5.1.1 Regions of the Root The root is covered at the apex by a thimble-like structure called the **root cap** (Figure 5.3). It protects the tender apex of the root as it makes its way through the soil. A few millimetres above the root cap is the region of meristematic activity. The cells of this region are very small, thin-walled and with dense protoplasm. They divide repeatedly. The cells proximal to this region undergo rapid elongation and enlargement and are responsible for the growth of the root in length. This region is called the region of elongation. The cells of the elongation zone gradually differentiate and mature. Hence, this zone, proximal to region of elongation, is called the **region of maturation**. From this region some of the epidermal cells form very fine and delicate, thread-like structures called **root** hairs. These root hairs absorb water and minerals from the soil. #### 5.1.2 Modifications of Root Roots in some plants change their shape and structure and become modified to perform functions other than absorption and conduction of water and minerals. They are modified for support, storage of food and respiration (Figure 5.4 and 5.5). Tap roots of carrot, turnip and adventitious roots of sweet potato, get swollen and store food. Can you give some more such examples? Have you ever wondered what those hanging structures that support a banyan tree are? These are called **prop** roots. Similarly, the stems of maize and sugarcane have supporting roots coming out of the lower nodes of the stem. These are called **stilt** roots. In some plants such as *Rhizophora* growing in swampy areas, many roots come out of the ground and grow vertically upwards. Such roots, called **pneumatophores**, help to get oxygen for respiration. **Figure 5.3** The regions of the root-tip **Figure 5.4** Modification of root for support: Banyan tree **Figure 5.5** Modification of root for : (a) storage (b) respiration: pneumatophore in Rhizophora #### **5.2** The Stem What are the features that distinguish a stem from a root? The stem is the ascending part of the axis bearing branches, leaves, flowers and fruits. It develops from the plumule of the embryo of a germinating seed. The stem bears **nodes** and **internodes**. The region of the stem where leaves are born are called nodes while internodes are the portions between two nodes. The stem bears buds, which may be terminal or axillary. Stem is generally green when young and later often become woody and dark brown. The main function of the stem is spreading out branches bearing leaves, flowers and fruits. It conducts water, minerals and photosynthates. Some stems perform the function of storage of food, support, protection and of vegetative propagation. #### 5.2.1 Modifications of Stem The stem may not always be typically like what they are expected to be. They are modified to perform different functions (Figure 5.6). Underground stems of potato, ginger, turmeric, *zaminkand*, *Colocasia* are modified to store food in them. They also act as organs of perennation to tide over conditions unfavourable for growth. Stem **tendrils** which develop from axillary buds, are slender and spirally coiled and help plants to climb such as in gourds (cucumber, pumpkins, watermelon) and grapevines. Axillary buds of stems may also get modified into woody, straight and pointed **thorns**. Thorns are found in many plants such as *Citrus*, *Bougainvillea*. They protect plants from browsing animals. Some plants of arid regions modify their stems into flattened (*Opuntia*), or fleshy cylindrical (*Euphorbia*) structures. They contain chlorophyll and carry **Figure 5.6** Modifications of stem for : (a) storage (b) support (c) protection (d) spread and vegetative propagation out photosynthesis. Underground stems of some plants such as grass and strawberry, etc., spread to new niches and when older parts die new plants are formed. In plants like mint and jasmine a slender lateral branch arises from the base of the main axis and after growing aerially for some time arch downwards to touch the ground. A lateral branch with short internodes and each node bearing a rosette of leaves and a tuft of roots is found in aquatic plants like *Pistia* and *Eichhornia*. In banana, pineapple and *Chrysanthemum*, the lateral branches originate from the basal and underground portion of the main stem, grow horizontally beneath the soil and then come out obliquely upward giving rise to leafy shoots. # 5.3 THE LEAF The leaf is a lateral, generally flattened structure borne on the stem. It develops at the node and bears a bud in its axil. The **axillary bud** later develops into a branch. Leaves originate from shoot apical meristems and are arranged in an acropetal order. They are the most important vegetative organs for photosynthesis. A typical leaf consists of three main parts: leaf base, petiole and lamina (Figure 5.7 a). The leaf is attached to the stem by the **leaf base** and may **Figure 5.7** Structure of a leaf : (a) Parts of a leaf (b) Reticulate venation (c) Parallel venation Figure 5.8 Compound leaves : (a) pinnately compound leaf (b) palmately compound leaf bear two lateral small leaf like structures called stipules. In monocotyledons, the leaf base expands into a sheath covering the stem partially or wholly. In some leguminous plants the leafbase may become swollen, which is called the **pulvinus**. The **petiole** help hold the blade to light. Long thin flexible petioles allow leaf blades to flutter in wind, thereby cooling the leaf and bringing fresh air to leaf surface. The **lamina** or the **leaf blade** is the green expanded part of the leaf with veins and veinlets. There is, usually, a middle prominent vein, which is known as the midrib. Veins provide rigidity to the leaf blade and act as channels of transport for water, minerals and food materials. The shape, margin, apex, surface and extent of incision of lamina varies in different leaves. #### 5.3.1 Venation The arrangement of veins and the veinlets in the lamina of leaf is termed as **venation**. When the veinlets form a network, the venation is termed as **reticulate** (Figure 5.7 b). When the veins run parallel to each other within a lamina, the venation is termed as **parallel** (Figure 5.7 c). Leaves of dicotyledonous plants generally possess reticulate venation, while parallel venation is the characteristic of most monocotyledons. # 5.3.2 Types of Leaves A leaf is said to be **simple**, when its lamina is entire or when incised, the incisions do not touch the midrib. When the incisions of the lamina reach up to the midrib breaking it into a number of leaflets, the leaf is called **compound**. A bud is present in the axil of petiole in both simple and compound leaves, but not in the axil of leaflets of the compound leaf. The compound leaves may be of two types (Figure 5.8). In a **pinnately compound leaf** a number of leaflets are present on a common axis, the **rachis**, which represents the midrib of the leaf as in neem. In **palmately compound leaves**, the leaflets are attached at a common point, i.e., at the tip of petiole, as in silk cotton. # 5.3.3 Phyllotaxy Phyllotaxy is the pattern of arrangement of leaves on the stem or branch. This is usually of three types – alternate, opposite and whorled (Figure 5.9). In **alternate** type of phyllotaxy, a single leaf arises at each node in alternate manner, as in china rose, mustard and sun flower plants. In **opposite** type, a pair of leaves arise at each node and lie opposite to each other as in *Calotropis* and guava plants. If more than two leaves arise at a node and form a whorl, it is called **whorled**, as in *Alstonia*. #### 5.3.4 Modifications of Leaves Leaves are often modified to perform functions other than photosynthesis. They are converted into **tendrils** for climbing as in peas or into **spines** for defence as in cacti (Figure 5.10 a, b). The fleshy leaves of onion and garlic store food (Figure 5.10c). In some plants such as Australian acacia, the leaves are small and short-lived. The petioles in these plants expand, become green and synthesise food. Leaves of certain insectivorous plants such as pitcher plant, venus-fly trap are also modified leaves. #### 5.4 THE INFLORESCENCE A flower is a modified shoot wherein the shoot apical meristem changes to floral meristem. Internodes do not elongate and the axis gets condensed. The apex produces different kinds of floral appendages laterally at successive nodes instead of leaves. When a shoot tip transforms into a flower, it is always solitary. The arrangement of flowers on the **Figure 5.9** Different types of phyllotaxy : (a) Alternate (b) Opposite (c) Whorled **Figure 5.10** Modifications of leaf for : (a) support: tendril (b) protection: spines (c) storage: fleshy leaves Figure 5.11 Racemose inflorescence Figure 5.12 Cymose inflorescence floral axis is termed as **inflorescence**. Depending on whether the apex gets converted into a flower or continues to grow, two major types of inflorescences are defined – racemose and cymose. In **racemose** type of inflorescences the main axis continues to grow, the flowers are borne laterally in an acropetal succession (Figure 5.11). In **cymose** type of inflorescence the main axis terminates in a flower, hence is limited in growth. The flowers are borne in a basipetal order (Figure 5.12). #### 5.5 THE FLOWER The flower is the reproductive unit in the angiosperms. It is meant for sexual reproduction. A typical flower has four different kinds of whorls arranged successively on the swollen end of the stalk or pedicel, called **thalamus or receptacle**. These are calyx, corolla, androecium and gynoecium. Calyx and corolla are accessory organs, while androecium and gynoecium are reproductive organs. In some flowers like lily, the calyx and corolla are not distinct and are termed as perianth. When a flower has both androecium and gynoecium, it is **bisexual**. A flower having either only stamens or only carpels is **unisexual**. In symmetry, the flower may be actinomorphic (radial symmetry) zygomorphic (bilateral symmetry). When a flower can be divided into two equal radial halves in any radial plane passing through the centre, it is said to be **actinomorphic**, e.g., mustard, *datura*, chilli. When it can be divided into two similar halves only in one particular vertical plane, it is zygomorphic, e.g., pea, gulmohur, bean, Cassia. A flower is asymmetric (irregular) if it cannot be divided into two similar halves by any vertical plane passing through the centre, as in canna. A flower may be **trimerous**, **tetramerous** or **pentamerous** when the floral appendages are in multiple of 3, 4 or 5, respectively. Flowers with bracts-reduced leaf found at the base of the pedicel-are called **bracteate** and those without bracts, **ebracteate**. **Figure 5.13** Position of floral parts on thalamus : (a) Hypogynous (b) and (c) Perigynous (d) Epigynous Based on the position of calyx, corolla and androecium in respect of the ovary on thalamus, the flowers are described as hypogynous, perigynous and epigynous (Figure 5.13). In the **hypogynous** flower the gynoecium occupies the highest position while the other parts are situated below it. The ovary in such flowers is said to be **superior**, e.g., mustard, china rose and brinjal. If gynoecium is situated in the centre and other parts of the flower are located on the rim of the thalamus almost at the same level, it is called **perigynous**. The ovary here is said to be **half inferior**, e.g., plum, rose, peach. In **epigynous flowers**, the margin of thalamus grows upward enclosing the ovary completely and getting fused with it, the other parts of flower arise above the ovary. Hence, the ovary is said to be **inferior** as in flowers of guava and cucumber, and the ray florets of sunflower. #### 5.5.1 Parts of a Flower Each flower normally has four floral whorls, viz., calyx, corolla, androecium and gynoecium (Figure 5.14). #### 5.5.1.1 Calyx The call is the outermost whorl of the flower and the members are called sepals. Generally, sepals are green, leaf like and protect the flower in the bud stage. The call may be **gamosepalous** (sepals united) or **polysepalous** (sepals free). # 5.5.1.2 Corolla Corolla is composed of petals. Petals are usually brightly coloured to attract insects for pollination. Like calyx, corolla may be also united Figure 5.14 Parts of a flower **gamopetalous** (petals united) or **polypetalous** (petals free). The shape and colour of corolla vary greatly in plants. Corolla may be tubular, bell-shaped, funnel-shaped or wheel-shaped. **Aestivation:** The mode of arrangement of sepals or petals in floral bud with respect to the other members of the same whorl is known as aestivation. The main types of aestivation are valvate, twisted, imbricate and vexillary (Figure 5.15). When sepals or petals in a whorl just touch one another at the margin, without overlapping, as in *Calotropis*, it is said to be **valvate.** If one margin of the appendage overlaps that of the next one and so on as in china rose, lady's finger and cotton, it is called **twisted**. If the margins of sepals or petals overlap one another but not in any particular direction as in *Cassia* and gulmohur, the aestivation is called **imbricate**. In pea and bean flowers, there are five petals, the largest (standard) overlaps the two lateral petals (wings) which in turn overlap the two smallest anterior petals (keel); this type of aestivation is known as **vexillary** or papilionaceous. Figure 5.15 Types of aestivation in corolla: (a) Valvate (b) Twisted (c) Imbricate (d) Vexillary #### 5.5.1.3 Androecium Androecium is composed of stamens. Each stamen which represents the male reproductive organ consists of a stalk or a filament and an anther. Each anther is usually bilobed and each lobe has two chambers, the pollen-sacs. The pollen grains are produced in pollen-sacs. A sterile stamen is called **staminode**. Stamens of flower may be united with other members such as petals or among themselves. When stamens are attached to the petals, they are **epipetalous** as in brinjal, or **epiphyllous** when attached to the perianth as in the flowers of lily. The stamens in a flower may either remain free (polyandrous) or may be united in varying degrees. The stamens may be united into one bunch or one bundle (**monoadelphous**) as in china rose, or two bundles (**diadelphous**) as in pea, or into more than two bundles (**polyadelphous**) as in citrus. There may be a variation in the length of filaments within a flower, as in *Salvia* and mustard. # 5.5.1.4 Gynoecium Gynoecium is the female reproductive part of the flower and is made up of one or more carpels. A carpel consists of three parts namely stigma, style and ovary. **Ovary** is the enlarged basal part, on which lies the elongated tube, the style. The style connects the ovary to the stigma. The **stigma** is usually at the tip of the **style** and is the receptive surface for pollen grains. Each ovary bears one or more ovules attached to a flattened, cushion-like **placenta**. When more than one carpel is present, they may be free (as in lotus and rose) and are called **apocarpous**. They are termed **syncarpous** when carpels are fused, as in mustard and tomato. After fertilisation, the ovules develop into seeds and the ovary matures into a fruit. **Placentation:** The arrangement of ovules within the ovary is known as placentation. The placentation are of different types namely, marginal, axile, parietal, basal, central and free central (Figure 5.16). In **marginal** placentation the placenta forms a ridge along the ventral suture of the ovary and the ovules are borne on this ridge forming two rows, as in pea. When the placenta is axial and the ovules are attached to it in a multilocular ovary, the placentaion is said to be **axile**, as in china rose, tomato and lemon. In **parietal** placentation, the ovules develop on the inner wall of the ovary or on peripheral part. Ovary is one-chambered but it becomes two-chambered due to the formation of the false septum, e.g., mustard and *Argemone*. When the ovules are borne on central axis and septa are absent, as in *Dianthus* and *Primrose* the placentation is Figure 5.16 Types of placentation: (a) Marginal (b) Axile (c) Parietal (d) Free central (e) Basal called **free central.** In **basal** placentation, the placenta develops at the base of ovary and a single ovule is attached to it, as in sunflower, marigold. #### 5.6 THE FRUIT The fruit is a characteristic feature of the flowering plants. It is a mature or ripened ovary, developed after fertilisation. If a fruit is formed without fertilisation of the ovary, it is called a **parthenocarpic** fruit. Generally, the fruit consists of a wall or **pericarp** and seeds. The pericarp may be dry or fleshy. When pericarp is thick and fleshy, it is differentiated into the outer **epicarp**, the middle **mesocarp** and the inner **endocarp**. Figure 5.17 Parts of a fruit: (a) Mango (b) Coconut In mango and coconut, the fruit is known as a drupe (Figure 5.17). They develop from monocarpellary superior ovaries and are one seeded. In mango the pericarp is well differentiated into an outer thin epicarp, a middle fleshy edible mesocarp and an inner stony hard endocarp. In coconut which is also a drupe, the mesocarp is fibrous. #### 5.7 THE SEED The ovules after fertilisation, develop into seeds. A seed is made up of a seed coat and an embryo. The embryo is made up of a radicle, an embryonal axis and one (as in wheat, maize) or two cotyledons (as in gram and pea). # 5.7.1 Structure of a Dicotyledonous Seed The outermost covering of a seed is the seed coat. The seed coat has two layers, the outer **testa** and the inner **tegmen**. The **hilum** is a scar on the seed coat through which the developing seeds were attached to the fruit. Above the hilum is a small pore called the **micropyle**. Within the seed coat is the embryo, consisting of an embryonal axis and two cotyledons. The cotyledons are often fleshy and full of reserve food materials. At the two ends of the embryonal axis are present the radicle and the plumule (Figure 5.18). In some seeds such as castor the **endosperm** formed as a result of double fertilisation, is a food storing tissue. In plants such as bean, gram and pea, the endosperm is not present in mature seeds and such seeds are called nonendospermous. Figure 5.18 Structure of dicotyledonous seed # 5.7.2 Structure of Monocotyledonous Seed Generally, monocotyledonous seeds are endospermic but some as in orchids are non-endospermic. In the seeds of cereals such as maize the seed coat is membranous and generally fused with the fruit wall. The endosperm is bulky and stores food. The outer covering of endosperm separates the embryo by a proteinous layer called **aleurone layer**. The embryo is small and situated in a groove at one end of the endosperm. It consists of one large and shield shaped cotyledon known as **scutellum** and a short axis with a **plumule** and a **radicle**. The plumule and radicle are enclosed in sheaths which are called **coleoptile** and **coleorhiza** respectively (Figure 5.19). Figure 5.19 Structure of a monocotyledonous seed **Figure 5.20** Floral diagram with floral formula # 5.8 Semi-Technical Description of a Typical Flowering Plant Various morphological features are used to describe a flowering plant. The description has to be brief, in a simple and scientific language and presented in a proper sequence. The plant is described beginning with its habit, vegetative characters - roots, stem and leaves and then floral characters inflorescence and flower parts. After describing various parts of plant, a floral diagram and a floral formula are presented. The floral formula is represented by some symbols. In the floral formula, **Br** stands for bracteate K stands for calyx, C for corolla, P for perianth, A for androecium and G for Gynoecium, G for superior ovary and $\overline{\mathbf{G}}$ for inferior ovary, $\overline{\mathbf{O}}$ for male, $\overline{\mathbf{Q}}$ for female, Q for bisexual plants, \oplus for actinomorphic and Q_0 for zygomorphic nature of flower. Fusion is indicated by enclosing the figure within bracket and adhesion by a line drawn above the symbols of the floral parts. A floral diagram provides information about the number of parts of a flower, their arrangement and the relation they have with one another (Figure 5.20). The position of the mother axis with respect to the flower is represented by a dot on the top of the floral diagram. Calyx, corolla, androecium and gynoecium are drawn in successive whorls, calyx being the outermost and the gynoecium being in the centre. Floral formula also shows cohesion and adhesion within parts of whorls and between whorls. The floral diagram and floral formula in Figure 5.20 represents the mustard plant (Family: Brassicaceae). # 5.9 Description of Some Important Families #### 5.9.1 Fabaceae This family was earlier called Papilionoideae, a subfamily of family Leguminosae. It is distributed all over the world (Figure 5.21). #### **Vegetative Characters** Trees, shrubs, herbs; root with root nodules **Stem:** erect or climber **Leaves:** alternate, pinnately compound or simple; leaf base, pulvinate; stipulate; venation reticulate. **Figure 5.21** *Pisum sativum* (pea) plant : (a) Flowering twig (b) Flower (c) Petals (d) Reproductive parts (e) L.S.carpel (f) Floral diagram #### Floral characters Inflorescence: racemose Flower: bisexual, zygomorphic Calyx: sepals five, gamosepalous; valvate aestivation **Corolla:** petals five, polypetalous, papilionaceous, consisting of a posterior standard, two lateral wings, two anterior ones forming a keel (enclosing stamens and pistil), vexillary aestivation **Androecium:** ten, diadelphous, anther dithecous Gynoecium: ovary superior, mono carpellary, unilocular with many ovules, style single Fruit: legume; seed: one to many, non-endospermic Floral Formula: $\% \vec{Q}^7 K_{(5)} C_{1+2+(2)} A_{(9)+1} \underline{G}_1$ # **Economic importance** Many plants belonging to the family are sources of pulses (gram, *arhar*, *sem*, *moong*, soyabean; edible oil (soyabean, groundnut); dye (Indigofera); fibres (sunhemp); fodder (*Sesbania*, *Trifolium*), ornamentals (lupin, sweet pea); medicine (*muliathi*). #### 5.9.2 Solanaceae It is a large family, commonly called as the 'potato family'. It is widely distributed in tropics, subtropics and even temperate zones (Figure 5.22). # **Vegetative Characters** Plants mostly herbs, shrubs and rarely small trees Stem: herbaceous rarely woody, aerial; erect, cylindrical, branched, solid **Figure 5.22** Solanum nigrum (makoi) plant : (a) Flowering twig (b) Flower (c) L.S. of flower (d) Stamens (e) Carpel (f) Floral diagram or hollow, hairy or glabrous, underground stem in potato (Solanum tuberosum) **Leaves:** alternate, simple, rarely pinnately compound, exstipulate; venation reticulate #### **Floral Characters** **Inflorescence**: Solitary, axillary or cymose as in *Solanum* **Flower**: bisexual, actinomorphic Calyx: sepals five, united, persistent, valvate aestivation Corolla: petals five, united; valvate aestivation Androecium: stamens five, epipetalous Gynoecium: bicarpellary, syncarpous; ovary superior, bilocular, placenta swollen with many ovulesFruits: berry or capsuleSeeds: many, endospermous # **Economic Importance** Many plants belonging to this family are source of food (tomato, brinjal, potato), spice (chilli); medicine (belladonna, *ashwagandha*); fumigatory (tobacco); ornamentals (petunia). #### 5.9.3 Liliaceae Commonly called the 'Lily family' is a characteristic representative of monocotyledonous plants. It is distributed world wide (Figure 5.23). **Vegetative characters:** Perennial herbs with underground bulbs/corms/ rhizomes **Leaves** mostly basal, alternate, linear, exstipulate with parallel venation ### Floral characters **Inflorescence:** solitary / cymose; often umbellate clusters **Flower:** bisexual; actinomorphic **Perianth** tepal six (3+3), often united into tube; valvate aestivation **Androecium:** stamen six, (3+3) Gynoecium: tricarpellary, syncarpous, ovary superior, trilocular with many ovules; axile placentation Fruit: capsule, rarely berry Seed: endospermous Floral Formula: $\operatorname{Br} \oplus \overrightarrow{Q}^{7}\widehat{P_{(3+3)}}A_{3+3}$ $G_{(3)}$ Economic Importance Many plants belonging to this family are good ornamentals (tulip, Gloriosa), source of medicine (Aloe), vegetables (Asparagus), and colchicine (Colchicum autumnale). Figure 5.23 Allium cepa (onion) plant: (a) Plant (b) Inflorescence (c) Flower (d) Floral diagram #### SUMMARY Flowering plants exhibit enormous variation in shape, size, structure, mode of nutrition, life span, habit and habitat. They have well developed root and shoot systems. Root system is either tap root or fibrous. Generally, dicotyledonous plants have tap roots while monocotyledonous plants have fibrous roots. The roots in some plants get modified for storage of food, mechanical support and respiration. The shoot system is differentiated into stem, leaves, flowers and fruits. The morphological features of stems like the presence of nodes and internodes, multicellular hair and positively phototropic nature help to differentiate the stems from roots. Stems also get modified to perform diverse functions such as storage of food, vegetative propagation and protection under different conditions. Leaf is a lateral outgrowth of stem developed exogeneously at the node. These are green in colour to perform the function of photosynthesis. Leaves exhibit marked variations in their shape, size, margin, apex and extent of incisions of leaf blade (lamina). Like other parts of plants, the leaves also get modified into other structures such as tendrils, spines for climbing and protection respectively. The flower is a modified shoot, meant for sexual reproduction. The flowers are arranged in different types of inflorescences. They exhibit enormous variation in structure, symmetry, position of ovary in relation to other parts, arrangement of petals, sepals, ovules etc. After fertilisation, the ovary is converted into fruits and ovules into seeds. Seeds either may be monocotyledonous or dicotyledonous. They vary in shape, size and period of viability. The floral characteristics form the basis of classification and identification of flowering plants. This can be illustrated through semi-technical descriptions of families. Hence, a flowering plant is described in a definite sequence by using scientific terms. The floral features are represented in the summarised form as floral diagrams and floral formula. #### **Exercises** - 1. What is meant by modification of root? What type of modification of root is found in the: - (a) Banyan tree (b) Turnip (c) Mangrove trees - 2. Justify the following statements on the basis of external features: - (i) Underground parts of a plant are not always roots. - (ii) Flower is a modified shoot. - 3. How is a pinnately compound leaf different from a palmately compound leaf? - 4. Explain with suitable examples the different types of phyllotaxy. - 5. Define the following terms: - (a) aestivation - (b) placentation - (c) actinomorphic - (d) zygomorphic - (e) superior ovary - (f) perigynous flower - (g) epipetalous stamen - 6. Differentiate between - (a) Racemose and cymose inflorescence - (b) Fibrous root and adventitious root - (c) Apocarpous and syncarpous ovary - 7. Draw the labelled diagram of the following: - (i) gram seed (ii) V.S. of maize seed - 8. Describe modifications of stem with suitable examples. - 9. Take one flower each of the families Fabaceae and Solanaceae and write its semi-technical description. Also draw their floral diagram after studying them. - 10. Describe the various types of placentations found in flowering plants. - 11. What is a flower? Describe the parts of a typical angiosperm flower. - 12. How do the various leaf modifications help plants? - 13. Define the term inflorescence. Explain the basis for the different types inflorescence in flowering plants. - 14. Write the floral formula of a actinomorphic, bisexual, hypogynous flower with five united sepals, five free petals, five free stamens and two united carples with superior ovary and axile placentation. - 15. Describe the arrangement of floral members in relation to their insertion on thalamus. # Chapter 6 # Anatomy of Flowering Plants - 6.1 The Tissues - 6.2 The Tissue System - 6.3 Anatomy of Dicotyledonous and Monocotyledonous Plants - 6.4 Secondary Growth You can very easily see the structural similarities and variations in the external morphology of the larger living organism, both plants and animals. Similarly, if we were to study the internal structure, one also finds several similarities as well as differences. This chapter introduces you to the internal structure and functional organisation of higher plants. Study of internal structure of plants is called anatomy. Plants have cells as the basic unit, cells are organised into tissues and in turn the tissues are organised into organs. Different organs in a plant show differences in their internal structure. Within angiosperms, the monocots and dicots are also seen to be anatomically different. Internal structures also show adaptations to diverse environments. #### 6.1 THE TISSUES A tissue is a group of cells having a common origin and usually performing a common function. A plant is made up of different kinds of tissues. Tissues are classified into two main groups, namely, meristematic and permanent tissues based on whether the cells being formed are capable of dividing or not. # **6.1.1** Meristematic Tissues Growth in plants is largely restricted to specialised regions of active cell division called **meristems** (*Gk. meristos*: divided). Plants have different kinds of meristems. The meristems which occur at the tips of roots and shoots and produce primary tissues are called **apical meristems** (Figure 6.1). Figure 6.1 Apical meristem: (a) Root (b) Shoot Root apical meristem occupies the tip of a root while the shoot apical meristem occupies the distant most region of the stem axis. During the formation of leaves and elongation of stem, some cells 'left behind' from shoot apical meristem, constitute the **axillary bud**. Such buds are present in the axils of leaves and are capable of forming a branch or a flower. The meristem which occurs between mature tissues is known as **intercalary meristem**. They occur in grasses and regenerate parts removed by the grazing herbivores. Both apical meristems and intercalary meristems are **primary meristems** because they appear early in life of a plant and contribute to the formation of the primary plant body. The meristem that occurs in the mature regions of roots and shoots of many plants, particularly those that produce woody axis and appear later than primary meristem is called the **secondary** or **lateral meristem**. They are cylindrical meristems. Fascicular vascular cambium, interfascicular cambium and cork-cambium are examples of lateral meristems. These are responsible for producing the secondary tissues. Following divisions of cells in both primary and as well as secondary meristems, the newly formed cells become structurally and functionally specialised and lose the ability to divide. Such cells are termed **permanent** or **mature cells** and constitute the permanent tissues. During the formation of the primary plant body, specific regions of the apical meristem produce dermal tissues, ground tissues and vascular tissues. Figure 6.2 Simple tissues: (c) - (a) Parenchyma - (b) Collenchyma - (c) Sclerenchyma #### **6.1.2** Permanent Tissues The cells of the permanent tissues do not generally divide further. Permanent tissues having all cells similar in structure and function are called **simple tissues**. Permanent tissues having many different types of cells are called **complex tissues**. ### 6.1.2.1 Simple Tissues A simple tissue is made of only one type of cells. The various simple tissues in plants are parenchyma, collenchyma and sclerenchyma (Figure 6.2). **Parenchyma** forms the major component within organs. The cells of the parenchyma are generally isodiametric. They may be spherical, oval, round, polygonal or elongated in shape. Their walls are thin and made up of cellulose. They may either be closely packed or have small intercellular spaces. The parenchyma performs various functions like photosynthesis, storage, secretion. The **collenchyma** occurs in layers below the epidermis in dicotyledonous plants. It is found either as a homogeneous layer or in patches. It consists of cells which are much thickened at the corners due to a deposition of cellulose, hemicellulose and pectin. Collenchymatous cells may be oval, spherical or polygonal and often contain chloroplasts. These cells assimilate food when they contain chloroplasts. Intercellular spaces are absent. They provide mechanical support to the growing parts of the plant such as young stem and petiole of a leaf. **Sclerenchyma** consists of long, narrow cells with thick and lignified cell walls having a few or numerous pits. They are usually dead and without protoplasts. On the basis of variation in form, structure, origin and development, sclerenchyma may be either fibres or sclereids. The **fibres** are thick-walled, elongated and pointed cells, generally occuring in groups, in various parts of the plant. The **sclereids** are spherical, oval or cylindrical, highly thickened dead cells with very narrow cavities (lumen). These are commonly found in the fruit walls of nuts; pulp of fruits like guava, pear and sapota; seed coats of legumes and leaves of tea. Sclerenchyma provides mechanical support to organs. # 6.1.2.2 Complex Tissues The complex tissues are made of more than one type of cells and these work together as a unit. Xylem and phloem constitute the complex tissues in plants (Figure 6.3). **Xylem** functions as a conducting tissue for water and minerals from roots to the stem and leaves. It also provides mechanical strength to the plant parts. It is composed of four different kinds of elements, namely, tracheids, vessels, xylem fibres and xylem parenchyma. Gymnosperms lack vessels in their xylem. Tracheids are elongated or tube like cells with thick and lignified walls and tapering ends. These are dead and are without protoplasm. The inner layers of the cell walls have thickenings which vary in form. In flowering plants, tracheids and vessels are the main water transporting elements. **Vessel** is a long cylindrical tube-like structure made up of many cells called vessel members, each with lignified walls and a large central cavity. The vessel cells are also devoid of protoplasm. Vessel members are interconnected through perforations in their common walls. The presence of vessels is a characteristic feature of angiosperms. Xylem fibres have highly thickened walls and obliterated central lumens. These may either be septate or aseptate. **Xylem parenchyma** cells are living and thin-walled, and their cell walls are made up of cellulose. They store food materials in the form of starch or fat, and other substances like tannins. The radial conduction of water takes place by the ray parenchymatous cells. Primary xylem is of two types – protoxylem and metaxylem. The first formed primary xylem elements are called **protoxylem** and the later formed primary xylem is called **metaxylem**. In stems, the protoxylem lies towards the centre (pith) and the metaxylem lies towards the periphery of the organ. This type of primary xylem is called **endarch**. In roots, the protoxylem lies towards periphery and metaxylem lies towards the centre. Such arrangement of primary xylem is called **exarch**. **Phloem** transports food materials, usually from leaves to other parts of the plant. Phloem in angiosperms is composed of sieve tube elements, companion cells, phloem parenchyma **Figure 6.3** (a) Xylem (b) Phloem and phloem fibres. Gymnosperms have albuminous cells and sieve cells. They lack sieve tubes and companion cells. Sieve tube elements are also long, tube-like structures, arranged longitudinally and are associated with the companion cells. Their end walls are perforated in a sieve-like manner to form the sieve plates. A mature sieve element possesses a peripheral cytoplasm and a large vacuole but lacks a nucleus. The functions of sieve tubes are controlled by the nucleus of companion cells. The **companion cells** are specialised parenchymatous cells, which are closely associated with sieve tube elements. The sieve tube elements and companion cells are connected by pit fields present between their common longitudinal walls. The companion cells help in maintaining the pressure gradient in the sieve tubes. Phloem parenchyma is made up of elongated, tapering cylindrical cells which have dense cytoplasm and nucleus. The cell wall is composed of cellulose and has pits through which plasmodesmatal connections exist between the cells. The phloem parenchyma stores food material and other substances like resins, latex and mucilage. Phloem parenchyma is absent in most of the monocotyledons. Phloem fibres (bast fibres) are made up of sclerenchymatous cells. These are generally absent in the primary phloem but are found in the secondary phloem. These are much elongated, unbranched and have pointed, needle like apices. The cell wall of phloem fibres is quite thick. At maturity, these fibres lose their protoplasm and become dead. Phloem fibres of jute, flax and hemp are used commercially. The first formed primary phloem consists of narrow sieve tubes and is referred to as **protophloem** and the later formed phloem has bigger sieve tubes and is referred to as **metaphloem**. #### 6.2 THE TISSUE SYSTEM We were discussing types of tissues based on the types of cells present. Let us now consider how tissues vary depending on their location in the plant body. Their structure and function would also be dependent on location. On the basis of their structure and location, there are three types of tissue systems. These are the epidermal tissue system, the ground or fundamental tissue system and the vascular or conducting tissue system. #### 6.2.1 Epidermal Tissue System The epidermal tissue system forms the outer-most covering of the whole plant body and comprises epidermal cells, stomata and the epidermal appendages – the trichomes and hairs. The **epidermis** is the outermost layer of the primary plant body. It is made up of elongated, compactly arranged cells, which form a continuous layer. Epidermis is usually singlelayered. Epidermal cells are parenchymatous with a small amount of cytoplasm lining the cell wall and a large vacuole. The outside of the epidermis is often covered with a waxy thick layer called the **cuticle** which prevents the loss of water. Cuticle is absent in roots. **Stomata** are structures present in the epidermis of leaves. Stomata regulate the process of transpiration and gaseous exchange. Each stoma is composed of two beanshaped cells known as **guard cells** which enclose stomatal pore. In grasses, the guard cells are dumb-bell shaped. The outer walls of guard cells (away from the stomatal pore) are thin and the inner walls (towards the stomatal pore) are highly thickened. The guard cells possess chloroplasts and regulate the opening and closing of stomata. Sometimes, a few epidermal cells, in the vicinity of the guard cells become specialised in their shape and size and are known as subsidiary cells. The stomatal aperture, guard cells and the surrounding subsidiary cells are together called **stomatal** apparatus (Figure 6.4). **Figure 6.4** Diagrammatic representation: (a) stomata with bean-shaped guard cells (b) stomata with dumb-bell shaped guard cell The cells of epidermis bear a number of hairs. The **root hairs** are unicellular elongations of the epidermal cells and help absorb water and minerals from the soil. On the stem the epidermal hairs are called **trichomes**. The trichomes in the shoot system are usually multicellular. They may be branched or unbranched and soft or stiff. They may even be secretory. The trichomes help in preventing water loss due to transpiration. # **6.2.2** The Ground Tissue System All tissues except epidermis and vascular bundles constitute the **ground tissue**. It consists of simple tissues such as parenchyma, collenchyma and sclerenchyma. Parenchymatous cells are usually present in cortex, pericycle, pith and medullary rays, in the primary stems and roots. In leaves, the ground tissue consists of thin-walled chloroplast containing cells and is called **mesophyll**. **Figure 6.5** Various types of vascular bundles : (a) radial (b) conjoint closed (c) conjoint open # **6.2.3 The Vascular Tissue System** The vascular system consists of complex tissues, the phloem and the xylem. The xylem and phloem together constitute vascular bundles (Figure 6.5). In dicotyledonous stems, cambium is present between phloem and xylem. Such vascular bundles because of the presence of cambium possess the ability to form secondary xylem and phloem tissues, and hence are called open vascular bundles. In the monocotyledons, the vascular bundles have no cambium present in them. Hence, since they do not form secondary tissues they are referred to as closed. When xylem and phloem within a vascular bundle are arranged in an alternate manner on different radii, the arrangement is called radial such as in roots. In **conjoint** type of vascular bundles, the xylem and phloem are situated at the same radius of vascular bundles. Such vascular bundles are common in stems and leaves. The conjoint vascular bundles usually have the phloem located only on the outer side of xylem. # 6.3 Anatomy of Dicotyledonous and Monocotyledonous Plants For a better understanding of tissue organisation of roots, stems and leaves, it is convenient to study the transverse sections of the mature zones of these organs. # 6.3.1 Dicotyledonous Root Look at Figure 6.6 (a), it shows the transverse section of the sunflower root. The internal tissue organisation is as follows: The outermost layer is **epidermis.** Many of the epidermal cells protrude in the form of unicellular root hairs. The **cortex** consists of several layers of thin-walled parenchyma cells