CHAPTER 6

SYSTEMS OF CHEMICALLY REACTING SPECIES

§6.01 Notation and terminology

Any chemical process may be written in the form

Y vaA-Y v B 6.01.1
x B

where A, B denote chemical species and v, , vy are integers or simple rational
fractions. Since the meaning of formula (1) has sometimes been misunder-
stood it is desirable to state unambiguously what it means and what it does

not. It means that in a system containing a large amount of A, ..., B,...
the amounts reacting are v,,..., vg,.... It does not mean that a system
composed of an amount v, of A,. . ., is changed completely into an amount
vg of B, ....

We can measure the extent to which the process (1) takes place by the
extent of reaction defined in §1.44 such that a change of ¢ to £ 4 d& means
that an amount v, d¢ of A and the like react to given an amount vgd¢ of B
and the like. We also recall that the affinity of the reaction is defined as

— QF[3E) 7, y=—(0G[OE)r, ps 6.01.2

where P® is the pressure of each phase a.
If & increases by d¢ in a time df we then have the concise universal law
that in any natural process

—(0G[0¢)r, pdé/dt>0  (natural) 6.01.3
and consequently for equilibrium

—(0G/3¢)r, p=0  (equilibrium). 6.01.4
Formula (4) is equivalent to

Y vaua=Y vauy  (equilibrium). 6.01.5
ry B
240
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We now recall the abbreviated notation described in §1.44 according to
which we replace (1) by
0=3 v3B 6.01.6
B

where now each vy is negative for a reactant and positive for a reaction pro-
duct. In this abbreviated notation (5) becomes

Z VB#B=0' 6.01. 7
B
Since the absolute activity is related to the chemical potential by
u=RTIn A 6.01.8
formula (7) is equivalent to
[T1(s)®=1  (equilibrium). 6.01.9
B

We shall now further abbreviate our notation. Let I denote any intensive
property relating to the species B such as Ag, pg, Xp, rs, Mp, Ps. Then we
shall use the contracted notation IT(I) defined by

[TM=T1Us)™ 6.01.10

When the I;’s have values corresponding to a state of chemical equilibrium
we shall call IT (1) the equilibrium product of the Ig’s.
Our first application of this notation is to (9) which we contract to

[1(A)=1  (equilibrium) 6.01.11

and the general condition for chemical equilibrium may be stated as:
the equilibrium product of the absolute activities is unity.

§6.02 Enthalpy of reaction
Consider the constant temperature process

0=Y vsB (T const.) 6.02.1
B

and let the operator A denote the excess of a final over an initial value corre-
sponding to unit increase in the extent of reaction. If the process occurs at
constant pressure then the heat absorbed is equal to AH. For this reason
AH is called either the heat of reaction at constant pressure or better the
enthalpy of reaction.

If on the other hand the process occurs at constant volume the heat
absorbed is equal to AU, which is therefore called the heat of reaction
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at constant volume. This quantity is of little importance except for reactions
involving a gas phase, for which it is related to AH by

AU=AH—RTY' vy 6.02.2
B

where X' denotes summation over gaseous species only, the second virial
coefficients and proper volumes of condensed phases being neglected.

We recall that for a perfect gas H is independent of the pressure and for a
condensed phase the effect of variations of pressure is negligible. It is there-
fore often unnecessary to specify the pressure when speaking of enthalpies of
reaction.

§6.03 Hess’ law

Since H is a function of the state of a system, AH is for successive processes
at the same temperature an additive function. This property of AH, known
as Hess’ law, is useful in enabling us to calculate AH for a reaction, difficult
to produce quantitatively, from other reactions which give less difficulty.
The following simple example illustrates the point

C(graphite)+ O,(g)—CO,(g) —AH=393.5k]J
CO(g)+10,(g)—~CO,(g) —AH=283.0kJ.

In both the above cases AH is readily measurable. By subtraction we obtain
C(graphite) +30,(g)— CO(g) —AH=110.5kJ

a reaction difficult, if not impossible, to study quantitatively.

Other numerous examples are the calculations of the enthalpies of
formation of organic compounds from the enthalpies of combustion. A simple
example is

CH,(g)+20,(2)»CO,(g)+2H,0(1)  --AH=890.3 kJ

C(graphite) + O,(g)—CO,(g) —AH=3935k)

2H,(g)+ 0,(g)—2H,0(l) —AH=571.6 kJ
from which we immediately deduce

C(graphite)+2H,(g)—CH,(g) —AH=74.8KkJ.

Unfortunately in calculating an enthalpy of formation as the difference
between much greater enthalpies of combustion there is considerable loss in
percentage accuracy since the experimental errors add up. Nevertheless this is
the standard method for determining enthalpies of formation of organic
compounds from their elements.
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Unfortunately some authors have used the name heat of reaction for
— AH instead of for AH. This practice is deplorable. In particular the name
‘heat of combustion’ is commonly used for —AH. It might be pleaded in
excuse that in this case — AH is always positive and that there is no other
convenient name. There is on the other hand no excuse whatever for the
habit of calling —AH for adsorption a ‘heat of adsorption’ when there
exists the perfectly good name keat of desorption. The simplest and safest way
to avoid any possible ambiguity is to write explicitly AH=... or —AH=...
as in the above examples.

§6.04 Kirchhoff’s relations

We often need the value of AH at one temperature when it has been measured
at a different temperature. This causes no difficulty provided the dependence
of H on the temperature has been measured or is known theoretically for
the initial and final states.

Let T denote the temperature at which we want the value of AH and T’
the temperature at which it has been measured. Then

AH(T)— AH(T") =Y, vs Hy(T)— ¥, v Ho(T')= ¥, v Ho(T) — Hy(T)}. 6.04.1

Although (1) is the form in which the experimental data are available and
should be used, it is customary to express it in the differential form

dAH/dT:—Z deHB/dT=Z "BCB~ 6.04.2
B B

Formula (2) is known as Kirchhoff’s relation. Since values of the heat
capacities C are usually obtained by differentiating experimental measure-
ments of H(T)— H (T’) and formula (2), if used, has to be integrated, it is
difficult to see any advantage of (2) over (1). As already mentioned in §3.03
the main function of a heat capacity is to serve as the connecting link between
the enthalpy and the entropy.

There is a second formula also associated with Kirchhoff, similar to (2),
but relating the energy change AU with the heat capacities at constant
volume, but this formula is not needed.

§6.05 Prescription of standards

As already explained in §3.25 the formulae for chemical equilibrium require
a consistent choice of standards P°, 1°, H®, and S°. We now prescribe
the choice used almost universally and used henceforth in this text.
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The standard pressure P° is prescribed as
P®=1atm. 6.05.1

The standard enthalpy is prescribed by stating that
H®=0 (T=298.15K) 6.05.2

for every element in its stable state. The standard entropy is prescribed by

stating that
5°=0 (T-0) 6.05.3

for every element in its stable state.

Since H®(T)—H®(298.15K) is determinable by purely calorimetric
measurements, the convention expressed by (2) determines unambiguously
the value of H®(T) for any 7. Similarly since $°(T")— S° (0) is determinable
by purely calorimetric measurements, the convention expressed by (3)
determines unambiguously the value of S°(T) for any 7. Then A° is un-
ambiguously defined by

In A°=H®/RT-S°/R. 6.05.4

Extensive tables exist of values of H°®(298.15K) and of $°(298.15 K).
Less extensive tables exist of H°(T) and of S°(T) for other values of 7.

Most of these tables give values of H® in kcal mole~! and of S° in
cal K™ mole™" although all precise calorimetric measurements are made in
terms of joules. It would save considerable unnecessary calculation if the
tabulated quantities were H#°/R and S°/R.

§6.06 Construction of tables

As already mentioned extensive tables exist of values of H® and of S° for
T'=298.15 K. We now summarize briefly how these are constructed. We
begin with H°.

The first step in determining H° for a given substance is to choose a set of
reactions for which the enthalpy of reaction can be measured directly and
which add up to the process of formation of the given substance from its
elements. Two simple examples have already been mentioned in §6.03.
The set of reactions may include isothermal changes of pressure so as to
convert each measured AH to the required AH®. The values of the enthalpies
of reaction at the several experimental temperatures are reduced to values
at 298.15 K by use of Kirchhoff’s relation. The values at 298.15 K for the
several reactions are combined according to Hess’ law to obtain the heat
of formation A; H®. Finally from the chosen convention that H® at298.15K
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is zero for every element in its stable state it follows that for each compound
H®=A;H® and this is the quantity tabulated. In the most extensive tables*
H®(298.15K) is denoted by AHf®.

We now consider the tabulation of S©. Purely calorimetric measurements,
as illustrated in §3.52, lead directly to $°(298.15 K)—S®(crystal, T—0).
When we choose the convention that $°(7—0) is zero for every element in
its stable crystalline form we have for any substance

S®(crystal, T»0)=Rin o 6.06.1
and consequently
5°(298.15 K)={5°(298.15 K)— S®(crystal, T-»0)} +Rlno.  6.06.2

The expression { } is often called the calorimetric entropy. In order to
determine the tabulated quantity S©(298.15 K) we need to know or assume
the value of 0. There are three different possibilities. For about thirty sub-
stances with simple molecules S°(298.15 K) for the gas has been determined
from purely spectroscopic data and this value, often called the spectroscopic
entropy, is found to be equal to the calorimetric entropy. It follows for all
these substances that o=1 or In 0=0. For a few substances with simple
molecules, namely CO, N,0, NO, H,O the spectroscopic entropy is found
to exceed the calorimetric entropy by amounts RIn2, RIn2, {RIn2,
R 1n % so that o has values differing from unity. These non-zero values of In o
are understood and have been explained in §3.54. In each case they are due
to metastability in the crystal. Finally for all other substances the value of o
has not been determined experimentally. Its value is assumed to be unity.
It is conceivable that there are other cases of 0> 1 but they are likely to be
few if any. The use of the assumption o=1 can thus conceivably lead to
equilibrium constants wrong by a factor such as 2. In the most extensive
tables* $°(298.15 K) is denoted by S°.

Tables' less extensive than those for 298.15 K exist relating to other tem-
peratures. These tables give values of the purely calorimetric quantities
H®(T)—H®(298.15K) and S°(T)—S°(298.15 K).

§6.07 Gaseous equilibria

For every component B in a gas phase we have according to (4.08.1)
Ap=Ag pa/P® 6.07.1
where pj is the fugacity of B, P°® is a standard pressure, normally one

* Rossini et al., Circular no. 500 of National Bureau of Standards, 1952.
t Kelley, U.S. Bureau of Mines, 1949, Bulletin 476.
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atmosphere, and A5 is the value of A5 when pg is equal to P°. Substituting
(1) into (6.01.11) we obtain the equilibrium condition

[1(»=K 6.07.2
where K is a function of temperature only defined by
K=T1(P®/2°) 6.07.3

and is called the equilibrium constant. Lack of experimental data on virial
coefficients in gaseous mixtures usually makes it impossible to correct for
gas imperfection, even though the procedure is in principle straightforward,
When we adopt the approximation

pg=xgP  (perfect gas) 6.07.4
(2) becomes
T[] (xP)=K. 6.07.5
We may rewrite (5) as
[Tx)=K, (perfect gas) 6.07.6
where
K,=K/[](P) 6.07.7

so that K as well as depending on the temperature is inversely proportional
to P¥'®. There is no advantage in using K, instead of K.

§6.08 Egquilibria between gases and solids

We turn now to a discussion of the equilibrium of reactions involving pure
solids as well as gases. Examples are

CaCO,(s)—CaO(s)+CO,(g) 6.08.1
NH, Cl(s)— NH,(g)+ HCi(g) 6.08.2
C(graphite)+ CO,(g)—2CO(g). 6.08.3

We have the general equilibrium condition (6.01.11)
[T()=1 6.08.4

where the 1 of each gaseous species is related to its fugacity by (6.07.1).
On the other hand we may regard the A of each pure solid as a function of
temperature only, since the effect of change of pressure on a solid is usually
negligible.

We now extend our I notation as follows. We write

H(I)=TGI(1)1;[(I) 6.08.5
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where Il;(J) contains all the factors of II(I) relating to the gaseous species
and ITg(I) all the factors relating to the solid species.
For example in the case of reaction (1)

I(;[ (A)=4co, 6.08.6
IS;I (A)=2ca0lAcaco, - 6.08.7
Using this notation, the equilibrium condition (4) may be written
];I(l) ];[(A)=1. 6.08.8
Now substituting (6.07.1) into (8) we obtain
[Tp=kK 6.08.9
where K is a function of tempethure only given by
K=T](P®/i®)T] (1/4®) 6.08.10
and is called the equilibrium conGstant. For esxample for reaction (3), we have
PolPco, =K 6.08.11
K =28, 48 P°Jicd. 6.08.12

§6.09 Temperature dependence

For any reaction
0=) vgB 6.09.1
B

between gases and solids, or between gases only, the equilibrium constant X
is given by (6.08.10)

K=TT(P®/A°)T] (1/4°). 6.09.2
G S
For each species B whether gaseous or solid we have
dln A§/dT=—HS/RT?. 6.09.3

Taking logarithms and differentiating (2) with respect to T and using (3)
we obtain

dln K/dT=Y Hg/RT*=AH®|RT? 6.09.4
B

where AH® is the standard enthalpy of reaction. This may be written in the

alternative form
dIn K/d(1/T)=-Y Hg/R=—AH°®|R. 6.09.5
B
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§6.10 Numerical example

We shall now illustrate the use of our formulae and of standard tables by a
simple example. We choose the reaction

0=2CO(g)— C(graphite)— CO,(gas) at 1000 K. 6.10.1
The equilibrium is determined by
Péo/Pco; =K 6.10.2
where
K=P®18,A8 1288 = (Ao, A [Ad) atm. 6.10.3

The tabulated experimental data* are as follows

B C(graphite) CO,(g) CO(g) Y
B
vB - 1 - 1 + 2
Hg (25 °C)/kcal mole ™! 0 —94.05 —26.42
S5(25 °C)/cal K™ mole™! 1.36 51.06 47.30
Hg (1000 K)— Hg (25 °C)/kcal mole™!  2.810 7.993 5.186
S5(1000 K)—Sg(25 °C)jcal K™ ! mole™" 4.47 13.28 8.82
Hy (1000 K)/kcal mole ™ * 2.810 —86.059 —21.230 40.789
S5 (1000 K)/jcal K™ mole™! 5.83 64.34 56.12  42.07

From these we deduce

In(K/atm)= —AH®/RT +AS®/R=(42.07—40.79)/1.987=0.64
K=1.9 atm.
The accuracy of a calculation of this kind is at best about +0.05 in each term
of In K. This usually leads to an uncertainty of at least 0.1 in In K or 10%,

in K. In most cases the experimental uncertainty in a direct measurement
of K is no less.

§6.11 Reactions between pure solids or liquids

We must now consider reactions between pure solid phases without any

gases. Examples are
0=Pbl,—Pb-2I 6.11.1

0=CuS—Cu-S. 6.11.2

* Rossini et al., Circular no. 500 of National Bureau of Standards, 1952.
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Incidentally, for the following considerations it is immaterial whether any
of the phases is a pure liquid instead of a pure solid. As an example we may
mention

0=Ag+HgCl-Hg—AgCl 6.11.3
The simplest type of reaction between solid phases is an allotropic change,
such as

0 =monoclinic sulphur—rhombic sulphur 6.11.4
0=white tin—grey tin. 6.11.5

The equilibrium condition for a reaction involving pure solid and liquid
phases can still be expressed in the form (6.01.11)

[1(4)=1  (equilibrium) 6.11.6

but each A is now a function of temperature only, if we disregard the small
effect of changes of pressure. Hence the equilibrium condition (6) may be
regarded as an equation determining the temperature of reversal of the
change considered. This equation may or may not have a solution for T
positive. Reactions (1), (2), (3) proceed naturally towards the right at all
temperatures and there is no solution of (6). In point of fact very few reac-
tions between pure solids and pure liquids have a reversal temperature.
The most important exceptions are allotropic changes such as (4) and (5),
among which we may, if we like, include simple fusion.
For reactions such as (1), (2), (3) at all temperatures we have

[TW<1 6.11.7
or taking logarithms and writing in full,
Y vg In A <0. 6.11.8
B

Another way of expressing the same thing is to state that the affinity, defined
in §1.44, is positive at all temperatures. We shall see in chapter 8 how the
affinity of some reactions can be accurately determined by measurements
of electromotive force.

We shall now consider (6) in more detail and for this purpose we write

it in the expanded form
Y vgIn A5=0. 6.11.9
B

But by definition
In Ag=pg/RT =Hg/RT — Sg/R. 6.11.10
Substituting (10) into (9), we obtain

T=z VBHB/Z VBSB~ 6.11.11
B B
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The numerator of (11) is the enthalpy of reaction AH and the denominator
is thz entropy of reaction AS. We now consider these separately.
For AH we write formally

AH(T)=AH(T')+ Y vg{He(T)— Hg(1")}, 6.11.12

If for each of the substances the dependence of H on temperature has been
determined calorimetrically and if in addition AH has been measured at
any one temperature 7", then by means of (12) AH can be calculated at any
other temperature.

For AS we write formally

AS(T)=AS°+Y vs{Sp(T)—S3} 6.11.13
B

where the superscript ® denotes the value obtained by smooth extrapolation
to T=0. If now the dependence of H on temperature has been measured
throughout the temperature range from 7 down to a temperature from
which one can extrapolate to =0, then (13) determines AS for all tempera-
tures apart from the constant AS°. But S° is the quantity discussed in detail in
§§3.51-3.57. It has the value zero except for a few well understood exceptions
for which its value is known to be R In 0, with o0 a small number such as 2
or 3. With this knowledge of AS° or in the absence of evidence to the contra-
ry assuming AS®=0, formula (13) determines AS for all temperatures.

Using (12) and (13) together, we can solve (11) for the transition tempera-
ture T. Alternatively using the experimental value of 7, we can use (11),
(12), (13) to determine an experimental value for AS°.

§6.12 Transition of sulphur

We shall now illustrate the formulae of the preceding section by a numerica!
example. As already mentioned it is difficult to find an example of an equili-
brium temperature for a reaction between solid phases except in the simplest
case of an allotropic change. We accordingly choose as our example

0=monoclinic sulphur—rhombic sulphur 6.12.1

and we shall use the subscripts p and , for the rhombic and monoclinic
forms respectively. The transition temperature is

T=368.6K (transition). 6.12.2

The enthalpy of transition at this temperature is given by

AH/R=(Hy—Hg)/R=(475+5)K  (T=368.6K).  6.12.3
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Consequently the entropy of transition at this temperature is
AS/R=(Sy— Sg)/R=47.5/368.6=0.12+0.01 (T=368.6K). 6.12.4

According to calorimetric measurements* on the two forms from 15 K to
the transition temperature

{Sr(368.6 K)—Sg(15 K)}/R=4.38+0.03 6.12.5
{S\(368.6 K)—S\(15 K)}/R=4.49+0.04. 6.12.6
Combining (4), (5), and (6) we obtain

{Su(15 K)— Sg(15 K)}/R=0.12—4.49 + 4.38
=0.01+0.05. 6.12.7

We conclude that well within the experimental accuracy

Sy —Se=0. 6.12.8

§6.13 Homogeneous equilibrium in solution

We turn now to homogeneous chemical equilibrium in a liquid solution.
We again start from the general equilibrium condition (6.01.11)

[T(H)=1 6.13.1
and use
A=1%my. 6.13.2

Substituting (2) into (1) we obtain

[T (m) T )=Kx 6.13.3

where K,,is defined by

Kn.=[1(1/4°) 6.13.4
and so depends only on the solvent and the temperature. K, is called the
molality equilibrium constant. Formula (3) tells us that the equilibrium
molality product is inversely proportional to the equilibrium activity

coefficient product.
In the special case of an ideal dilute solution (3) reduces to

[1(m)=Kn. 6.13.5

* Eastman and McGavock, J. Amer. Chem. Soc. 1937 59 145.
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§6.14 Temperature dependence

If we take logarithms of (6.13.4) we have
InK,=-Y vgInig. 6.14.1
B

Differentiating with respect to 7 and using (5.15.2) we obtain
dIn K, /dT=Y vgHy/[RT?*=AH®|RT?. 6.14.2
B

where AH® is the enthalpy of reaction at infinite dilution in the given
solvent.

§6.15 Use of volume concentrations

As mentioned in §5.28 volume concentrations are sometimes used instead
of molalities but the practice is not recommended. In place of (6.13.3) one

then obtains
[T@II»=K. 6.15.1

where ¢ denotes volume concentration and y denotes a new kind of activity
coefficient. We shall not go into details, but will only point out that the
temperature dependence of K, is given by*

dln K /oT=AH*/RT*—a ) vg 6.15.2
B

where « denotes the thermal expansivity of the solvent. Spurious formulae
for 8 In K_/OT obtained by false analogy with gaseous equilibria have some-
times been quoted, both in the past and recently’.

§6.16 Heterogeneous equilibria involving solutions

We might also discuss equilibria involving solutions and vapour phases,
or solutions and solids, or even solutions, solids, and vapour phases, but this
is unnecessary because any equilibrium however complicated can be regarded
as a superposition of a homogeneous equilibrium in a single phase, liquid or
gaseous, and distribution equilibria of individual species between pairs of
phases. Both these elementary types of equilibrium have been discussed in
sufficient detail.

§6.17 Transitions of second order

This is perhaps the most convenient place to describe a phenomenon called

* Guggenheim, Trans., Faraday Soc. 1937 33 607.
t E.g. Clarke and Glew, Trans. Faraday Soc. 1966 62 547.
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a transition of the second order. It is quite different from anything we have
yet met, having some of the characteristics of phase changes and some of
the characteristics of critical phenomena. We shall first show by a particular
example how a transition of the second order arises from certain assumed
properties of the thermodynamic functions. We shall then discuss briefly
how and when such transitions occur.

As a preliminary step to our discussion, we shall consider the thermodyna-
mic properties of the equilibrium between two isomers under the simplest
conceivable conditions. Thus we consider the isomeric change

A-B 6.17.1

occurring in a mixture of A and B in the absence of any other species. We
further assume that the mixture is ideal. Finally we assume that the proper
enthalpy of reaction has a value w independent of the temperature; in other
words we assume that A and B have equal heat capacities. If then x denotes
the mole fraction of B the proper Gibbs function G, has the form

Gn=Go(T)+xw+RT{(1—x)In(1—x)+x In x} 6.17.2

where w is a constant and G5 (7) depends only on the temperature. From
(2) we deduce

H,=GS —TdGS/dT + xw 6.17.3
from which we verify that the proper enthalpy of reactionis w. We also deduce
Sm=—dGo/dT —R{(1—x) In(1—x)+x In x} 6.17.4
showing that the proper entropy of mixing has its ideal value
—R{(1=x)In(1—x)+xIn x}. 6.17.5
The equilibrium value of x is obtained by minimizing G,. We find
0G,/0x=w+RT In{x/(1—x)} =0 6.17.6
so that
x/(1—x)=exp(—w/RT). 6.17.7

Formula (7) is, of course, the simplest possible example of the equilibrium
law. Before we dismiss this extremely simple system, there remains one
important point to be investigated, namely the verification that (6) and (7)
do correspond to a minimum of G,,, not to a maximum. We have

0°G,/0x*=RT{l/x+1/(1-x)}>0 6.17.8

thus verifying that we have found a minimum, not a maximum.
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Let us now arbitrarily introduce a modification into the form of G,
assumed in (2), without at this stage enquiring into the physical significance
of the change. We replace the term wx by wx(l1 —x). We then have

Gu=Go(T)+x(1—x)w+RT{(1-x)In(1—=x)+xInx}  6.17.9
H,=G2—TdG/dT +x(1—-x)w 6.17.10

w=—dGS /[dT—R{(1—x) In(1—x)+x In x} 6.17.11

from which we observe that the enthalpy is affected by the modification,

but the entropy is not.
We now seek the equilibrium value of x by minimizing G,. We find

0G,,/ox=—(2x—)w+In{x/(1 —x)}=0 6.17.12
so that
x/(1—x)=exp{(2x—1)w/RT}. 6.17.13

One solution of (13) is obviously x=4, but this is not always the only solu-
tion. Nor is this solution necessarily 2 minimum rather than a maximum of
G- We must investigate these points and shall do so in the first place
graphically. Figure 6.1 shows (G,,— G2 )/ RT plotted against 2x — 1 for various
values of 4w/RT. Owing to the complete symmetry between x and 1—x,
we can without loss of generality assume that x>1—x.

04
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Gm=Gon
G =Gm

00

-0-2

- 0.4
(o) 0-2 04 06 o8 1O
s=2x-|

Fig. 6.1. Dependence of Gm on x for various values of 4w/RT. The numbers attached to
the curves are values of $w/RT or T)/T
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We see that if w>0 then at high temperatures, that is at small values of
w/RT, the root x =4 is the only root and it corresponds to a minimum of G,,.
At low enough temperatures, that is at large values of w/RT, there is another
root $<x <1 and this root corresponds to a minimum of G,, while the root
x=% now corresponds to a maximum. Thus there exists a temperature T,
such that at temperatures below 7, the equilibrium value of x is greater than
4 and decreases as the temperature increases; the equilibrium value of x
becomes 1 at the temperature 7, and remains } at all high temperatures.
The change occurring at the temperature 7, is called a transition of the
second order and the temperature T, is called a lambda point for a reason
which will be explained later.

It is clear from figure 6.1 that T, is the temperature at which the two roots
of (13) become equal, the root at x=1 changing from a minimum to
a maximum. Thus there is a point of horizontal inflexion at x=4. We

have then
0°Gp/ox? = —2w/RT,+1/x(1—x)=0  (x=1) 6.17.14

whence
w/RT, =2. 6.17.15

It is clear from figure 6.1 that for negative values of w the minimum is
always at x=1 and there can be no lambda point.

§6.18 Cooperative systems

Before proceeding to a more detailed examination of transitions of the second
order, we shall explain in very general terms how they may arise. As a pre-
liminary step, let us determine the enthalpy of change in the process (6.17.1).
For the enthalpy H of the whole sytem, we have according to (6.17.10)
changing to the variables n,, ng

H=(ny+ng)H® +n,ngw/(ny+ng) 6.18.1

where H® is independent of n,, ng. Differentiating with respect to n,, ng
in turn we obtain for the partial enthalpies

Hy=H® +n}wji(ns+ng)*=H® +x*w 6.18.2
Hy=H®+niwj(ns+ng)*=H® +(1-x)*w 6.18.3

so that the proper enthalpy of change from A to B is
Hg—H,=(1-2x)w. 6.18.4
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Since we are considering a condensed phase, (4) is effectively equivalent to
Ug—U,=(1-2x)w. 6.18.5

The outstanding characteristic of (5) is that the energy required to convert a
molecule A into a molecule B depends in a marked degree on what fraction
of all the molecules is present in each form. Such a characteristic would not
be expected when the process

A-B 6.18.6

represents a chemical change of one isomer to another, nor in such a case
do we find a lambda point. It is however not difficult to mention other inter-
pretations of (6) which might reasonably be expected to have the charac-
teristic just mentioned. Suppose for example we consider a regular array of
polar molecules or atoms in a lattice. Suppose further that each moleule
or atom can point in either of two opposite directions. Suppose finally that
-we denote the molecules by A or B according to the direction in which they
point. Then it is easily understandable that the energy required to turn
round a molecule or atom may depend markedly on how many other mole-
cules or atoms are pointing in either direction. This behaviour is typical of
systems called cooperative. The significance of the name should be clear from
this and the following examples.

Another more complicated, but possibly more important, interpretation
of (6) is for A to represent a state of molecular libration and B a state of
molecular rotation.

Another example occurring in certain alloys is the following. Suppose we
have an alloy of the composition ZnCu containing N atoms of Zn and N
atoms of Cu arranged on a regular lattice of 2N lattice points. We can picture
two extreme arrangements of the two kinds of atoms on the lattice, one
completely ordered, the other completely random. In the completely ordered
arrangement every alternate lattice point A is occupied by a Zn atom and the
remaining lattice points B are occupied by Cu atoms. In the opposite extreme
arrangement every lattice point A or B is occupied by either Zn or Cu
atoms arranged at complete random. We can moreover consider intermediate
arrangements such that a fraction x of the Zn atoms occupy A lattice points
and the fraction 1 —x of Zn atoms occupy B lattice points. The remaining
lattice points are of course occupied by the Cu atoms. We can then without
loss of generality take x=4. In such a system the average energy required to
move a Zn atom from an A point to a B point will depend markedly on how
many A points are already occupied by Zn atoms. It is therefore at least
conceivable that such a system might have a lambda point.
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As a matter of fact the alloy having the composition ZnCu does have a
lambda point and the thermodynamic properties of this system can be at
least semi-quantitatively represented by a Gibbs function of the form
(6.17.9). This form was first suggested by Gorsky* and later independently
derived by approximate statistical considerations by Bragg and Williams'.
It is outside the scope of this book to consider this aspect of the phenomenon
and we shall accordingly confine ourselves to a purely phenomenological
thermodynamic investigation of some of the general properties of lambda
points, among others the property leading to the name.

§6.19 Alternative notation

The notation which we have used to introduce the subject of transitions of

the second order seems natural. It is not however the notation most used.

For the sake of completeness we describe briefly the alternative notation.
A quantity s called the degree of order is defined by’

s=2x—1 6.19.1
or
x=31+s). 6.19.2

In this notation formula (6.17.9) becomes
Gpn=Gg +H1—s)w+RT{}(1+s) In(1+5)+4(1 —s) In(1 —s)—1In 2}. 6.19.3

The equilibrium value of s is determined according to (6.17.12) by

In{(1+s)/(1—s)}=sw/RT 6.19.4
which is equivalent to
tanh(ws/2RT)=s. 6.19.5
Using (6.17.15) we can transform (5) to
T,/T=(tanh ™ 's)/s. 6.19.6

These formulae, of course, contain nothing which is not already contained
in the formulae of §6.17. It is merely a historical accident that pioneer
workers in this field used the variable s instead of x.

§6.20 Lambda point
We have seen how a Gibbs function of the form (6.17.9) leads without any

* Gorsky, Z. Phys. 1928 50 64.
T Bragg and Williams, Proc. Roy. Soc. A 1934 145 699.
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further assumption to the occurrence of a transition of the second order and
we have explained how this type of behaviour can occur in a cooperative
system. We do not assert that a Gibbs function of approximately this form
is the origin of all transitions of the second order. Still less do we assert
that a Gibbs function of this form accounts accurately for any transition
of the second order. We merely assert that the form (6.17.9) of the Gibbs
function is one possible form which leads to the occurrence of a lambda
point having certain general characteristics which we shall describe. We shall
continue to make use of the particular forms of thermodynamic functions
described in §6.17 merely for illustrative purposes.

From figure 6.1, or more accurately by calculation from (6.17.13), we can
determine the equilibrium value of x as a function of 7. The result is given
in figure 6.2, where s=2x—1 is plotted against 7'/7,. We notice that at
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Fig. 6.2. Dependence of equilibrium value of degree of order on temperature

temperatures immediately below 7, the equilibrium value of s changes rapidly
with temperature and at temperatures below 47, this equilibrium value
differs hardly appreciably from unity. There is then a rapid change of the
equilibrium value of s in the temperature range between 7, and 47, . Asso-
ciated with this change in s there is a rapid change in the part of the proper
energy or enthalpy which depends on s namely the term

x(1—x)w=4(1—s")w. 6.20.1

This is shown in figure 6.3. The term (1) occurs in the energy additional to
other terms due to the translational and internal degrees of freedom of the
molecules. Thus as the temperature is decreased through the lambda point
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Fig. 6.3. Temperature dependence of enthalpy due to variation in degree of order
there is a sudden change in the temperature coefficient of the enthalpy, or in
other words a discontinuity in the heat capacity C. This is shown in figure 6.4.

The shape of the curve recalls a Greek capital A whence the name lambda
point suggested by Ehrenfest.*
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Fig. 6.4. Contribution to heat capacity of variation in degree of order

o

For the particular model considered in detail, we observe that in the
immediate neighbourhood below the lambda temperature

0H/3s=0 6.20.2
0S/3s=0 6.20.3
ds/dT =00 6.20.4

* Keesom, Helium, Elsevier, 1942 p. 216.
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in such a manner that
(0H/0s)(ds/dT) is finite 6.20.5
(8S/0s)(ds/dT) is finite. 6.20.6
The properties (5) and (6) are independent of the choice of s. On the other
hand the relations (2), (3), (4) depend on the definition of 5. For example if
we replace s by o=s2, then
O0H/d0 is finite 6.20.7
0S/0¢ is finite. 6.20.8
We may then describe a transition of the second order as a discontinuity
in C, with continuity of H, S, G, at a certain temperature T; called the
lambda point.
The lambda point known longest is the one discovered by Curie and there-
fore called the Curie point, below which a substance such asiron has perma-

nent magnetization and above which it has not. The Curie point will be
referred to again in chapter 11.
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Fig. 6.5. Heat capacity of liquid helium near lambda point

Probably the most interesting, most studied, but perhaps least under-
stood lambda point is that of helium at 2.2 K. The experimeatal data*
for C plotted against T are shown in figure 6.5.

* Keesom, Helium, Elsevier, 1942 p. 215.
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Many other lambda points are known to occur in crystals and are usually
associated with a sudden change in the extent to which the molecules in the
crystal can rotate freely. Few however, if any, have been studied in such
detail as to be completely understood.

§6.21 Comparison with phase change and critical point

Since a substance has measurably different properties above and below the
lambda point, there is a temptation to regard a transition of the second order
as a kind of phase change. The expression phase change of the second order
has been used, but as it has in the past led to considerable confusion it is
better avoided.*

A. Phase change B. Lambda point

Fig. 6.6. Contrast between phase change and lambda point

The contrast between a lambda point and a phase change may be made
clear by a plot of the proper Gibbs function against the temperature. This
is shown in figure 6.6. Diagram A depicts a phase change. The curves of the
two distinct phases o and B cut at the transition point, the dotted portions
of the curves representing metastable states. Diagram B depicts a transition
of the second order. The curve marked O represents the Gibbs function of a
hypothetical phase with s=0, which is usually associated with complete
randomness. The curve marked eq represents the Gibbs function of a phase
in which at each temperature s has its equilibrium value. Below the lambda
point the dotted curve marked O lies above the curve marked eq and conse-
quently the former represents metastable states.

At the lambda point the two curves touch. We might ask what happens
to the eq curve above the lambda point. If we extend the eq curve by the
simplest analytical formula, ignoring physics, the curve would continue below
the O curve, thus suggesting that it represents states more stable than the
O curve. On further study we should however find that this hypothetical

* Guggenheim, Proc. Acad. Sci. Amst. 1934 37 3.
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curve corresponds to negative values of s? and has therefore no physical
meaning. It is therefore safer and more profitable to forget about such a
curve.

On the other hand a comparison between a lambda point and a critical
point, if not carried too far, is less dangerous. At temperatures below the
lambda point there is a stable phase with a value of s determined by the
temperature and there can also be a metastable phase with s=0; the latter
can in fact sometimes be realized in practice by sudden chilling from a
temperature above the lambda point. The difference between these two
phases, measured by the values of s? gradually decreases as the temperature
is raised and vanishes at the lambda point when the two phases become
identical. This recalls the behaviour of liquid and vapour phases at the
critical point, but here the resemblance ends.

§6.22 Dependence of lambda point on pressure

Up to this point we have considered how a transition of the second order
occurs at a certain temperature, disregarding the pressure. This is in practice
justifiable for most such transitions, but in principle there can be a depen-
dence on the pressure. In practice the only known example where pressure
changes are likely to be important is that of liquid helium. Let us then
consider how the lambda point is affected when the pressure is changed.

In the particular model represented by (6.17.9) the dependence on pressure
would result from the energy parameter w being a function of the pressure.
We shall however not assume this model nor any other detailed model,
but shall rather derive formulae of complete generality.

Regarding G as a function of s, as well as of T, P we have

dG=—-SdT+ VdP+(0G/os)ds 6.22.1
and differentiating throughout with respect to s
d(0G/ds)= —(9S/0s)d T +(0V/0s)d P +(0°G/ds*)ds. 6.22.2
Now the equilibrium value of s at each temperature is determined by
0G/os=0  (equilibrium) 6.22.3
and in particular at the lambda point
s=0  (lambda point). 6.22.4

If then we follow the lambda point at varying pressure we have (3) and
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owing to (4) we have
ds=0 (lambda point). 6.22.5

Substituting (3) and (5) into (2) we obtain

—(0S/0s)dT +(8V/0s)dP=0  (lambda point) 6.22.6
or
4T, _ (OV[3s)smo
dP  (8S/ds)s~o

Formula (7) describes in the most general way how the temperature of the
lambda point depends on the pressure. The right side of (7) can however
usefully be transformed into alternative forms more directly related to
experimental quantities.

We accordingly multiply numerator and denominator of (7) by ds/d7,
where s here denotes the equilibrium value. We obtain

dT, 3V ds /as_di

dP  0s dT| s dT

where every quantity on the right side is given its equilibrium value at or
immediately below T;. We shall now examine the physical significance of the
numerator and denominator on the right of (8).

Let us use the superscripts ~ and * to denote the value of quantities imme-
diately below and immediately above the temperature 7,. Then we have

6.22.7

6.22.8

G =G* 6.22.9
H™ =H* 6.22.10
s~ =s* 6.22.11
C™ =C™" +T,(0S/0s)(ds/dT) 6.22.12

so that the denominator on the right of (8) is (C™—C™)/T;.
Similarly if « denotes coefficient of thermal expansion

vV =V*=V, 6.22.13
a” V,=a*V, +(0V/0s)(ds/dT) 6.22.14

so that the numerator in (8) is (¢~ —a*)V,. Hence substituting (12) and
(14) into (8) we obtain

dT,/dP=(a" =", T,j(C™ —C"). 6.22.15

This formula shows how the effect of pressure on the lambda point is related
to the discontinuities in C and in .
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Returning to (7), instead of multiplying numerator and denominator by
ds/d7, we multiply by ds/dP, obtaining

LA Y 2216

But if x; denotes isothermal compressibility, we have

k1 Vi=x7 V, —(8V/ds)(ds/dP). 6.22.17
Similarly

- +

and so using Maxwell’s relation (1.47.4) we have

a” V,=a*V,—(8S/ds)(ds/dP). 6.22.19
Substituting (17) and (19) into (16) we obtain

dT,/dP=(k7 —x7)j(a” —a™). 6.22.20

This formula relates the dependence of the lambda point on the pressure to
the discontinuities in o and xr.
Formulae (15) and (20) are due to Ehrenfest.*

§6.23 Transitions of higher order

In an ordinary phase change, which we may call a transition of the first order,
we have

1st order

G continuous
transitions.

S=—0G/0T discontinuous
In the transitions of the second order, which we have been discussing, we have

G, 0G/oT continuous } nd order

. . transitions.
C=-—-T0*G/doT? discontinuous

In a like manner we can define a transition of the third order by
2 2 :
G, 0G[0T, 0°G/oT* continuous } 3rd order

, . . transitions.
9*GjoT? discontinuous

* Ehrenfest, Proc. Acad. Sci. Amst. 1933 36 153.
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It is possible that transitions of the third order exist. It is further possible
to extend the above definitions to transitions of still higher order. We shall
however not pursue this matter any further.

§6.24 Components and degrees of freedom

Since the equilibrium condition for the chemical change

0=y vsB 6.24.1
B

is given by (6.01.7)
Y vpup=0 6.24.2
B

all variations of temperature, pressure, and composition consistent with
chemical equilibrium must satisfy

; VB d”’B = 0. 6.24. 3

This is a relation between the chemical potentials additional to and indepen-
dent of the Gibbs—-Duhem relations. The existence of this relation reduces
by one the number of degrees of freedom of the system.

Let us consider a particular example, namely a gaseous mixture of
N,, H,, and NH;, regarded as perfect. This single-phase system can be
described by T, P, xy,, Xy,, Xnu, Subject to the identity

xN2+tz+xNHJ=1 6.24.4
or alternatively by T, P, uy,, Uy, Hnu, Subject to the Gibbs—Duhem relation
xdeﬂNz+XH2dﬂHz+xNH3d[.lNHJ=O. 6.24.5

Hence in the absence of chemical reaction between the three components
the system has four degrees of freedom. If however, for example by intro-
ducing a catalyst, we enable the process

N, +3H,=2NH, 6.24.6
to attain equilibrium, then there is the further restriction
AN, + 3y, = 2UNy, 6.24.7

which reduces the number of degrees of freedom from four to three. This
situation is sometimes described by saying that of the three species N, H;,
and NH, there are only two independent components. Whether or not this
terminology is adopted the number of degrees of freedom is certainly three.
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As a second example consider the system consisting of PCl3, Cl,, and PCI,,
There are three chemical species but owing to the equilibrium condition
for the reaction

PCl;=PCl, +Cl, 6.24.8

there are only two independent components. For the gaseous phase alone
the situation is similar to that in the system N,, H,, and NH,. There are
two independent components in one phase and so three degrees of freedom.
If we consider the system consisting of the solid phase PCl, together with
the gaseous phase we have two independent components in two phases
and so two degrees of freedom. This means that there are two independent
variables which we shall take to be the temperature T and the stoichiometric
ratio r of Cl to P in the gas phase. The temperature determines the equili-
brium constant K for the process

PCl5(s)=PCl;(g)+ Cl,(g) 6.24.9

and the fugacities are then determined by the simultaneous equations
Peci, P, =K 6.24.10
(3peci, +2Pc1,) Prcr, =T 6.24.11

In the particular case =35 the stoichiometric composition of the gas phase
is the same as that of the solid phase PCl;. In this case some authors go so
far as to describe the system as of one component PCls. This attitude has
nothing to recommend it. We have seen that the system as initially described
has two degrees of freedom. These two degrees of freedom are of course
reduced to one by specifying the value of r but the value r =35 has no unique
thermodynamic feature. The statement that the ratio of Cl to P in the gas
phase is equal to its ratio in the solid phase is no different in kind from the
statement that the ratio in the gas phase is one half, or double, the ratio in
the solid phase. The distinction between =5 and other values of r is artificial
and pointless. Furthermore it can lead to confusion. Suppose we are interes-
ted in the surface phase between solid and gas. Then although the ratio of
Cl to P may be 5 in both gas phase and solid there is no reason to expect
the ratio to be 5 in the surface phase. In other words there may well be pre-
ferential adsorption of either PCl; or Cl, and this can not be described in
terms of the single component PCl5. Again suppose there is a gravitational
field. Then, as we shall see in chapter 9, the proportion of PCl; to Cl,
will vary from layer to layer and can have the value unity at one height only.
It is then essential to treat the system as of two components even though
the overall stoichiometric composition may be that of PCl,.
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Now consider a system in which several chemical changes can take place.
Some such changes may be expressible as linear combinations of others,
but there will always be a definite number of chemical changes which are
linearly independent. Consider for example a system consisting of solid
graphite and a perfect gaseous mixture O,, CO, CO,. Then of the chemical
changes

C+40,-CO 6.24.12
C+0,-CO, 6.24.13
C0+40,-CO, 6.24.14
C+C0,-2CO 6.24.15

the third is obtained by subtracting the first from the second, while the fourth
is obtained by subtracting the third from the first. Thus only two of these
changes are independent. By a comparison of (1) and (2) it is clear that in-
dependent chemical processes have independent equilibrium conditions,
whereas linearly related chemical processes have linearly related equilibrium
conditions. Hence each linearly independent chemical equilibrium corre-
sponds to a restrictive relation between the chemical potentials leading to a
decrease by unity in the number of degrees of freedom. For example in the
two-phase system consisting of solid graphite and a gaseous mixture of
0,, CO, CO, the effect of the two independent chemical equilibria is to
reduce the number of degrees of freedom from four to two; thus the state of
the system is completely determined by the temperature and the pressure.
Incidentally in this particular system at equilibrium the amount of free O,
is so small as to be undetectable. The system may therefore be more simply
described as a two-phase system containing the three species C, CO, and CO,
between which there is a single chemical reaction

C+C0,-2CO. 6.24.16

The equilibrium condition for this process reduces the number of degrees
of freedom from three to two. Whichever way we consider the system we
find that the number of degrees of freedom is two. Whether we regard the
system as consisting of four components with two independent chemical
processes, of three components with one independent chemical process, or
of two independent components is a mere difference of terminology without
practical importance.



