.

R is not transitive because,

Let
$$(x, y), (y, z) \in R$$

x is exactly 7cm taller than y and y is exactly 7cm taller than z.

Then x is exactly 14cm taller than z. $(x,z) \notin R$ Hence, R is neither reflexive nor symmetric nor transitive.

d) $R = \{(x, y) : x \text{ is wife of } y\}$

R is not reflexive because $(x,x) \notin R$

R is not symmetric because,

Let $(x,y) \in R$, x is the wife of y and y is not the wife of x. $(y,x) \notin R$.

R is not transitive because,

Let
$$(x, y), (y, z) \in R$$

x is wife of y and y is wife of z, which is not possible.

$$(x,z) \notin R$$

Hence, R is neither reflexive nor symmetric nor transitive.

e) $R = \{(x, y) : x \text{ is father of } y\}$

R is not reflexive because $(x, x) \notin R$

R is not symmetric because,

Let $(x, y) \in R$, x is the father of y and y is not the father of x. $(y, x) \notin R$.

R is not transitive because,

Let
$$(x,y),(y,z) \in R$$

x is father of y and y is father of z, x is not father of z. $(x,z) \notin R$. Hence, R is neither reflexive nor symmetric nor transitive.

Question 2:

Show that the relation R in the set R of real numbers, defined as $R = \{(a,b) : a \le b^2\}$ is neither reflexive nor symmetric nor transitive.

Solution:

$$R = \left\{ (a,b) : a \le b^2 \right\}$$

$$\left(\frac{1}{2}, \frac{1}{2}\right) \notin R \quad \text{because } \frac{1}{2} > \left(\frac{1}{2}\right)^2$$

R is not reflexive.

$$(1,4) \in R$$
 as $1 < 4$. But 4 is not less than 1^2 . $(4,1) \notin R$

R is not symmetric.

$$(3,2)(2,1.5) \in R$$
 [Because $3 < 2^2 = 4$ and $2 < (1.5)^2 = 2.25$]
 $3 > (1.5)^2 = 2.25$
 $\therefore (3,1.5) \notin R$

R is not transitive.

R is neither reflective nor symmetric nor transitive.

Question 3:

Check whether the relation R defined in the set $\{1,2,3,4,5,6\}$ as $R = \{(a,b): b = a+1\}$ is reflexive, symmetric or transitive.

Solution:

$$A = \{1, 2, 3, 4, 5, 6\}$$

$$R = \{(a,b): b = a+1\}$$

$$R = \{(1,2), (2,3), (3,4), (4,5), (5,6)\}$$

$$(a,a) \notin R, a \in A$$

 $(1,1),(2,2),(3,3),(4,4),(5,5) \notin R$
R is not reflexive.

$$(1,2) \in R$$
, but $(2,1) \notin R$

R is not symmetric.

$$(1,2),(2,3) \in R$$

$$(1,3) \notin R$$

R is not transitive.

R is neither reflective nor symmetric nor transitive.

Question 4:

Show that the relation R in R defined as $R = \{(a,b) : a \le b\}$ is reflexive and transitive, but not symmetric.

Solution:

$$R = \{(a,b) : a \le b\}$$

$$(a,a) \in R$$

R is reflexive.

$$(2,4) \in R \text{ (as } 2 < 4)$$

$$(4,2) \notin R \text{ (as 4>2)}$$

R is not symmetric.

$$(a,b),(b,c) \in R$$

$$a \le b$$
 and $b \le c$

$$\Rightarrow a \leq c$$

$$\Rightarrow (a,c) \in R$$

R is transitive.

R is reflexive and transitive but not symmetric.

Question 5:

Check whether the relation R in R defined as $R = \{(a,b): a \le b^3\}$ is reflexive, symmetric or transitive.

Solution:

$$R = \left\{ \left(a, b \right) : a \le b^3 \right\}$$

$$\left(\frac{1}{2}, \frac{1}{2}\right) \notin R$$
, since $\frac{1}{2} > \left(\frac{1}{2}\right)^3$

R is not reflexive.

$$(1,2) \in R(as \ 1 < 2^3 = 8)$$

$$(2,1) \notin R(as 2^3 > 1 = 8)$$

R is not symmetric.

$$\left(3, \frac{3}{2}\right), \left(\frac{3}{2}, \frac{6}{5}\right) \in R, \text{ since } 3 < \left(\frac{3}{2}\right)^3 \text{ and } \frac{2}{3} < \left(\frac{6}{2}\right)^3$$
$$\left(3, \frac{6}{5}\right) \notin R3 > \left(\frac{6}{5}\right)^3$$

R is not transitive.

R is neither reflexive nor symmetric nor transitive.

Question 6:

Show that the relation R in the set $\{1,2,3\}$ given by $R = \{(1,2),(2,1)\}$ is symmetric but neither reflexive nor transitive.

Solution:

$$A = \{1, 2, 3\}$$

$$R = \{(1,2),(2,1)\}$$

$$(1,1),(2,2),(3,3) \notin R$$

R is not reflexive.

$$(1,2) \in R \text{ and } (2,1) \in R$$

R is symmetric.

$$(1,2) \in R \text{ and } (2,1) \in R$$

$$(1,1) \in R$$

R is not transitive.

R is symmetric, but not reflexive or transitive.

Question 7:

Show that the relation R in the set A of all books in a library of a college, given by $R = \{(x, y) : x \text{ and } y \text{ have same number of pages}\}$ is an equivalence relation.

Solution:

$$R = \{(x, y) : x \text{ and } y \text{ have same number of pages}\}$$

R is reflexive since $(x,x) \in R$ as x and x have same number of pages.

R is reflexive.

$$(x,y) \in R$$

x and y have same number of pages and y and x have same number of pages $(y,x) \in R$ R is symmetric.

$$(x, y) \in R, (y, z) \in R$$

x and y have same number of pages, y and z have same number of pages.

Then x and z have same number of pages.

$$(x,z) \in R$$

R is transitive.

R is an equivalence relation.

Question 8:

Show that the relation R in the set $A = \{1, 2, 3, 4, 5\}$ given by $R = \{(a,b): |a-b| \text{ is even}\}$ is an equivalence relation. Show that all the elements of $\{1,3,5\}$ are related to each other and all the elements of $\{2,4\}$ are related to each other. But no element of $\{1,3,5\}$ is related to any element of $\{2,4\}$.

Solution:

 $a \in A$ |a-a| = 0 (which is even)

R is reflective.

$$(a,b) \in R$$

 $\Rightarrow |a-b|$ [is even]
 $\Rightarrow |-(a-b)| = |b-a|$ [is even]
 $(b,a) \in R$
R is symmetric.

$$(a,b) \in R$$
 and $(b,c) \in R$
 $\Rightarrow |a-b|$ is even and $|b-c|$ is even
 $\Rightarrow (a-b)$ is even and $(b-c)$ is even
 $\Rightarrow (a-c) = (a+b) + (b-c)$ is even

$$\Rightarrow |a-b|$$
 is even

$$\Rightarrow (a,c) \in R$$

R is transitive.

R is an equivalence relation.

All elements of $\{1,3,5\}$ are related to each other because they are all odd. So, the modulus of the difference between any two elements is even.

Similarly, all elements $\{2,4\}$ are related to each other because they are all even.

No element of $\{1,3,5\}$ is related to any elements of $\{2,4\}$ as all elements of $\{1,3,5\}$ are odd and all elements of $\{2,4\}$ are even. So, the modulus of the difference between the two elements will not be even.

Question 9:

Show that each of the relation R in the set $A = \{x \in Z : 0 \le x \le 12\}$, given by

i.
$$R = \{(a,b): |a-b| \text{ is a mutiple of 4}\}$$

ii.
$$R = \{(a,b) : a = b\}$$

Is an equivalence relation. Find the set of all elements related to 1 in each case.

Solution:

$$A = \left\{ x \in Z : 0 \le x \le 12 \right\} = \left\{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 \right\}$$

i.
$$R = \{(a,b) : |a-b| \text{ is a mutiple of 4} \}$$

 $a \in A, (a,a) \in R$ $[|a-a| = 0 \text{ is a multiple of 4}]$
R is reflexive.

$$(a,b) \in R \Rightarrow |a-b|$$
 [is a multiple of 4]
 $\Rightarrow |-(a-b)| = |b-a|$ [is a multiple of 4]
 $(b,a) \in R$
R is symmetric.

$$(a,b) \in R$$
 and $(b,c) \in R$
 $\Rightarrow |a-b|$ is a multiple of 4 and $|b-c|$ is a multiple of 4
 $\Rightarrow (a-b)$ is a multiple of 4 and $(b-c)$ is a multiple of 4
 $\Rightarrow (a-c) = (a-b) + (b-c)$ is a multiple of 4
 $\Rightarrow |a-c|$ is a multiple of 4

$$\Rightarrow (a,c) \in R$$

R is transitive.

R is an equivalence relation.

The set of elements related to 1 is $\{1,5,9\}$ as

$$|1-1| = 0$$
 is a multiple of 4.

$$|5-1|=4$$
 is a multiple of 4.

$$|9-1| = 8$$
 is a multiple of 4.

ii.
$$R = \{(a,b) : a = b\}$$

 $a \in A, (a,a) \in R$ [since a=a]
R is reflective.

$$(a,b) \in R$$

$$\Rightarrow a = b$$

$$\Rightarrow b = a$$

$$\Rightarrow (b,a) \in R$$

R is symmetric.

$$(a,b) \in R$$
 and $(b,c) \in R$

$$\Rightarrow a = b$$
 and $b = c$

$$\Rightarrow a = c$$

$$\Rightarrow (a,c) \in R$$

R is transitive.

R is an equivalence relation.

The set of elements related to 1 is $\{1\}$.

Question 10:

Give an example of a relation, which is

- i. Symmetric but neither reflexive nor transitive.
- ii. Transitive but neither reflexive nor symmetric.
- iii. Reflexive and symmetric but not transitive.
- iv. Reflexive and transitive but not symmetric.
- v. Symmetric and transitive but not reflexive.

Solution:

i.

$$A = \{5, 6, 7\}$$

$$R = \{(5,6),(6,5)\}$$

$$(5,5),(6,6),(7,7) \notin R$$

R is not reflexive as $(5,5),(6,6),(7,7) \notin R$

$$(5,6),(6,5) \in R_{and}(6,5) \in R_{r}$$
, R is symmetric.

$$\Rightarrow$$
 (5,6),(6,5) \in R, but (5,5) \notin R

R is not transitive.

Relation R is symmetric but not reflexive or transitive.

ii.
$$R = \{(a,b) : a < b\}$$

 $a \in R, (a, a) \notin R$ [since a cannot be less than itself]

R is not reflexive.

$$(1,2) \in R(as 1 < 2)$$

But 2 is not less than 1

$$\therefore (2,1) \notin R$$

R is not symmetric.

$$(a,b),(b,c) \in R$$

$$\Rightarrow a < b \text{ and } b < c$$

$$\Rightarrow a < c$$

$$\Rightarrow (a,c) \in R$$

R is transitive.

Relation R is transitive but not reflexive and symmetric.

iii.
$$A = \{4, 6, 8\}$$

$$A = \{(4,4),(6,6),(8,8),(4,6),(6,8),(8,6)\}$$

R is reflexive since $a \in A, (a, a) \in R$

R is symmetric since $(a,b) \in R$

$$\Rightarrow (b,a) \in R \quad \text{for } a,b \in R$$

R is not transitive since $(4,6), (6,8) \in R, but (4,8) \notin R$

R is reflexive and symmetric but not transitive.

iv.
$$R = \{(a,b): a^3 > b^3\}$$

$$(a,a) \in R$$

R is reflexive.

$$(2,1) \in R$$

$$But(1,2) \notin R$$

 \therefore R is not symmetric.

$$(a,b),(b,c) \in R$$

$$\Rightarrow a^3 \ge b^3$$
 and $b^3 < c^3$

$$\Rightarrow a^3 < c^3$$

$$\Rightarrow (a,c) \in R$$

 \therefore R is transitive.

R is reflexive and transitive but not symmetric

v.

$$A = *{1*3*5}$$

Define a Relation R

On A.

$$R: A*\rightarrow A$$

$$R = *{(1,3)*(3,1)*(1,1)*(3,3)}$$

Relation R is not Reflexive as $(5 * 5) \not\subset R$

Relation R is Symmetric as

$$(1,3) \in R \Rightarrow *(3,1) *\in R$$

Relation R is Transitive

$$(a,b) \in R*(b,c) \in R* \Rightarrow *(a,c) \in R$$

$$(3,1) \in R*(1,1) \in R* \Rightarrow *(3,1) \in R$$

Alternative Answer

R = *(a, b) : a is brother of b {suppose a and b are male}

 $Ref \rightarrow a$ is not brother of a

So,
$$(a, a) \not\subset R$$

Relation *R* is not Reflexive

Symmetric $\rightarrow a$ is brother of b so

b is brother of a

$$a, b \in \mathbb{R} \Rightarrow (b, a) \in \mathbb{R}$$

Transitive $\rightarrow a$ is brother of b and

b is brother of c so

a is brother of *c*

$$(a,b) \in R*(b,c) \in R \Rightarrow (a,c) \in R$$

Ouestion 11:

Show that the relation R in the set A of points in a plane given by

 $R = \{(P,Q) : \text{Distance of the point P from the origin is same as the distance of the point Q from the origin}\}$

, is an equivalence relation. Further, show that the set of all points related to a point $P \neq (0,0)$ is the circle passing through P with origin as centre.

Solution:

 $R = \{(P,Q) : \text{Distance of the point P from the origin is same as the distance of the point Q from the origin}\}$

Clearly,
$$(P, P) \in R$$

R is reflexive.

$$(P,Q) \in R$$

Clearly R is symmetric.

$$(P,Q),(Q,S) \in R$$

 \Rightarrow The distance of P and Q from the origin is the same and also, the distance of Q and S from the origin is the same.

 \Rightarrow The distance of P and S from the origin is the same.

$$(P,S) \in R$$

R is transitive.

R is an equivalence relation.

The set of points related to $P \neq (0,0)$ will be those points whose distance from origin is same as distance of P from the origin.

Set of points forms a circle with the centre as origin and this circle passes through P.

Question 12:

Show that the relation R defined in the set A of all triangles as $R = \{(T_1, T_2) : T_1 \text{ is similar to } T_2\}$, is equivalence relation. Consider three right angle triangles T_1 with sides 3, 4, 5, T_2 with sides 5,12,13 and T_3 with sides 6,8,10. Which triangle among T_1, T_2, T_3 are related?

Solution:

R is reflexive since every triangle is similar to itself.

If $(T_1, T_2) \in R$, then is similar to .

is similar to .

$$\Rightarrow (T_2, T_1) \in R$$

R is symmetric.

$$(T_1,T_2),(T_2,T_3) \in R$$

is similar to T_2 and T_2 is similar to T_3 .

$$T_{1 \text{ is similar to }} T_{3}$$
.

$$\Rightarrow (T_1, T_3) \in R$$

 \therefore R is transitive.

$$\frac{3}{6} = \frac{4}{8} = \frac{5}{10} = \left(\frac{1}{2}\right)$$

 \therefore Corresponding sides of triangles T_1 and T_3 are in the same ratio.

Triangle T_1 is similar to triangle T_3 .

Hence, T_1 is related to T_3 .

Question 13:

Show that the relation R defined in the set A of all polygons as

 $R = \{(P_1, P_2): P_1 \text{ and } P_2 \text{ have same number of sides}\}$, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3,4 and 5?

Solution:

 $R = \{(P_1, P_2) : P_1 \text{ and } P_2 \text{ have same number of sides} \}$

 $(P_1, P_2) \in \mathbb{R}$ as same polygon has same number of sides.

 \therefore R is reflexive.

$$(P_1, P_2) \in R$$

 $\Rightarrow P_1$ and P_2 have same number of sides.

 \Rightarrow P_2 and P_1 have same number of sides.

$$\Rightarrow (P_2, P_1) \in R$$

∴ R is symmetric.

$$(P_1,P_2),(P_2,P_3) \in R$$

 \Rightarrow P_1 and P_2 have same number of sides.

 P_2 and P_3 have same number of sides.

 \Rightarrow P_1 and P_3 have same number of sides.

$$\Rightarrow (P_1, P_3) \in R$$

 \therefore R is transitive.

R is an equivalence relation.

The elements in A related to right-angled triangle (T) with sides 3,4,5 are those polygons which have three sides.

Set of all elements in a related to triangle T is the set of all triangles.

Question 14:

Let L be the set of all lines in XY plane and R be the relation in L defined as

 $R = \{(L_1, L_2) : L_1 \text{ is parallel to } L_2\}$. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.

Solution:

$$R = \{(L_1, L_2) : L_1 \text{ is parallel to } L_2\}$$

R is reflexive as any line L_1 is parallel to itself i.e., $(L_1, L_2) \in R$

If
$$(L_1, L_2) \in R$$
, then

$$\Rightarrow L_1$$
 is parallel to L_2 .

$$\Rightarrow L_2$$
 is parallel to L_1 .

$$\Rightarrow (L_2, L_1) \in R$$

 \therefore R is symmetric.

$$(L_1, L_2), (L_2, L_3) \in R$$

$$\Rightarrow L_1$$
 is parallel to L_2

$$\Rightarrow L_2$$
 is parallel to L_3

$$\therefore L_1$$
 is parallel to L_3 .

$$\Rightarrow (L_1, L_3) \in R$$

 \therefore R is transitive.

R is an equivalence relation.

Set of all lines related to the line y = 2x + 4 is the set of all lines that are parallel to the line y = 2x + 4.

Slope of the line y = 2x + 4 is m = 2.

Line parallel to the given line is in the form y = 2x + c, where $c \in R$.

Set of all lines related to the given line is given by y = 2x + c, where $c \in R$.

Question 15:

Let R be the relation in the set $\{1,2,3.4\}$ given by

$$R = \{(1,2)(2,2),(1,1),(4,4),(1,3),(3,3),(3,2)\}.$$

Choose the correct answer.

- A. R is reflexive and symmetric but not transitive.
- B. R is reflexive and transitive but not symmetric.
- C. R is symmetric and transitive but not reflexive.
- D. R is an equivalence relation.

Solution:

$$R = \{(1,2)(2,2),(1,1),(4,4),(1,3),(3,3),(3,2)\}$$

$$(a,a) \in R$$
 for every $a \in \{1,2,3.4\}$

... R is reflexive.

$$(1,2) \in R \text{ but } (2,1) \notin R$$

∴ R is not symmetric.

$$(a,b),(b,c) \in R \text{ for all } a,b,c \in \{1,2,3,4\}$$

 \therefore R is not transitive.

R is reflexive and transitive but not symmetric.

The correct answer is B.

Question 16:

Let R be the relation in the set N given by $R = \{(a,b): a = b-2, b > 6\}$. Choose the correct answer.

- A. $(2,4) \in R$
- B. $(3,8) \in R$
- C. $(6,8) \in R$
- D. $(8,7) \in R$

Solution:

$$R = \{(a,b): a = b - 2, b > 6\}$$

Now,

$$b > 6, (2,4) \notin R$$

$$3 \neq 8 - 2$$

$$\therefore$$
 (3,8) \notin R and as 8 \neq 7-2

$$\therefore (8,7) \notin R$$

$$8 > 6$$
 and $6 = 8 - 2$

$$\therefore (6,8) \in R$$

The correct answer is C.

EXERCISE 1.2

Question 1:

Show that the function $f: R_{\bullet} \to R_{\bullet}$ defined by $f(x) = \frac{1}{x}$ is one –one and onto, where R_{\bullet} is the set of all non –zero real numbers. Is the result true, if the domain R_{\bullet} is replaced by N with codomain being same as R_{\bullet} ?

Solution:

$$f: R_{\bullet} \to R_{\bullet} \text{ is by } f(x) = \frac{1}{x}$$

For one-one:

$$x, y \in R_{\bullet}$$
 such that $f(x) = f(y)$

$$\Rightarrow \frac{1}{x} = \frac{1}{y}$$

$$\Rightarrow x = y$$

 \therefore f is one-one.

For onto:

For $y \in R$, there exists $x = \frac{1}{y} \in R_{\bullet} [as \ y \notin 0]$ such that

$$f(x) = \frac{1}{\left(\frac{1}{y}\right)} = y$$

 $\therefore f$ is onto.

Given function f is one-one and onto.

Consider function $g: N \to R_{\bullet}$ defined by $g(x) = \frac{1}{x}$

We have,
$$g(x_1) = g(x_2) \Rightarrow \frac{1}{x_1} = \frac{1}{x_2} \Rightarrow x_1 = x_2$$

 $\therefore g$ is one-one.

g is not onto as for $1.2 \in R$, there exist any x in N such that $g(x) = \frac{1}{1.2}$

Function g is one-one but not onto.

Question 2:

Check the injectivity and surjectivity of the following functions:

i.
$$f: N \to N$$
 given by $f(x) = x^2$

ii.
$$f: Z \to Z$$
 given by $f(x) = x^2$

iii.
$$f: R \to R$$
 given by $f(x) = x^2$

iv.
$$f: N \to N$$
 given by $f(x) = x^3$

v.
$$f: Z \to Z$$
 given by $f(x) = x^3$

Solution:

i. For
$$f: N \to N$$
 given by $f(x) = x^2$
 $x, y \in N$
 $f(x) = f(y) \Rightarrow x^2 = y^2 \Rightarrow x = y$
 $\therefore f$ is injective.

 $2 \in N$. But, there does not exist any x in N such that $f(x) = x^2 = 2$

 $\therefore f$ is not surjective

Function f is injective but not surjective.

 $-2 \in Z$ But, there does not exist any $x \in Z$ such that $f(x) = -2 \Rightarrow x^2 = -2$ $\therefore f$ is not surjective.

Function f is neither injective nor surjective.

iii.
$$f: R \to R$$
 given by $f(x) = x^2$
 $f(-1) = f(1) = 1$ but $-1 \ne 1$
 f is not injective.

 $-2 \in Z$ But, there does not exist any $x \in Z$ such that $f(x) = -2 \Rightarrow x^2 = -2$ $\therefore f$ is not surjective.

Function f is neither injective nor surjective.

iv.
$$f: N \to N$$
 given by $f(x) = x^3$
 $x, y \in N$
 $f(x) = f(y) \Rightarrow x^3 = y^3 \Rightarrow x = y$
 $\therefore f$ is injective.

 $2 \in N$. But, there does not exist any x in N such that $f(x) = x^3 = 2$ $\therefore f$ is not surjective

Function f is injective but not surjective.

v.
$$f: Z \to Z$$
 given by $f(x) = x^3$
 $x, y \in Z$
 $f(x) = f(y) \Rightarrow x^3 = y^3 \Rightarrow x = y$
 $f(x) = f(y) \Rightarrow x^3 = y^3 \Rightarrow x = y$

 $2 \in \mathbb{Z}$. But, there does not exist any x in \mathbb{Z} such that $f(x) = x^3 = 2$. f is not surjective.

Function f is injective but not surjective.

Question 3:

Prove that the greatest integer function $f: R \to R$ given by f(x) = [x] is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.

Solution:

$$f: R \to R \text{ given by } f(x) = [x]$$

 $f(1.2) = [1.2] = 1, f(1.9) = [1.9] = 1$
 $\therefore f(1.2) = f(1.9), \text{ but } 1.2 \neq 1.9$
 $\therefore f \text{ is not one-one.}$

Consider $0.7 \in R$

f(x) = [x] is an integer. There does not exist any element $x \in R$ such that f(x) = 0.7 $\therefore f$ is not onto.

The greatest integer function is neither one-one nor onto.

Question 4:

Show that the modulus function $f: R \to R$ given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x| is -x, if x is negative.

Solution:

$$f: R \to R \text{ is}$$

$$f(x) = |x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$$

$$f(-1) = |-1| = 1 \text{ and } f(1) = |1| = 1$$

$$\therefore f(-1) = f(1) \text{ but } -1 \ne 1$$

$$\therefore f \text{ is not one-one.}$$

Consider $-1 \in R$

f(x) = |x| is non-negative. There exist any element x in domain R such that f(x) = |x| = -1 $\therefore f$ is not onto.

The modulus function is neither one-one nor onto.

Question 5:

Show that the signum function $f: R \to R$ given by $f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0 \end{cases}$ is neither one-one nor onto.

Solution:

$$f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0 \end{cases}$$

$$f(1) = f(2) = 1, \text{ but } 1 \neq 2$$

$$\therefore f \text{ is not one-one.}$$

f(x) takes only 3 values (1,0,-1) for the element -2 in co-domain

R, there does not exist any x in domain R such that f(x) = -2.

 $\therefore f$ is not onto.

The signum function is neither one-one nor onto.

Question 6:

Let $A = \{1,2,3\}$, $B = \{4,5,6,7\}$ and let $f = \{(1,4),(2,5),(3,6)\}$ be a function from A to B. Show that f is one-one.

Solution:

$$A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$$

 $f : A \to B \text{ is defined as } f = \{(1, 4), (2, 5), (3, 6)\}$
 $\therefore f(1) = 4, f(2) = 5, f(3) = 6$

It is seen that the images of distinct elements of A under f are distinct.

 $\therefore f$ is one-one.

Ouestion 7:

In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.

i.
$$f: R \to R$$
 defined by $f(x) = 3 - 4x$

ii.
$$f: R \to R$$
 defined by $f(x) = 1 + x^2$

Solution:

i.
$$f: R \to R$$
 defined by $f(x) = 3 - 4x$

$$x_1, x_2 \in R_{\text{such that}} f(x_1) = f(x_2)$$

$$\Rightarrow$$
 3 - 4 x_1 = 3 - 4 x_2

$$\Rightarrow -4x = -4x$$

$$\Rightarrow x_1 = x_2$$

 $\therefore f$ is one-one.

For any real number $(y)_{in} R$, there exists $\frac{3-y}{4}_{in} R$ such that $f\left(\frac{3-y}{4}\right) = 3-4\left(\frac{3-y}{4}\right) = y$. f is onto.

Hence, f is bijective.

ii.
$$f: R \to R$$
 defined by $f(x) = 1 + x^2$
 $x_1, x_2 \in R$ such that $f(x_1) = f(x_2)$
 $\Rightarrow 1 + x_1^2 = 1 + x_2^2$
 $\Rightarrow x_1^2 = x_2^2$
 $\Rightarrow x_1 = \pm x_2$
 $\therefore f(x_1) = f(x_2)$ does not imply that $x_1 = x_2$

Consider
$$f(1) = f(-1) = 2$$

 $\therefore f$ is not one-one.

Consider an element -2 in co domain R.

It is seen that $f(x) = 1 + x^2$ is positive for all $x \in R$.

 $\therefore f$ is not onto.

Hence, f is neither one-one nor onto.

Question 8:

Let A and B be sets. Show that $f: A \times B \to B \times A$ such that f(a, b) = (b, a) is a bijective function.

Solution:

$$f: A \times B \to B \times A$$
 is defined as $(a,b) = (b,a)$.
 $(a_1,b_1), (a_2,b_2) \in A \times B$ such that $f(a_1,b_1) = f(a_2,b_2)$

$$\Rightarrow$$
 $(b_1, a_1) = (b_2, a_2)$

$$\Rightarrow b_1 = b_2$$
 and $a_1 = a_2$

$$\Rightarrow$$
 $(a_1,b_1)=(a_2,b_2)$

 \therefore f is one-one.

$$(b,a) \in B \times A$$
 there exist $(a,b) \in A \times B$ such that $f(a,b) = (b,a)$

 $\therefore f$ is onto.

f is bijective.

Question 9:

Let
$$f: \mathbf{N} \to \mathbf{N}$$
 be defined by $f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$ for all $n \in \mathbf{N}$.

State whether the function f is bijective. Justify your answer.

Solution:

$$f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$$
 for all $n \in N$.

 $f: N \to N$ be defined as

$$f(1) = \frac{1+1}{2} = 1$$
 and $f(2) = \frac{2}{2} = 1$

$$f(1) = f(2)$$
, where $1 \neq 2$

 $\therefore f$ is not one-one.

Consider a natural number n in co domain

Case I: n is odd

 $\therefore n = 2r + 1$ for some $r \in N$ there exists $4r + 1 \in N$ such that

$$f(4r+1) = \frac{4r+1+1}{2} = 2r+1$$

Case II: 1 is even

 $\therefore n = 2r$ for some $r \in N$ there exists $4r \in N$ such that

$$f(4r) = \frac{4r}{2} = 2r$$

 $\therefore f$ is onto.

f is not a bijective function.

Question 10:

Let A = $\mathbb{R} - \{3\}$ and B = $\mathbb{R} - \{1\}$. Consider the function $f: A \to B$ defined by $f(x) = \left(\frac{x-2}{x-3}\right)$. Is f one-one and onto? Justify your answer.

Solution:

$$A = R - \{3\}, B = R - \{1\} \text{ and } f : A \to B \text{ defined by } f(x) = \left(\frac{x-2}{x-3}\right)$$

$$x, y \in A \text{ such that } f(x) = f(y)$$

$$\Rightarrow \frac{x-2}{x-3} = \frac{y-2}{y-3}$$

$$\Rightarrow (x-2)(y-3) = (y-2)(x-3)$$

$$\Rightarrow xy - 3x - 2y + 6 = xy - 3y - 2x + 6$$

$$\Rightarrow -3x - 2y = -3y - 2x$$

$$\Rightarrow 3x - 2x = 3y - 2y$$

$$\Rightarrow x = y$$

$$\therefore f \text{ is one-one.}$$

Let
$$y \in B = R - \{1\}$$
, then $y \ne 1$

The function f is onto if there exists $x \in A$ such that f(x) = y. Now,

$$f(x) = y$$

$$\Rightarrow \frac{x-2}{x-3} = y$$

$$\Rightarrow x-2 = xy-3y$$

$$\Rightarrow x(1-y) = -3y+2$$

$$\Rightarrow x = \frac{2-3y}{1-y} \in A$$

$$[y \neq 1]$$

Thus, for any $y \in B$, there exists $\frac{2-3y}{1-y} \in A$ such that

$$f\left(\frac{2-3y}{1-y}\right) = \frac{\left(\frac{2-3y}{1-y}\right) - 2}{\left(\frac{2-3y}{1-y}\right) - 3} = \frac{2-3y-2+2y}{2-3y-3+3y} = \frac{-y}{-1} = y$$

 $\therefore f$ is onto.

Hence, the function is one-one and onto.

Question 11:

Let $f: R \to R$ defined as $f(x) = x^4$. Choose the correct answer.

- A. f is one-one onto
- B. f is many-one onto
- C. f is one-one but not onto
- D. f is neither one-one nor onto

Solution:

 $f: R \to R$ defined as $f(x) = x^4$

 $x, y \in R_{\text{such that}} f(x) = f(y)$

$$\Rightarrow x^4 = y^4$$

$$\Rightarrow x = \pm y$$

f(x) = f(y) does not imply that x = y.

For example f(1) = f(-1) = 1

 $\therefore f$ is not one-one.

Consider an element 2 in co domain R there does not exist any x in domain R such that f(x) = 2

 $\therefore f$ is not onto.

Function f is neither one-one nor onto.

The correct answer is D.

Question 12:

Let $f: R \to R$ defined as f(x) = 3x. Choose the correct answer.

- A. f is one-one onto
- B. f is many-one onto
- C. f is one-one but not onto
- D. f is neither one-one nor onto

Solution:

 $f: R \to R \text{ defined as } f(x) = 3x$

 $x, y \in R_{\text{such that}} f(x) = f(y)$

$$\Rightarrow 3x = 3y$$

$$\Rightarrow x = y$$

 $\therefore f$ is one-one.

For any real number y in co domain R, there exist $\frac{y}{3}$ in R such that $f\left(\frac{y}{3}\right) = 3\left(\frac{y}{3}\right) = y$ $\therefore f$ is onto.

Hence, function f is one-one and onto.

The correct answer is A.

MISCELLANEOUS EXERCISE

Question 1:

Show that function $f: R \to \{x \in R: -1 < x < 1\}$ defined by $f(x) = \frac{x}{1+|x|}$, $x \in R$ is one-one and onto function.

Solution:

$$f: R \to \{x \in R: -1 < x < 1\}$$
 is defined by $f(x) = \frac{x}{1+|x|}, x \in R$.

For one-one:

$$f(x) = f(y)$$
 where $x, y \in R$

$$\Rightarrow \frac{x}{1+|x|} = \frac{y}{1+|y|}$$

If x is positive and y is negative,

$$\frac{x}{1+|x|} = \frac{y}{1+|y|}$$

$$\Rightarrow 2xy = x - y$$

Since, X is positive and Y is negative,

$$x > y \Rightarrow x - y > 0$$

2xy is negative.

$$2xy \neq x - y$$

Case of X being positive and Y being negative, can be ruled out.

x and y have to be either positive or negative.

If χ and Y are positive,

$$f(x) = f(y)$$

$$\Rightarrow \frac{x}{1+x} = \frac{y}{1+y}$$

$$\Rightarrow x - xy = y - xy$$

$$\Rightarrow x = y$$

 \therefore f is one-one.

For onto:

Let $y \in R$ such that -1 < y < 1.

If x is negative, then there exists $x = \frac{y}{1+y} \in R$ such that

$$f(x) = f\left(\frac{y}{1+y}\right) = \frac{\left(\frac{y}{1+y}\right)}{1+\left|\frac{y}{1+y}\right|} = \frac{\frac{y}{1+y}}{1+\left(\frac{-y}{1+y}\right)} = \frac{y}{1+y-y} = y$$

If x is positive, then there exists $x = \frac{y}{1-y} \in R$ such that

$$f(x) = f\left(\frac{y}{1-y}\right) = \frac{\left(\frac{y}{1-y}\right)}{1+\left|\frac{y}{1-y}\right|} = \frac{\frac{y}{1-y}}{1+\left(\frac{y}{1-y}\right)} = \frac{y}{1-y+y} = y$$

 \therefore f is onto.

Hence, f is one-one and onto.

Question 2:

Show that function $f: R \to R$ be defined by $f(x) = x^3$ is injective.

Solution:

$$f: R \to R$$
 is defined by $f(x) = x^3$

For one-one:

$$f(x) = f(y)$$
 where $x, y \in R$
 $x^3 = y^3$(1)

We need to show that x = y

Suppose $x \neq y$, their cubes will also not be equal.

$$\Rightarrow x^3 \neq y^3$$

This will be a contradiction to (1).

 $\therefore x = y$. Hence, f is injective.

Question 3:

Given a non-empty set X, consider P(X) which is the set of all subsets of X.

Define the relation R in P(X) as follows:

For subsets A, B in P(X), ARB if and only if $A \subset B$. Is R an equivalence relation on P(X)? Justify you answer.

Solution:

Since every set is a subset of itself, ARA for all

 \therefore R is reflexive.

Let $ARB \Rightarrow A \subset B$

This cannot be implied to $B \subset A$.

If $A = \{1, 2\}$ and $B = \{1, 2, 3\}$, then it cannot be implied that B is related to A.

 \therefore R is not symmetric.

If ARB and BRC, then $A \subset B$ and $B \subset C$.

 $\Rightarrow A \subset C$

 $\Rightarrow ARC$

 \therefore R is transitive.

R is not an equivalence relation as it is not symmetric.

Question 4:

Find the number of all onto functions from the set $\{1,2,3,\ldots,n\}$ to itself.

Solution:

Onto functions from the set $\{1,2,3,\ldots,n\}$ to itself is simply a permutation on n symbols $1,2,3,\ldots,n$.

Thus, the total number of onto maps from $\{1,2,3,...,n\}$ to itself is the same as the total number of permutations on n symbols 1,2,3,...,n, which is n!.

Question 5:

Let $A = \{-1, 0, 1, 2\}$, $B = \{-4, -2, 0, 2\}$ and $f, g : A \to B$ be functions defined

by
$$f(x) = x^2 - x$$
, $x \in A$ and $g(x) = 2 \left| x - \frac{1}{2} \right| -1$, $x \in A$. Are f and g equal?

Justify your answer. (Hint: One may note that two functions $f : A \to B$ and $g : A \to B$ such that $f(a) = g(a) \ \forall \ a \in A$, are called equal functions).

Solution:

It is given that $A = \{-1,0,1,2\}$, $B = \{-4,-2,0,2\}$

Also,
$$f, g: A \to B$$
 is defined by $x^2 - x$, $x \in A$ and $g(x) = 2 \left| x - \frac{1}{2} \right| - 1$, $x \in A$.
 $f(-1) = (-1)^2 - (-1) = 1 + 1 = 2$

$$g(-1) = 2\left|(-1) - \frac{1}{2}\right| - 1 = 2\left(\frac{3}{2}\right) - 1 = 3 - 1 = 2$$

$$\Rightarrow f(-1) = g(-1)$$

$$f(0) = (0)^2 - 0 = 0$$

$$g(0) = 2 \left| 0 - \frac{1}{2} \right| - 1 = 2 \left(\frac{1}{2} \right) - 1 = 1 - 1 = 0$$

$$\Rightarrow f(0) = g(0)$$

$$f(1) = (1)^2 - 1 = 0$$

$$g(1) = 2\left|1 - \frac{1}{2}\right| - 1 = 2\left(\frac{1}{2}\right) - 1 = 1 - 1 = 0$$

$$\Rightarrow f(1) = g(1)$$

$$f(2) = (2)^2 - 2 = 2$$

$$g(2) = 2 \left| 2 - \frac{1}{2} \right| - 1 = 2 \left(\frac{3}{2} \right) - 1 = 3 - 1 = 2$$

$$\Rightarrow f(2) = g(2)$$

$$\therefore f(a) = g(a) \quad \forall a \in A$$

Hence, the functions f and g are equal.

Question 6:

Let $A = \{1, 2, 3\}$. Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is,

- A. 1
- B. 2
- C. 3 D. 4

Solution:

The given set is $A = \{1, 2, 3\}$.

The smallest relation containing (1,2) and (1,3) which are reflexive and symmetric but not transitive is given by,

$$R = \{(1,1),(2,2),(3,3),(1,2),(1,3),(2,1),(3,1)\}$$

This is because relation R is reflexive as $\{(1,1),(2,2),(3,3)\}\in R$

Relation R is symmetric as $\{(1,2),(2,1)\}\in R$ and $\{(1,3)(3,1)\}\in R$

Relation R is transitive as $\{(3,1),(1,2)\}\in R_{\text{but}}(3,2)\notin R$.

Now, if we add any two pairs (3,2) and (2,3) (or both) to relation R, then relation R will become transitive.

Hence, the total number of desired relations is one.

The correct answer is A.

Ouestion 7:

Let $A = \{1, 2, 3\}$. Then number of equivalence relations containing (1, 2) is,

- **A**. 1
- B. 2
- C. 3

Solution:

The given set is $A = \{1, 2, 3\}$.

The smallest equivalence relation containing (1,2) is given by;

$$R_1 = \{(1,1),(2,2),(3,3),(1,2),(2,1)\}$$

Now, we are left with only four pairs i.e., (2,3), (3,2), (1,3) and (3,1).

If we odd any one pair $[say^{(2,3)}]$ to R_1 , then for symmetry we must add(3,2). Also, for transitivity we are required to add (1,3) and (3,1).

Hence, the only equivalence relation (bigger than R_1) is the universal relation.

This shows that the total number of equivalence relations containing (1,2) is two. The correct answer is B.