4. BIVARIATE FREQUENCY DISTRIBUTION AND CHI SQUARE STATISTIC

EXERCISE 4.1

1) Following tale gives income (X) and expenditure (Y) of 25 families:

	200 - 300	300 - 400	400 -500
Y	X		
200 - 300	HU I	ШI	I
300 - 400	-		
400 - 500	-	-	

Find

(I)Marginal frequency distributions of income and expenditure.

(II)Conditional frequency distribution of X when Y 13 between 300-400.

(III)Conditional frequency distribution of Y when X is between 200-300.

(IV)How many families have their income Rs. 300 and more and expenses Rs. 400 and less?

Sol:	The	bivariat	e freque	ncy distri	ibution is

	200 - 300	300 - 400	400 - 500	Total ()
Y X				
200-300	6	6	1	13
300-400	-	4	6	10
400-500	-	-	2	2
Total ()	6	10	9	25

(I) The Marginal frequency distributions of income (X)

	200 - 300	300 - 400	400 - 500	Total	
Х					
Frequency	6	10	9	25	

The Marginal frequency distributions of expenditure (Y)

	200 - 300	300 - 400	400 -500	Total
Y				

Frequency	13	10	2	25	
-----------	----	----	---	----	--

(II)Conditional frequency distribution of X when Y 13 between 300-400.

	200 - 300	300 - 400	400 - 500	Total
Х				
Frequency	-	4	6	10

(III)Conditional frequency distribution of Y when X is between 200-300.

	200 - 300	300 - 400	400 - 500	Total
Y				
Frequency	6	-	-	6

(IV) Number of families having their income Rs. 300 and expenses \leq Rs. 400 = 6 + 1 + 4 + 6 = 17

2) Two dice are thrown simultaneously 25 times. The following price of observation are obtained.

(2, 3) (2, 5)(5, 5) (4, 5) (6, 4) (3, 2) (5, 2) (4, 1) (2, 5) (6, 1) (3, 1) (3, 3)(4, 3) (4, 5) (2, 3)

5) (3, 4)

(2, 5) (3, 4) (2, 5) (4, 3) (5, 2) (4, 5) (4, 3) (2, 3) (4, 1)

Prepare a bivariate frequency distribution table for the above data. Also obtain the marginal distributions.

Sol: X: the number on the first die Y: the number on the second die

хү	2	3	4	5	6
1	-			-	
2	-		-		-
3				-	-
4	-		-	-	
5	HЦI	-		I	-

Bivariate frequency distribution is

	2	3	4	5	6	Total ()
X Y						
1	-	1	2	-	1	4
2	-	1	-	2	-	3
3	2	1	3	-	-	6
4	-	2	-	-	1	3
5	5	-	3	1	-	9
Total ()	7	5	8	3	2	25

<u>Marginal frequency distribution of X (number on first die)</u>

X	2	3	4	5	6	Total
0	7	5	8	3	2	25

Margin frequency distribution of Y (number on second die)

Y	1	2	3	4	5	Total
0	4	3	6	3	9	25

3) Following data gives the age of husbands (X) and age of wives (Y) in years. Construct a bivariate frequency distribution table and find the marginal distributions.

	27	25	28	26	29	27	28	26	25	25	27
Х											
Y	21	20	20	21	23	22	20	20	19	19	23
X	26	29	25	27	26	25	28	25	27	26	
Y	19	23	23	22	21	20	22	23	22	21	

Find conditional frequency distribution of age of husbands when the age of Wife is 23 years.

Sol: Let X: Age of husbands in years

Y: Age of Wives in years

X7 X7	25	26	27	28	29
X Y					
1			-	-	-
2			-		-
3	-			-	-

4	-	-		-
5		-	-	

Bivariate frequency distribution is

X Y	2	3	4	5	6	Total ()
1	-	1	2	-	1	4
2	-	1	-	2	-	3
3	2	1	3	-	-	6
4	-	2	-	-	1	3
5	5	-	3	1	-	9
Total ()	7	5	8	3	2	25

Marginal frequency distribution of X (Age of husbands)

x	25	26	27	28	29	Total
0	6	5	5	3	2	21

Margin frequency distribution of Y (Age of wives)

Y	19	20	21	22	23	Total
0	3	5	4	4	5	21

Conditional distribution of Xage of husbands) when Y (age of wives) is 23 years.

x	25	26	27	28	29	Total
Frequency	2	-	1	-	2	5

4) Construct a bivariate frequency distribution table of .the marks obtained by students in English (X) and Statistics (Y).

	37	20	46	28	35	26	41	48
Marks in								
Statistics								
(X)								
Marks in	30	32	41	33	29	43	30	21
English								
(Y)								

Marks in Statistics (X)	32	23	20	39	47	33	27	26
Marks in English (Y)	44	38	47	24	32	31	20	21

Construct a bivariate frequency distribution table for the above data by taking class intervals 20-30, 30-40, etc. for both X and Y. Also find the marginal distributions and conditional frequency distribution of Y when X lies between 30-40.

Sol: Let X: Marks in Statistics

Y: Marks in English

	20-30	30-40	40-50
X Y			
20-30			
30-40			
40-50			

Bivariate frequency distribution is

	20-30	30-40	40-50	Total	$\overline{0}$
X Y					
20-30	2	2	1	5	
30-40	4	1	2	7	
40-50	2	1	1	4	
Total ()	8	4	4	16	

Marginal frequency distribution of X (marks in statistics

	20-30	30-40	40-50	Total
Х				
0	8	4	4	16

Margin frequency distribution of Y (marks in English)

	20-30	30-40	40-50	Total
Y				
0	5	7	4	16

Conditional distribution of Ywhen X lies between 30-40.

	20-30	30-40	40-50	Total
Χ				
Frequency	2	1	1	4

5) Following data gives height in cm (X) and weight in kgs (Y) of 20 boys. Prepare a bivariate frequency table taking class intervals 150-154, 155-159...etc. for X and 35-39, 40-44 etc. for Y. Also find

(I) Marginal frequency distributions.

(II) Conditional frequency distribution of Y when $155 \le X \le 159$

(152, 40) (160, 54) (163, 52) (150, 35) (154, 36) (160, 49) (166, 54) (157, 38)(159,

43) (153, 48) (152, 41) (158, 51)(155, 44) (156, 47) (156, 43) (166, 53) (160, 50)

(151, 39) (153, 50) (158, 46)

Sol: Let X: height in cms.

Y: weight in kgs.

	150-	155-	160-	165-
X Y	154	159	164	169
35-39			-	-
40-44			-	-
45-49				-
50-54				

Bivariate frequency distribution is

	150-	155-	160-	165-	Total	()
X Y	154	159	164	169		
35-39	3	1	-	-	4	
40-44	2	3	-	-	5	
45-49	1	2	1	-	4	
50-54	1	1	3	2	7	
Total ()	7	7	4	2	20	

(I) Marginal distribution for X (height in cms)

	150-	155-	160-	165-	Total
Х	154	159	164	169	
0	7	7	4	2	20

Marginal distribution for Y (weight in kgs)

	150-	155-	160-	165-	Total
Y	154	159	164	169	
0	4	5	4	7	20

(II) Conditional distribution of Y when $155 \le X \le 159$

	150-	155-	160-	165-	Total
Х	154	159	164	169	
Frequency	1	3	2	1	7

EXERCISE 4.2

1) Following table shows the classification of applications for secretarial and for sales positions according to gender. Calculate the value of Statistic.

	Offered	Denied
Male	75	150
Female	25	50

Sol:

	Offered	Denied	Total
Male	75	150	225
Female	25	50	75
Total	100	200	N = 300

: =

011 = 75, E11 = = 75

012 = 150, E12 = = 150

021 = 25, E21 = = 25

022 = 50, E22 = = 50

χ2 =

$$= \frac{(75-75)^2}{75} + \frac{(150-150)^2}{150} + \frac{(25-25)^2}{25} + \frac{(50-50)^2}{50}$$
$$\chi 2 = 0$$

2) 200 teenagers were asked which take-out food do they prefer - French fries, burger or pizza. The results were -

	French fries	Denied	Pizza
Boys	75	150	24
Girls	25	50	92

Compute $\chi 2$ Statistics. Sol:

	French fries	Denied	Pizza	Total
Boys	75	150	24	50
Girls	25	50	92	150
Total	24	60	116	N = 200

: =

- 011 = 6, E11 = = 6
- 012 = 20, E12 = = 15
- 013 = 24, E13 = = 29
- 021 = 18, E21 = = 18
- 022 = 40, E22 = = 45
- 023 = 92, E23 = = 87

$$\chi^{2} = \sum \frac{(O-E)^{2}}{E}$$

$$= \frac{(6-6)^{2}}{6} + \frac{(20-15)^{2}}{15} + \frac{(24-29)^{2}}{29} + \frac{(18-18)^{2}}{18} + \frac{(40-45)^{2}}{45} + \frac{(92-87)^{2}}{87}$$

$$= 0 + \frac{25}{15} + \frac{25}{29} + 0 + \frac{25}{45} + \frac{25}{87}$$

$$= 1.67 + 0.86 + 0.56 + 0.29$$

 $\chi 2 = 3.38$

3) A sample of men and women who had passed their driving test either in 1st attempt or in 2nd attempt surveyed. Compute statistics.

	1st Attempt	2nd attempt
Passed in	_	
Men	32	28
Women	8	12

Sol:

	1st Attempt	2nd attempt	Total
Passed in	_	_	
Men	32	28	60
Women	8	12	20
Total	40	40	N = 80

∵ =

011 = 32, E11 = = 30

012 = 28, E12 = = 30

021 = 8, E21 = = 10

022 = 12, E22 = = 10

$$\chi^{2} = \sum \frac{(O-E)^{2}}{E}$$

$$= \frac{(32-30)^{2}}{30} + \frac{(28-30)^{2}}{30} + \frac{(8-10)^{2}}{10} + \frac{(12-10)^{2}}{10}$$

$$= \frac{4}{30} + \frac{4}{10} + \frac{4}{10} + \frac{4}{10} + \frac{4}{15} + \frac{4}{5} = \frac{16}{15}$$

= 1.0667 = 1.07

4) 800 people were asked whether they wear glasses for reading with following results.

	Wear glasses	Do not wear
Age	_	glasses
≤ 30	310	90
> 30	290	110

Sol:

	Wear glasses	Do not wear glasses	Total
Age ≤ 30	310	90	400
30 <	290	110	400
Age ≤ 50			
Total	600	200	N = 800

∵ =

011 = 310, E11 = = 300 012 = 90, E12 = = 100 021 = 290, E21 = = 300 022 = 110, E22 = = 100 $\chi^{2} = \sum \frac{(O-E)^{2}}{E}$ $= \frac{(310-300)^{2}}{300} + \frac{(90-100)^{2}}{100} + \frac{(290-300)^{2}}{300} + \frac{(110-100)^{2}}{100}$ $= \frac{100}{300} + \frac{100}{100} + \frac{100}{300} + \frac{100}{100} + \frac{1}{3} + 1 + \frac{1}{3} + 1$ $= 2 + \frac{2}{3} = 2 + 0.666 = 2.666$ = 2.67

5) Out of a sample of 120 persons in a village, 80 were administered a new drug for preventing influenza and out of them 18 were attacked by influenza. Out of those who were not administered the new drug, 10 persons were not attacked by influenza: Prepare: (I) a two-way table showing frequencies. (II) Compute the square statistic.

Sol: (I)

	Effect of influenza		
New Drug	Attacked	Not	Total
		Attacked	
Administered	18	62	80
Not	30	10	40
Administered			
Total	48	72	120

(II) :: =

011 = 18, E11 = 32 012 = 62, E12 = 48 021 = 30, E21 = 16 022 = 10, E22 = 24 $\chi^{2} = \sum \frac{(O-E)^{2}}{E}$ $= \frac{(310-300)^{2}}{300} + \frac{(90-100)^{2}}{100} + \frac{(290-300)^{2}}{300} + \frac{(110-100)^{2}}{100}$ $= \frac{100}{300} + \frac{100}{100} + \frac{100}{300} + \frac{100}{100} + \frac{1}{3} + 1 + \frac{1}{3} + 1$ $= 2 + \frac{2}{3} = 2 + 0.666 = 2.666$ = 6.125 + 4.083 + 12.25 + 8.167 = 30.625