Reg. No. :

Name :

Code No. 9018

Second Year – March 2018

Time : 2½ Hours Cool-off time : 15 Minutes

Part – III

MATHEMATICS (SCIENCE)

Maximum : 80 Scores

General Instructions to Candidates :

- There is a 'Cool-off time' of 15 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതുനിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- 'കൂൾ ഓഫ് ടൈം' ചോദ്യങ്ങൾ പരിചയപ്പെടാനും ഉത്തരങ്ങൾ ആസൂത്രണം ചെയ്യാനും ഉപയോഗിക്കുക.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- നിർദ്ദേശങ്ങൾ മുഴുവനും ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നല്ലിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാക്യങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

Questions 1 to 7 carry 3 scores each. Answer any Six questions.

(Scores :
$$6 \times 3 = 18$$
)
1. If $f(x) = \frac{x}{x-1}, x \neq 1$
(a) Find fof (x) (Scores : 2)
(b) Find the inverse of f. (Score : 1)
2. Using elementary row operations, find the inverse of the matrix $\begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$. (Scores : 3)
3. (a) $f(x)$ is a strictly increasing function, if $f'(x)$ is ______
(i) positive
(ii) negative
(iii) 0
(iv) None of these (Score : 1)
(b) Show that the function f given by $f(x) = x^3 - 3x^2 + 4x, x \in \mathbb{R}$ is strictly increasing.
(Scores : 2)
4. (a) $\int_{0}^{a} f(a-x)dx = _____.$ (Score : 1)
 $\begin{bmatrix} (i) \int_{0}^{2a} f(x) dx, (ii) \int_{-a}^{a} f(x) dx, (iii) \int_{0}^{a} f(x) dx, (iv) \int_{a}^{0} f(x) dx \end{bmatrix}$

(b) Find the value of
$$\int_{0}^{\pi/2} \frac{\sin^4 x}{\sin^4 x + \cos^4 x} \, dx.$$
 (Scores : 2)

- 5. Find the area of the region bounded by the Curve $y^2 = x$, x-axis and the lines x = 1 and (Scores : 3)
- 6. Find the general solution of the differential equation $x \frac{dy}{dx} + 2y = x^2 \log x$. (Scores : 3)
- 7. A manufacturer produces nuts and bolts. It takes 1 hour of work on Machine A and 3 hours on Machine B to produce a package of nuts. It take 3 hours on Machine A and 1 hour on Machine B to produce a package of bolts. He earns a profit of ₹ 17.50 per package on nuts and ₹ 7.00 per package on bolts. Formulate the above L.P.P., if the machines operates for at most 12 hours a day. (Scores: 3)

1 മുതൽ 7 വരെയുള്ള ചോദൃങ്ങൾക്ക് 3 സ്കോർ വീതമാണ്. ഏതെങ്കിലും 6 എണ്ണത്തിന് ഉത്തരമെഴുതുക. (സോർസ്: 6 × 3 = 18) $f(x) = \frac{x}{x-1}, x \neq 1$ ആയാൽ 1. (a) $f_{\circ}f(x)$ കണ്ടുപിടിക്കുക. (സ്കോർസ് : 2) (b) f ന്റെ ഇൻവേഴ് എഴുതുക. (സോർ : 1) എലെമെന്ററി റോ ട്രാൻസ്ഫർമേഷൻ ഉപയോഗിച്ച് $\left[egin{array}{cc} 1 & 2 \ 2 & -1 \end{array}
ight]$ എന്ന മെട്രിക്സിന്റെ 2. (സ്കോർസ് : 3) ഇൻവേഴ്സ് എഴുതുക. 3. f(x) സ്പ്രിക്ടിലി ഇൻക്രീസിംഗ് ആയാൽ f'(x) ന്റെ വില (a) (i) പോസിറ്റീവ് (ii) നെഗറ്റീവ് (iii) 0 (iv) ഇതൊന്നുമല്ല (സോർ : 1) (b) $f(x) = x^3 - 3x^2 + 4x, x \in \mathbb{R}$ സ്രിക്ടിലി ഇൻക്രീസിംഗ് ആണെന്ന് തെളിയിക്കുക. (സ്കോർസ് : 2) (a) $\int_{0}^{a} f(a-x)dx = \underline{\qquad}.$ 4. (സോർ:1) (b) $\int \frac{\sin^4 x}{\sin^4 x + \cos^4 x} \, \mathrm{d}x$ ന്റെ വില കണ്ടുപിടിക്കുക. (സ്കോർസ് : 2) $y^2 = x$ എന്ന വക്രവും, x-ആക്സിസും x = 1 ഉം x = 4 ഉം എന്നിവയ്ക്ക് ഇടയിലുള്ള 5. ഭാഗത്തിന്റെ പരപ്പളവ് കണ്ടുപിടിക്കുക. (സ്റോർസ് : 3)

- 6. $x \frac{dy}{dx} + 2y = x^2 \log x$ എന്ന ഡിഫറൻഷ്യൽ ഇക്വേഷന്റെ നിർദ്ധാരണ മൂല്യം കണ്ടുപിടിക്കുക. (സ്കോർസ്: 3)
- 7. നട്ടും ബോൾട്ടും ഉല്പാദിപ്പിക്കുന്ന ഒരു ഫാക്ടറിയിൽ രണ്ടു മെഷീനുകൾ ഉണ്ട്. അവ യഥാക്രമം A യും B യും ആണ്. ഇവ രണ്ടും മൊത്തം പ്രവൃത്തി സമയം 12 മണിക്കൂറിൽ കവിയരുത്. ഒരു കവർ നട്ടുണ്ടാക്കാൻ മെഷീൻ A യിൽ 1 മണിക്കൂറും മെഷീൻ B യിൽ 3 മണിക്കൂറും വേണം. എന്നാൽ ഒരു കവർ ബോൾട്ട് ഉണ്ടാക്കാൻ മെഷീൻ A യിൽ 3 മണിക്കൂറും മെഷീൻ B യിൽ 1 മണിക്കൂറും വേണം. ആകെയുള്ള ലാഭം ഒരു കവർ നട്ടിന് 17.50 രൂപയും ഒരു കവർ ബോൾട്ടിന് 7.00 രൂപയും ആണ്. എങ്കിൽ ഈ പ്രശ്നത്തെ ഒരു LPP ആയി എഴുതുക. (സ്കോർസ്: 3)

Questions 8 to 17 carry 4 Scores each. Answer any eight. (Scores : $8 \times 4 = 32$)

- Let $A = N \times N$ and '*' be a binary operation on A defined by (a, b) * (c, d) = (a + c, b + d)8.
 - (a) Find (1, 2) * (2, 3) (Score : 1)
 - Prove that '*' is commutative (b) (Score:1)

(Scores : 2)

Prove that '*' is associative. (c)

- Identify the function from the above graph. (a)
 - $\tan^{-1}x$ (i)
 - (ii) $\sin^{-1}x$
 - (iii) $\cos^{-1}x$

(iv)
$$\operatorname{cosec}^{-1}x$$
 (Score : 1)

Find the domain and range of the function represented in above graph. (Score:1) (b)

(c) Prove that
$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{2}{11} = \tan^{-1}\frac{3}{4}$$
. (Scores : 2)

10. (a)
$$\frac{d(a^{x})}{dx} =$$
(i) a^{x} (ii) $\log(a^{x})$ (iii) $a^{x}\log a$ (iv) xa^{x-1} (Score : 1)
(b) Find $\frac{dy}{dx}$ if $x^{y} = y^{x}$.(Score : 3)

(b) Find
$$\frac{dy}{dx}$$
 if $x^y = y^x$. (Scores : 3)

8 മുതൽ 17 വരെയുള്ള ചോദ്യങ്ങൾക്ക് 4 സ്കോർ വീതമാണ്. ഏതെങ്കിലും

(സ്റ്റോർസ്: 8 × 4 = 32)

P.T.O.

8 എണ്ണത്തിന് ഉത്തരമെഴുതുക.

8. A = N × N ൽ '*' എന്ന ബൈനറി ഓപ്പറേഷൻ താഴെ നൽകിയിരിക്കുന്ന രീതിയിലാണ് നിർവ്വചിച്ചിട്ടുള്ളത്.

$$(a, b) * (c, d) = (a + c, b + d)$$

- (a) (1, 2) * (2, 3) കാണുക. (സ്റ്റോർ : 1)
- (b) '*' കമ്മ്യൂട്ടേറ്റീവ് ആണന്ന് തെളിയിക്കുക (സ്കോർ : 1)
- (c) '*' അസോസിയേറ്റീവ് ആണെന്ന് തെളിയിക്കുക. (സ്കോർസ് : 2)

- (a) മുകളിൽ കൊടുത്തിരിക്കുന്ന ഗ്രാഫിൽ നിന്നും ഫംഗ്ഷൻ തെരഞ്ഞെടുത്തെഴുതുക.
 - (i) $\tan^{-1}x$
 - (ii) $\sin^{-1}x$
 - (iii) $\cos^{-1}x$
 - (iv) $\csc^{-1}x$ (cmpod: 1)

(c)
$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{2}{11} = \tan^{-1}\frac{3}{4}$$
എന്ന് തെളിയിക്കുക. (സ്റോർസ്: 2)

10. (a)
$$\frac{d(a^{x})}{dx} =$$
(i) a^{x}
(ii) $\log(a^{x})$
(iii) $a^{x}\log a$
(iv) xa^{x-1}
(cm.od: 1)
(b) $x^{y} = y^{x}$ ആയാൽ $\frac{dy}{dx}$ കാണുക. (cm.odi: 3)

- 11. (a) Find the slope of the tangent to the curve $y = (x 2)^2$ at x = 1. (Score : 1)
 - (b) Find a point at which the tangent to the curve $y = (x 2)^2$ is parallel to the chord joining the points A(2, 0) and B(4, 4). (Scores : 2)
 - (c) Find the equation of the tangent to the above curve and parallel to the line AB.

(Score : 1)

12.
$$\int_{0}^{2} (x^{2} + 1) dx$$
 as the limit of a sum. (Scores : 4)

13. Consider the following figure :

- (a) Find the point of intersection 'P' of the circle $x^2 + y^2 = 50$ and the line y = x.
- (b) Find the area of the shaded region.

14. (a) The degree of the differential equation $xy\left(\frac{d^2y}{dx^2}\right)^2 + x^4\left(\frac{dy}{dx}\right)^3 - y\frac{dy}{dx} = 0$ is _____.

- (i) 4
- (ii) 3
- (iii) 2
- (iv) 1

(Score : 1)

(Score : 1)

(Scores : 3)

(b) Find the general solution of the differential equation $\sec^2 x \tan y \, dx + \sec^2 y \tan x$ dy = 0 (Scores : 3)

15. (a) Prove that for any vectors
$$\vec{a}$$
, \vec{b} , \vec{c} , $[\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}] = 2[\vec{a}, \vec{b}, \vec{c}].$
(Scores : 3)

(b) Show that if $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$ are coplanar then \vec{a} , \vec{b} , \vec{c} are also coplanar. (Score: 1)

11. (a) $y = (x-2)^2$ എന്ന വക്രത്തിന്റെ x = 1 ലെ തൊടുവരയുടെ സ്റ്റോപ് കണ്ടുപിടിക്കുക.

(b) y = (x - 2)² എന്ന വക്രത്തിന്റെ തൊടുവര A(2, 0), B(4, 4) എന്ന ബിന്ദുക്കൾ തമ്മിൽ വരയ്ക്കുന്ന രേഖാഖണ്ഡത്തിന് സമാന്തരമാകുമ്പോഴുള്ള വക്രത്തിൽ മുട്ടുന്ന ബിന്ദു കണ്ടുപിടിക്കുക.

(സോർ : 1)

P.T.O.

- (c) മുകളിലെ വക്രത്തിന്റെ തൊടുവര AB യ്ക്ക് സമാന്തരമാകുന്ന രീതിയിലുള്ള സമവാകൃം കണ്ടെത്തുക. (സ്കോർ : 1)
- 12. $\int_{0}^{2} (x^{2} + 1) dx$ എന്നത് ഒരു തുകയുടെ ലിമിറ്റ് ആയി കണ്ടെത്തുക. (സ്കോർസ് : 4)
- 13. താഴെ കൊടുത്തിരിക്കുന്ന ചിത്രം പരിഗണിക്കുക :

- (a) $x^2 + y^2 = 50$ എന്ന വൃത്തവും y = x എന്ന വരയും സംഗമിക്കുന്ന P എന്ന ബിന്ദു കണ്ടുപിടിക്കുക. (സ്കോർ : 1)
- (b) ഗ്രാഫിൽ ഷേഡ് ചെയ്ത ഭാഗത്തിന്റെ പരപ്പളവ് കണ്ടുപിടിക്കുക. (സ്കോർസ് : 3)
- 14. (a) $xy \left(\frac{d^2y}{dx^2}\right)^2 + x^4 \left(\frac{dy}{dx}\right)^3 y \frac{dy}{dx} = 0$ എന്ന ഡിഫറൻഷ്യൽ സമവാക്യത്തിന്റെ ഡിഗ്രി $\overbrace{(i) \ 4}_{(iii) \ 2}_{(iv) \ 1}_{(iv) \ 1}_{(iv)$
 - (b) sec² x tan y dx + sec² y tan x dy = 0 എന്ന ഡിഫറൻഷൃൽ സമവാകൃത്തിന്റെ ജനറൽ സൊല്യൂഷൻ കണ്ടുപിടിക്കുക. (സ്കോർസ്: 3)
- 15. (a) $\vec{a}, \vec{b}, \vec{c}$ മൂന്ന് വെക്ടറുകളായാൽ $\left[\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}\right] = 2 \left[\vec{a}, \vec{b}, \vec{c}\right]$ എന്ന് തെളിയിക്കുക. (സ്കോർസ്: 3)
 - (b) $\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}$ എന്നീ വെക്ടറുകൾ ഒരേ തലത്തിലാണെങ്കിൽ, $\vec{a}, \vec{b}, \vec{c}$ ഒരേ തലത്തിലാണെന്ന് തെളിയിക്കുക. (സ്കോർ : 1)

- 16. (a) Find the equation of a plane which makes x, y, z intercepts respectively as 1, 2, 3.
 - (Scores : 2)
 - (b) Find the equation of a plane passing through the point (1, 2, 3) which is parallel to above plane. (Scores : 2)
- 17. Solve the L.P.P. given below graphically :

Minimise
$$Z = -3x + 4y$$

Subject to $x + 2y \le 8$,
 $3x + 2y \le 12$,
 $x \ge 0, y \ge 0$ (Scores : 4)

Questions from 18 to 24 carry 6 scores each. Answer any five.

(Scores : $5 \times 6 = 30$) (a) Find x and y if 18. $x\begin{bmatrix} 2\\3 \end{bmatrix} + y\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}$ (Scores : 2) (b) Express the matrix $\begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ as the sum of a symmetric and a skewsymmetric matrices. (Scores: 4) 19. (a) Prove that $\begin{vmatrix} a & b & c \\ a+2x & b+2y & c+2z \\ x & y & z \end{vmatrix} = 0.$ (Scores : 2) (b) If $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$. (i) Prove that $B = A^{-1}$. (ii) Using A^{-1} solve the system linear equations given below. x - y + 2z = 12y - 3z = 13x - 2y + 4z = 2(Scores : 4)

20. (a) Prove that the function defined by $f(x) = cos(x^2)$ is a continuous function. (Scores : 2)

(b) (i) If
$$y = e^{a\cos^{-1}x}$$
, $-1 \le x \le 1$, show that $\frac{dy}{dx} = \frac{-ae^{a\cos^{-1}x}}{\sqrt{1-x^2}}$. (Score : 1)

(ii) Hence, prove that
$$(1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} - a^2y = 0.$$
 (Scores : 3)

- 16. (a) 1, 2, 3 എന്നിവ യഥാക്രമം *x*, y, z ഇന്റർസെപ്റ്റുകളാകുന്ന ഒരു തലത്തിന്റെ സമവാകൃം എഴുതുക. (സ്കോർസ് : 2)
 - (b) (1, 2, 3) കൂടി കടന്നു പോകുകയും മുകളിലെ തലത്തിന് സമാന്തരമാകുന്നതുമായ തലത്തിന്റെ സമവാകൃം എഴുതുക. (സ്കോർസ് : 2)
- 17. ചുവടെ കൊടുത്തിരിക്കുന്ന L.P.P. യെ ഗ്രാഫ് ഉപയോഗിച്ച് നിർദ്ധാരണം ചെയ്യുക :

Minimise Z = -3x + 4ySubject to $x + 2y \le 8$, $3x + 2y \le 12$, $x \ge 0, y \ge 0$

(സ്റോർസ് : 4)

18 മുതൽ 24 വരെയുള്ള ചോദ്യങ്ങൾക്ക് 6 സ്കോർ വീതമാണ്. ഏതെങ്കിലും 5 എണ്ണത്തിന് ഉത്തരമെഴുതുക. (സ്കോർസ് : 5 × 6 = 3 (സ്റ്റോർസ്: 5 × 6 = 30) (a) $x \begin{bmatrix} 2\\ 3 \end{bmatrix} + y \begin{bmatrix} -1\\ 1 \end{bmatrix} = \begin{bmatrix} 10\\ 5 \end{bmatrix}$ ആയാൽ 18. (സ്കോർസ് : 2) *x,* y യുടെ വില കണ്ടുപിടിക്കുക.

 (b)
 $\begin{vmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{vmatrix}$ എന്ന മാട്രിക്സിനെ ഒരു സിമട്രിക് മാട്രിക്സിന്റെയും

 ഒരു സ്ക്യൂ-സിമട്രിക് മാട്രിക്സിന്റെയും തുകയായി എഴുതുക. (സോർസ്: 4) 19. (a) $\begin{vmatrix} a & b & c \\ a+2x & b+2y & c+2z \\ r & y & z \end{vmatrix} = 0$ എന്ന് തെളിയിക്കുക. (സോർസ് : 2) (b) $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 2 & 2 & 4 \end{bmatrix}, B = \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$ ആയാൽ (i) $B = A^{-1}$ എന്ന് തെളിയിക്കുക. (ii) A⁻¹ ഉപയോഗിച്ച് താഴെ കൊടുത്തിരിക്കുന്ന രേഖീയ സമവാക്യങ്ങളുടെ പരിഹാരം കണ്ടുപിടിക്കുക. x - y + 2z = 12y - 3z = 13x - 2y + 4z = 2(സ്കോർസ് : 4) (a) $f(x) = \cos(x^2)$ എന്നത് ഒരു കണ്ടിന്യൂസ് ഫംഗ്ഷൻ എന്ന് തെളിയിക്കുക. (സോർസ് : 2) 20. (b) (i) $y = e^{a\cos^{-1}x}, -1 \le x \le 1$ ആയാൽ $\frac{dy}{dx} = \frac{-ae^{a\cos^{-1}x}}{\sqrt{1-x^2}}$ എന്ന് തെളിയിക്കുക.(ണ്ണോർ : 1) (ii) $(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} - a^2y = 0$ എന്ന് തെളിയിക്കുക. (സ്കോർസ് : 3) 9 9018 **P.T.O.**

21. Evaluate the following :

(a)
$$\int \sin mx \, dx.$$
 (Score : 1)

(b)
$$\int \frac{1 \, \mathrm{d}x}{\sqrt{x^2 + 2x + 2}}$$
 (Scores : 3)

(c)
$$\int \frac{x \, dx}{(x+1) \, (x+2)}$$
 (Scores : 2)

22. (a) If
$$\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$$
, $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$
(i) Find $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$. (Scores : 2)
(ii) Find a unit vector perpendicular to both $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$. (Scores : 2)
(b) Consider the points A(1, 2, 7), B (2, 6, 3), C(3, 10, -1).

(i) Find
$$\overrightarrow{AB}$$
, \overrightarrow{BC} (Score : 1)(ii) Prove that A, B, C are collinear points.(Score : 1)

23. (a) Find the angle between the lines

$$\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3} \text{ and } \frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{4}$$
(Scores : 2)
(b) Find the shortest distance between the pair of lines

$$\vec{r} = \left(\hat{i} + 2\hat{j} + 3\hat{k}\right) + \lambda \left(\hat{i} - 3\hat{j} + 2\hat{k}\right)$$

$$\vec{r} = \left(4\hat{i} + 5\hat{j} + 6\hat{k}\right) + \mu \left(2\hat{i} + 3\hat{j} + \hat{k}\right)$$
 (Scores : 4)

24. (a) The probability distribution of a random variable is given by P(x). What is $\Sigma P(x)$?

(Score : 1)

The following is a probability distribution function of a random variable. -4-22 4 5 - 5 - 3 - 1 0 1 3 x **P(x)** k 7k 8k 9k 2k 3k4k 5k 10k 11k 12k Find k (i) (Scores : 2) (ii) Find P(x > 3)(Score : 1) (iii) Find P(-3 < x < 4)(Score : 1) (iv) Find P(x < -3)(Score : 1)

9018

(b)

21. ചുവടെ കൊടുത്തിരിക്കുന്നവ കണ്ടുപിടിക്കുക :

(a)
$$\int \sin mx \, dx.$$
 (cmpod: 1)

(b)
$$\int \frac{1 \, \mathrm{d}x}{\sqrt{x^2 + 2x + 2}}$$
 (cm.) doi: 3)

(c)
$$\int \frac{x \, dx}{(x+1) \, (x+2)}$$
 (cm.) doi: 2)

22. (a)
$$\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}, \vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$$
 ആയാൽ

- (i) $\vec{a} + \vec{b}$; $\vec{a} \vec{b}$ ഇവയുടെ വില കാണുക. (സ്കോർസ് : 2)
- (ii) \vec{a} + \vec{b} യ്ക്കും \vec{a} \vec{b} യ്ക്കും ലംബമായി വരുന്ന യൂണിറ്റ് വെകുർ കണ്ടുപിടിക്കുക. (സ്കോർസ് : 2)

(b)
$$A(1, 2, 7), B(2, 6, 3), C(3, 10, -1)$$
 എന്നീ ബിന്ദുക്കൾ പരിഗണിക്കുക.

- (i) \overrightarrow{AB} , \overrightarrow{BC} ഇവ കാണുക. (സ്കോർ : 1)
- (ii) A, B, C എന്നീ ബിന്ദുക്കൾ ഒരേ വരയിലുള്ളതാണെന്ന് തെളിയിക്കുക.
 - (സ്കോർ : 1)

23. (a)
$$\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3}, \quad \frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{4}$$
 എന്നീ വരകൾ തമ്മിലുള്ള കോൺ
അളവ്കാണുക. (സ്റോർസ്: 2)

(b)
$$\vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda (\hat{i} - 3\hat{j} + 2\hat{k})$$

 $\vec{r} = (4\hat{i} + 5\hat{j} + 6\hat{k}) + \mu (2\hat{i} + 3\hat{j} + \hat{k})$
എന്നീ വരകൾ തമ്മിലുള്ള ഏറ്റവും കുറഞ്ഞ അകലം കണ്ടെത്തുക. (ബ്ലോർസ്: 4)

- $\mathbf{P}(x)$ എന്നത് ഒരു റാൻഡം വേരിയബിളിന്റെ പ്രോബബിലിറ്റി ഡിസ്ട്രിബ്യൂഷൻ 24. (a) ആണെങ്കിൽ $\Sigma P(x)$ എന്താണ് ? (സോർ : 1)
 - താഴെ കൊടുത്തിരിക്കുന്ന പട്ടിക ഒരു റാൻഡം വേരിയബിളിന്റെ പ്രോബബിലിറ്റി (b) ഡിസ്ട്രിബ്യൂഷൻ ആണെങ്കിൽ

x	- 5	-4	- 3	-2	- 1	0	1	2	3	4	5
P (<i>x</i>)	k	2k	3k	4k	5k	7k	8k	9k	10k	11k	12k

(i)	k യുടെ വില എന്ത് ?	(സ്കോർസ് : 2)
(ii)	P(x > 3) വില കണ്ടുപിടിക്കുക.	(സ്കോർ : 1)
(iii)	P(– 3 < x < 4) വില കാണുക.	(സ്ലോർ : 1)

(iv) P(*x* < − 3) കാണുക.

- 1)
- (സ്കോർ : 1)

SECOND YEAR HIGHER SECONDARY EXAMINATION MARCH 2018

	SUBJEC	T: MATHEMATICS (SCIENCE)	CODE. NO: 9018	
Qn No	Sub Qns	Answer Key/Value Points	Score	Total
١.	(aj	fof(n) = f(f(n))	Y2.	
		$= f\left(\frac{n}{x-1}\right)$	1/2	
		$= \frac{\frac{n}{n-1}}{\frac{n}{n-1}}$	1/2	2
	Ì	$= \frac{n}{n-(n-1)} = x$	1/2	
	(b)	Ĵ	1	1
		Remark: $y = \frac{n}{n-1}$ $ny - y = n$		
		$n_y - x = y$ $n(y-1) = y$ $n = \frac{y}{y-1}$		1
		$\therefore f'(y) = \frac{y}{y-1}$		
.		$cr f'(n) = \frac{n}{n-1}$	1	
2.	1	A = IA	1/2	
		$\begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$	Y ₂	
	}	$\begin{bmatrix} 1 & 2 \\ 0 & -5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} A \qquad R_2 \rightarrow R_2 = 2R$, ¹ /2	
		$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{12}{5} & -\frac{1}{5} \end{bmatrix} A$ $R_{1} \rightarrow -\frac{1}{5} R_{2}$)	
		$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{2} \begin{bmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{1}{5} \end{bmatrix} A.$ $R_{1} \rightarrow R_{1} - 2R_{2}$	1/2	3
		Remark: Using metrix method $A^{-1} = \frac{A di A}{1 H 1} = \frac{1}{5} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} g^{1}$	nie (1)	

3/5

4/15 ¦ Sub Qn Answer Key/Value Points Score Total No Qns (1,2) k(2,3) = (1+2,2+3)8 (a) ሂ 1 = (3,5) 3 (b) $(c,d) \neq (a,b) = (c+a,d+b)$ 3 = (a+c, b+d) 1 = (a, b) k(c,d) አ (c) $(a, b) \neq (c, d) \neq (e, f) = (a, b) \neq (c+e, d+f)$ 3 = (G+C+e, b+d+f) と 2. (a,b) & (c,d)] & (e,f) = (a+c, b+d) & (e,f) 3 = (a+c+e, b+d+f) 1/2_ $(a,b) \not = \left((c,d) \not = (a,b) = (a,b$ Remarks: asb = box a then & is commutature ゆみ grie (1/2) seore (1) } at(btc) = (atb) tc - then to is associative give (Y2) score. ("Proving '6 and 'c' using numbers give (3) score (a) (ii) Sin⁻¹x 9 ł J Domain [-1,1] 3 (b) 1 Range [- x12, x12] 1/2_ (e) $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{n+y}{1-xy} \right)$ 1/2 $\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{2}{11} = \ln^{-1} \frac{1}{2} + \frac{2}{11}$ 1 2 $= \tan\left(\frac{15}{20}\right)$ Z tan (3)

Qn
No
Qn
No
Qn
(ii)
$$a^{x} \log a$$

 $a^{y} = \log g^{n}$
 $y \log n = 2 (n - 2)$
 $y \log n = 2 (n$

۰.

5/15

Qn. No	Sub Ons	Answer Key/Value Points	Score	Total
		$\int_{0}^{2} \pi^{2} + 1 d\pi = \lim_{h \to 0} h \left[1 + (h^{2} + 1) + (2h)^{2} + 1 \right] + \dots + \left[(n - 1)h \right]^{2} + 1$	Y	
		$= \lim_{h \to 0} h \left[n + h^2 \left(1^2 + 2^2 + 3^2 + \dots + (n-1) \right) \right]$	ž	
		$= \lim_{h \to 0} nh + \frac{h^{3} n (n-1) (2n-1)}{6}$	۲	
		$= 2 + \frac{2(2-0)(4-0)}{6}$ $= 2 + \frac{8}{3} = \frac{14}{3}$	ž	4
	ř	Remark: For Direct method $\int (n^2+1) dx$ = $\left(\frac{n^3}{2}+n\right)^2 = \frac{14}{2}$		
	4	give (1) score (f(n)dx = (b-a) lins + (f(a)+		
		end $\int_{0}^{2} \lambda^{2} + 1 dn = \frac{14}{3} \text{ give } (4) \text{ score}$		
13	(a)	point of intersection $x^2 + x^2 = 50$ $x^2 = 25$		
		$n = \pm 5$ $y = \pm 5$ point P(5,5)	}	.

7/15

	T			· · · · · · · · · · · · · · · · · · ·
Qn. No	Sub	Answer Key/Value Points	Score	Total
13	Ь	Required Area = 5 ndx + 5 J 50-22 dz	1	
		$= \left(\frac{\pi^{2}}{2}\right)^{5}_{0} + \left[\frac{\pi}{2}\sqrt{50-x^{2}} + \frac{50}{2}\sin^{-1}\frac{\pi}{\sqrt{50}}\right]_{5}$	l	
		$=\frac{25}{2}+25\frac{1}{2}-\frac{25}{2}-\frac{25}{2}-\frac{1}{4}$	1/2	
		$= \frac{25\pi}{4}$	1/2	3
		$\frac{\text{Remark.}}{\text{i) Area}} = \frac{\hat{\Lambda}r^2}{8} = \frac{\hat{\Lambda}x50}{8} = \frac{25\hat{\Lambda}}{4}$ $\frac{10}{10}\text{ Area} = \frac{1}{2}\int\sqrt{50-\chi^2} dx.$ (3)		
		$= \frac{2\delta\hat{\Lambda}}{1}$ (3)		
		(11) Area = $\int_{a}^{b} f(n) dx$ (1)		
14.	(a)	(iiij 2	1	1
	(b)	$\frac{\sec^2 n}{\tan n} dn = -\frac{\sec^2 y}{\tan y} dy$	(
		$\int \frac{\int ec^2 \pi}{lan \pi} d\pi = -\int \frac{\int ec^2 y}{lan y} dy$ $\log lan \pi = -\log lan y + c$ $\log lan \pi + \log lan y = c$	2	<u>з</u> ,

8/15

Qn.	Sub	Answer Key/Value Points	Score	Total
15	q.	$\begin{bmatrix} \overline{a} + \overline{b}, \overline{b} + \overline{c}, \overline{c} + \overline{a} \end{bmatrix} = (a + \overline{b}) \cdot \begin{bmatrix} \overline{b} + \overline{c} & x(\overline{c} + \overline{a}) \end{bmatrix}$	٧_	
		$= (a+b) \cdot \begin{bmatrix} bxc+bxa+cxc+cy \\ bxc+bxa+cy \\ a+cy \\ a \end{bmatrix}$	ν <u>_</u> Υ_	
		$= \overline{a} \cdot \overline{b} \times \overline{c} + \overline{a} \cdot \overline{b} \times \overline{a} + \overline{a} \cdot \overline{c} \times \overline{a}$ $+ \overline{b} \cdot \overline{b} \times \overline{c} + \overline{b} \cdot \overline{b} \times \overline{a} + \overline{b} \cdot \overline{c} \times \overline{a}$	1	
		$= 2 \left[\dot{a} \dot{b} \dot{c} \right]$	½	3
	Ь.	[abc]=0 Hence a, b, c are coplanar)	1
16 .	a.	$\frac{n}{1} + \frac{y}{2} + \frac{z}{3} = 1$	2.	2
	Ь.	6x + 3y + 2z = 6 Plane por ellel to grien julane is 6n + 3y + 2z = k. Since it passes through $1, 2, 3$ k = 18	। ४	
		equation of plane & <u>6n+3y+2z=18</u> <u>Remark</u> .	ž	2
		Equation of piane is 6(n-1)+3(y-2)+2(z-3)=0 6n+3y+2z-18=0 (2) score		

9/15

Qn. No	Sub Qns	Answer Key/Value Points	Score	Total
		$P = \frac{1}{2} \begin{bmatrix} A + A^{T} \end{bmatrix}$ = $\frac{1}{2} \begin{bmatrix} 4 & -3 & -3 \\ -3 & 6 & 2 \\ -3 & 2 & -6 \end{bmatrix}$, Symmetric	1	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	
		A = P + Q	l	4
19.	a	$\begin{vmatrix} a & b & c \\ a & b & c \\ a & b & c \\ n & y & z \end{vmatrix} = 0$	2.	2
		$\begin{array}{c c} Riemarke. \\ \hline A & b & C \\ \Delta = & 2n & 2y & 2z \\ n & y & z \\ \hline n & y & z \\ \end{array} \xrightarrow{R_2 \to R_2 - R_1}$		
		= 0 (2) Seore		
		For direct expention give (1) Score		
	Ь (Ů	Proveng $AB = \hat{I}$ $B = A^{-1}$	1 ½ ½	-
		<u>Remark</u> : $A' = \frac{Adj}{IAI} = B$ give(2) score.		

. •

1/15

Qn. No	Sub Ons	Answer Key/Value Points	Score	Total
	h.	$ \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix} \begin{bmatrix} \chi \\ \varphi \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} $	72	
		$x = \overline{A}'B$	1/2	
		$ \begin{bmatrix} \eta \\ \eta \\ z \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ \eta & 2 \\ -3 \\ 6 & 1 \\ -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix} $	1/2	
		$= \begin{bmatrix} 0\\5\\3 \end{bmatrix}$	ž	4
		$n = 0$ $y = 5$ $\lambda = 5$		
20	(9)	f(n)= Cosz g(n)=x, boib are continuous		
		Composition of two continuous functions are continuous	3	
		is continuous	1/2	2
	(b)¢)	$\frac{dy}{dn} = ae^{a\cos^2n} \times \frac{-1}{\sqrt{1-n^2}}$		
		$= - \alpha e^{\alpha 6 \sigma' \pi}$	1	1
	ŭ	$\sqrt{1-n^2} \frac{dy}{dn} = -ay$	1/2	
		$ (1-\pi^2) \left(\frac{dy}{d\pi}\right)^2 = q^2 y^2 . $	ž	

Qn. No	Sub Qns	Answer Key/Value Points	Score	Total
		$(1-\chi^2) \stackrel{2}{\rightarrow} \frac{dy}{d\pi} \cdot \frac{d^2y}{d\pi^2} + \left(\frac{dy}{d\pi}\right)^2 \times \frac{d\chi}{d\pi}$ $= 2\alpha^2 y \frac{dy}{d\pi}.$	١	
		$(1-n^2)\frac{d^2y}{dn^2} - n\frac{du}{dx} - a^2y = 0$	1	3
21	a	$-\frac{Gsmn}{m}+c$	١	1
	Ь	$\chi^2 + 2\chi + 2 = (\chi + 1)^2 + 1$	1	
		$\int \frac{dn}{\sqrt{n^2 + 2n + 2}} = \int \frac{dn}{\sqrt{(n+1)^2 + 1}}$	1	
		$= \log (n+1) + \sqrt{n^2 + 2n+2} + C$	1	3
	с	$\frac{n}{(n+1)(n+2)} = \frac{A}{n+1} + \frac{B}{n+2}$	1/2	
		$A = -1 \qquad B = 2$	1/2	
		$\int \frac{n}{(m+1)(m+2)} dn = \int \frac{-1}{n+1} dn + \int \frac{2}{n+2} dx$	1/2	
		$= -\log(n+1) + 2\log(n+2) + c$	1/2	2.
22	(a);	$\bar{a} + \bar{b} = A\bar{i} + A\bar{j}$	1) .
		$ \hat{a} - \hat{b} = 2\hat{i} + 4\hat{k} $	I	4
	(")	$\begin{array}{ccc} \text{unif vector} & 4 & 4 & 0\\ \underline{1^{r} \text{ to botb}} &= & 2 & 0 & 4 \end{array}$	1	

13/15

Qn. No	Sub Qns	Answer Key/Value Points	Score	Total
		$= \frac{16\ddot{c} - 16\ddot{j} - 8\dot{k}}{\sqrt{576}}$	√2 ∀	
		Remark: 1 Init vector I to a and b	12	2
•••		$= \frac{a \times b}{ a \times b } \text{give (1) seare}$		
	(b)(i)	$\overline{AB} = \overline{i} + 4\overline{j} - 4\overline{k}$ $\overline{BC} = \overline{i} + 4\overline{j} - 4\overline{k}$	1/2 1/2	1
	(ii)	A, B, C are collinear	2 72 72	1
		Remark: Using distance formale or		
		Collineasity give (1) score.		
23	(a ₁)	$G_{05} = 9_{1} = 2$ $b_{1} = 5$ $C_{1} = -3$ $g_{2} = -1$ $b_{2} = 8$ $C_{1} = +4$	Y2	
		$Goso = G_1 G_2 + b_1 b_2 + C_1 C_2$ $\sqrt{g_1^2 + b_2^2 + c_1^2} \sqrt{g_2^2 + b_2^2 + c_2^2}$	Y2	÷
		$= \frac{-2+40-12}{\sqrt{4+25+9}\sqrt{1+64+16}}$	2	•
		= 26	Y	2.

$$\Theta = G_{3}^{-1} \left(\frac{2.6}{9\sqrt{38}} \right)$$

14/15

Qn.	Sub	Answer Key/Value Points	Score	Total
		Remark: $C_{30} = \frac{\overline{a} \cdot \overline{b}}{ a b }$ give $(\frac{1}{2})$ score.		
	(b)	$G_{1} = \tilde{i} + 2\tilde{j} + 3\tilde{k}$ $b_{1} = \tilde{i} - 3\tilde{j} + 2\tilde{k}$		
		Shortest Distance = $\left[\frac{a_2-a_1}{b_1 \times b_2}\right]$	1	
		$a_2 - a_1 = 3\overline{i} + 3\overline{j} + 3\overline{k}$	ž	
		$b_1 \times b_2 = -9i + 3j + 9k$	× 1	
		SD = -27 + 9 + 27	٧_	
		$= \frac{9}{\sqrt{171}} = \frac{3}{\sqrt{19}}$		4.
24	(a)	$\sum P(x) = 1$	1	1
	b(i)	c + 2k + 3k + 4k + 5k + 7k + 8k + 9k + 10k + 11k + 12k = 1	1	
		72 k = 1 $k = \frac{1}{72}$	Y2 Y2	2
	(יי)	$P(x>3) = P(x=4) + P(x=5)$ $= \frac{11}{72} + \frac{12}{72} = \frac{23}{72}$	Y ₂ Y ₂	j [°]

Qn. No	Sub Qas	Answer Key/Value Points	Score	Total
	(11)	P (-3<×<4)		
		= P(x=2) + P(x=-1) + P(x=0) + P(x=1) + P(x=2) + P(x=3)	3	ſ
		$= 43k = \frac{43}{72}$	Y2	
	(17)	P(x < -3)	Y2	
		= P(x = -5) + P(x = -4)		1
		$= 3k = \frac{3}{72}$	72	
		Remark:		i
		(11) (111) and (12) are correct		
		give corresponding scores.		
				د ۲

•

•