
6

Longitudinal Waves

In deriving the wave equation

@ 2y

@x2
¼ 1

c2
@ 2y

@t 2

in Chapter 5, we used the example of a transverse wave and continued to discuss waves of

this type on a vibrating string. In this chapter we consider longitudinal waves, waves in

which the particle or oscillator motion is in the same direction as the wave propagation.

Longitudinal waves propagate as sound waves in all phases of matter, plasmas, gases,

liquids and solids, but we shall concentrate on gases and solids. In the case of gases,

limitations of thermodynamic interest are imposed; in solids the propagation will depend

on the dimensions of the medium. Neither a gas nor a liquid can sustain the transverse

shear necessary for transverse waves, but a solid can maintain both longitudinal and

transverse oscillations.

Sound Waves in Gases

Let us consider a fixed mass of gas, which at a pressure P0 occupies a volume V0 with a

density �0. These values define the equilibrium state of the gas which is disturbed, or

deformed, by the compressions and rarefactions of the sound waves. Under the influence of

the sound waves

the pressure P0 becomes P ¼ P0 þ p

the volume V0 becomes V ¼ V0 þ v

and

the density �0 becomes � ¼ �0 þ �d:

The excess pressure pm is the maximum pressure amplitude of the sound wave and p is an

alternating component superimposed on the equilibrium gas pressure P0.
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The fractional change in volume is called the dilatation, written v=V0 ¼ �, and the

fractional change of density is called the condensation, written �d=�0 ¼ s. The values of �
and s are �10�3 for ordinary sound waves, and a value of pm ¼ 2� 10�5 Nm�2 (about

10�10 of an atmosphere) gives a sound wave which is still audible at 1000 Hz. Thus, the

changes in the medium due to sound waves are of an extremely small order and define

limitations within which the wave equation is appropriate.

The fixed mass of gas is equal to

�0V0 ¼ �V ¼ �0V0ð1þ �Þð1þ sÞ
so that ð1þ �Þð1þ sÞ ¼ 1, giving s ¼ �� to a very close approximation. The elastic

property of the gas, a measure of its compressibility, is defined in terms of its bulk modulus

B ¼ � dP

dV=V
¼ �V

dP

dV

the difference in pressure for a fractional change in volume, a volume increase with fall in

pressure giving the negative sign. The value of B depends on whether the changes in the gas

arising from the wave motion are adiabatic or isothermal. They must be thermodynamically

reversible in order to avoid the energy loss mechanisms of diffusion, viscosity and thermal

conductivity. The complete absence of these random, entropy generating processes defines

an adiabatic process, a thermodynamic cycle with a 100% efficiency in the sense that none

of the energy in the wave, potential or kinetic, is lost. In a sound wave such thermodynamic

concepts restrict the excess pressure amplitude; too great an amplitude raises the local

temperature in the gas at the amplitude peaks and thermal conductivity removes energy

from the wave system. Local particle velocity gradients will also develop, leading to

diffusion and viscosity.

Using a constant value of the adiabatic bulk modulus limits sound waves to small

oscillations since the total pressure P ¼ P0 þ p is taken as constant; larger amplitudes lead

to non-linear effects and shock waves, which we shall discuss separately in Chapter 15.

All adiabatic changes in the gas obey the relation PV� ¼ constant, where � is the ratio of

the specific heats at constant pressure and volume, respectively.

Differentiation gives

V � dPþ �PV ��1 dV ¼ 0

or

�V
dP

dV
¼ �P ¼ Ba (where the subscript a denotes adiabatic)

so that the elastic property of the gas is �P, considered to be constant. Since P ¼ P0 þ p,

then dP ¼ p, the excess pressure, giving

Ba ¼ � p

v=V0

or p ¼ �Ba� ¼ Bas

In a sound wave the particle displacements and velocities are along the x-axis and we

choose the co-ordinate � to define the displacement where �ðx; tÞ.
In obtaining the wave equation we consider the motion of an element of the gas of

thickness �x and unit cross section. Under the influence of the sound wave the behaviour
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of this element is shown in Figure 6.1. The particles in the layer x are displaced a distance �
and those at xþ�x are displaced a distance � þ��, so that the increase in the thick-

ness �x of the element of unit cross section (which therefore measures the increase in

volume) is

�� ¼ @�

@x
�x

and

� ¼ v

V0

¼ @�

@x

� �
�x=�x ¼ @�

@x
¼ �s

where @�=�x is called the strain.

The medium is deformed because the pressures along the x-axis on either side of the thin

element are not in balance (Figure 6.1). The net force acting on the element is given by

Px � Pxþ�x ¼ Px � Px þ @Px

@x
�x

� �� �

¼ � @Px

@x
�x ¼ � @

@x
ðP0 þ pÞ�x ¼ � @p

@x
�x

The mass of the element is �0�x and its acceleration is given, to a close approxmation, by

@ 2�=dt 2.
From Newton’s Law we have

� @p

@x
�x ¼ �0�x

@ 2�

@t 2

Px

η η + ∆η

∆x

∆x + ∆η = ∆x + ∂η
∂x

∆x

∂Px

∂x
∆xPx +

Figure 6.1 Thin element of gas of unit cross-section and thickness �x displaced an amount � and
expanded by an amount ð��=@xÞ�x under the influence of a pressure differene �ð@Px=@xÞ�x
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where

p ¼ �Ba� ¼ �Ba

@�

@x

so that

� @p

@x
¼ Ba

@ 2�

@x2
; giving Ba

@ 2�

@x2
¼ �0

@ 2�

@t 2

But Ba=�0 ¼ �P=�0 is the ratio of the elasticity to the inertia or density of the gas, and this

ratio has the dimensions

force

area
� volume

mass
¼ ðvelocityÞ2; so

�P

�0

¼ c2

where c is the sound wave velocity.

Thus

@ 2�

@x2
¼ 1

c2
@ 2�

@t 2

is the wave equation. Writing �m as the maximum amplitude of displacement we have the

following expressions for a wave in the positive x-direction:

� ¼ �m eið!t�kxÞ _�� ¼ @�

@t
¼ i!�

� ¼ @�

@x
¼ �ik� ¼ �s ðso s ¼ ik�Þ

p ¼ Bas ¼ iBak�

The phase relationships between these parameters (Figure 6.2a) show that when the wave is

in the positive x-direction, the excess pressure p, the fractional density increase s and the

particle velocity _�� are all �=2 rad in phase ahead of the displacement �, whilst the volume

change (� rad out of phase with the density change) is �=2 rad behind the displacement.

These relationships no longer hold when the wave direction is reversed (Figure 6.2b); for a

wave in the negative x-direction

� ¼ �m eið!tþkxÞ _�� ¼ @�

@t
¼ i!�

� ¼ @�

@x
¼ �ik� ¼ �s ðso s ¼ ik�Þ

p ¼ Bas ¼ �iBak�

In both waves the particle displacement � is measured in the positive x-direction and the

thin element �x of the gas oscillates about the value � ¼ 0, which defines its central

position. For a wave in the positive x-direction the value � ¼ 0, with _�� a maximum in the

positive x-direction, gives a maximum positive excess pressure (compression) with a

maximum condensation sm (maximum density) and a minimum volume. For a wave in the
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negative x-direction, the same value � ¼ 0, with _�� a maximum in the positive x-direction,

gives a maximum negative excess pressure (rarefaction), a maximum volume and a

minimum density. To produce a compression in a wave moving in the negative x-direction

the particle velocity _�� must be a maximum in the negative x-direction at � ¼ 0. This

distinction is significant when we are defining the impedance of the medium to the waves.

A change of sign is involved with a change of direction—a convention we shall also have

to follow when discussing the waves of Chapters 7 and 8.

Energy Distribution in Sound Waves

The kinetic energy in the sound wave is found by considering the motion of the individual

gas elements of thickness �x.

Each element will have a kinetic energy per unit cross section

�Ekin ¼ 1
2
�0 �x _�� 2

where _�� will depend upon the position x of the element. The average value of the kinetic

energy density is found by taking the value of _�� 2 averaged over a region of n wavelengths.

Now

_�� ¼ _��m sin
2�

�
ðct � xÞ

so that

_�� 2 ¼ _�� 2
m

Ð n�

0
sin2 2�ðct � xÞ=��x

n�
¼ 1

2
_�� 2
m

so that the average kinetic energy density in the medium is

�E kin ¼ 1
4
�0 _��

2
m ¼ 1

4
�0!

2� 2
m

p,s,

p,s

η ηη

ηη

∂
∂x

, δ

η∂
∂x

, δ

(a) (b)

Wave in +ve x
direction

Wave in −ve x
direction

Figure 6.2 Phase relationships between the particle displacement �, particle velocity _��, excess
pressure p and condensation s ¼ �� (the dilatation) for waves travelling in the positive and
negative x directions. The displacement � is taken in the positive x direction for both waves
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(a simple harmonic oscillator of maximum amplitude a has an average kinetic energy over

one cycle of 1
4
m!2a2).

The potential energy density is found by considering the work P dV done on the fixed

mass of gas of volume V0 during the adiabatic changes in the sound wave. This work is

expressed for the complete cycle as

�Epot ¼ �
ð
PdV ¼ � �1

2�

ð 2�

0

pvdð!tÞ ¼ pmvm

2
:

p

pm
¼ �v

vm
¼ sinð!t � kxÞ

� �

The negative sign shows that the potential energy change is positive in both

a compression ( p positive, dV negative) and a rarefaction ( p negative, dV positive)

Figure 6.3.

The condensation

s ¼ � Ð
dv

V0

¼ �v

V0

¼ ��

we write

s

sm
¼ ��

�m
¼ sinð!t � kxÞ and �v ¼ V0 s

which, with

p ¼ Bas

gives

�Epot ¼ �1

2�

ð2�
0

pvdð!tÞ ¼ BaV0

2�

ð 2�

0

s2dð!tÞ

Work done
in compression

Work done
in rarefaction

V0

P0

+p

v−v

−p

Figure 6.3 Shaded triangles show that potential energy pv
2 ¼ pmvm

4 gained by gas in compression
equals that gained in rarefaction when both p and v change sign
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where s ¼ �� and the thickness �x of the element of unit cross section represents its

volume V0.

Now

� ¼ �m e ið!t�kxÞ

so that

� ¼ @�

@x
¼ � 1

c

@�

@t
; where c ¼ !

k

Thus

�Epot ¼ 1

2

Ba

c2
_�� 2�x ¼ 1

2
�0 _��

2�x

and its average value over n� gives the potential energy density

�E pot ¼ 1
4
�0 _��

2
m

We see that the average values of the kinetic and potential energy density in the sound

wave are equal, but more important, since the value of each for the element �x is
1
2
�0 _��

2�x, we observe that the element possesses maximum (or minimum) potential and

kinetic energy at the same time. A compression or rarefaction produces a maximum in the

energy of the element since the value _�� governs the energy content. Thus, the energy in the

wave is distributed in the wave system with distance as shown in Figure 6.4. Note that this

distribution is non-uniform with distance unlike that for a transverse wave.

Intensity of Sound Waves

This is a measure of the energy flux, the rate at which energy crosses unit area, so that it is

the product of the energy density (kinetic plus potential) and the wave velocity c. Normal

sound waves range in intensity between 10�12 and 1 W m�2, extremely low levels which

testify to the sensitivity of the ear. The roar of a large football crowd greeting a goal will

just about heat a cup of coffee.

Total
energy
in sound
wave

Distance
x

Figure 6.4 Energy distribution in space for a sound wave in a gas. Both potential and kinetic
energies are at a maximum when the particle velocity _�� is a maximum and zero at _�� ¼ 0
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The intensity may be written

I ¼ 1
2
�0c _��

2
m ¼ 1

2
�0c!

2� 2
m ¼ �0c _��

2
rms ¼ p2

rms=�0c ¼ p rms _�� rms

A commonly used standard of sound intensity is given by

I0 ¼ 10�2 Wm�2

which is about the level of the average conversational tone between two people standing

next to each other. Shouting at this range raises the intensity by a factor of 100 and in the

range 100 I0 to 1000 I0 (10 W m�2) the sound is painful.

Whenever the sound intensity increases by a factor of 10 it is said to have increased by

1 B so the dynamic range of the ear is about 12 B. An intensity increase by a factor of

100:1 ¼ 1 � 26
increases the intensity by 1 dB, a change of loudness which is just detected by a person

with good hearing. dB is a decibel.

We see that the product �0c appears in most of the expressions for the intensity; its

significance becomes apparent when we define the impedance of the medium to the waves

as the

Specific Acoustic Impedance ¼ excess pressure

particle velocity
¼ p

_��

(the ratio of a force per unit area to a velocity).

Now, for a wave in the positive x-direction.

p ¼ Bas ¼ iBak� and _�� ¼ i!�

so that,

p

_��
¼ Bak

!
¼ Ba

c
¼ �oc

Thus, the acoustic impedance presented by the medium to these waves, as in the case of the

transverse waves on the string, is given by the product of the density and the wave velocity

and is governed by the elasticity and inertia of the medium. For a wave in the negative

x-direction, the specific acoustic impedance

p

_��
¼ � iBak�

i!�
¼ ��0c

with a change of sign because of the changed phase relationship.

The units of �0c are normally stated as kg m�2 s�1 in books on practical acoustics; in

these units air has a specific acoustic impedance value of 400, water a value of 1.45�106

and steel a value of 3.9�107. These values will become more significant when we use them

later in examples on the reflection and transmission of sound waves.
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Although the specific acoustic impedance �0c is a real quantity for plane sound waves, it

has an added reactive component ik=r for spherical waves, where r is the distance travelled
by the wavefront. This component tends to zero with increasing r as the spherical wave

becomes effectively plane.

(Problems 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8)

Longitudinal Waves in a Solid

The velocity of longitudinal waves in a solid depends upon the dimensions of the specimen

in which the waves are travelling. If the solid is a thin bar of finite cross section the analysis

for longitudinal waves in a gas is equally valid, except that the bulk modulus Ba is replaced

by Young’s modulus Y, the ratio of the longitudinal stress in the bar to its longitudinal

strain.

The wave equation is then

@ 2�

@x2
¼ 1

c2
@ 2�

@t 2
; with c2 ¼ Y

�

A longitudinal wave in a medium compresses the medium and distorts it laterally.

Because a solid can develop a shear force in any direction, such a lateral distortion is

accompanied by a transverse shear. The effect of this upon the wave motion in solids of

finite cross section is quite complicated and has been ignored in the very thin specimen

above. In bulk solids, however, the longitudinal and transverse modes may be considered

separately.

We have seen that the longitudinal compression produces a strain @�=@x; the

accompanying lateral distortion produces a strain @�=@y (of opposite sign to @�=@x and

perpendicular to the x-direction).

Here � is the displacement in the y-direction and is a function of both x and y. The ratio

of these strains

� @�

@y

. @�

@x
¼ �

is known as Poisson’s ratio and is expressed in terms of Lamé’s elastic constants � and 	
for a solid as

� ¼ �

2ð�þ 	Þ where � ¼ �Y

ð1þ �Þð1� 2�Þ
These constants are always positive, so that � < 1

2
, and is commonly � 1

3
. In terms of these

constants Young’s modulus becomes

Y ¼ ð�þ 2	� 2��Þ
The constant 	 is the transverse coefficient of rigidity; that is, the ratio of the transverse

stress to the transverse strain. It plays the role of the elasticity in the propagation of pure
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transverse waves in a bulk solid which Young’s modulus plays for longitudinal waves in

a thin specimen. Figure 6.5 illustrates the shear in a transverse plane wave, where the

transverse strain is defined by @�=@x. The transverse stress at x is therefore Tx ¼ 	@�=@x.
The equation of transverse motion of the thin element dx is then given by

Txþdx � Tdx ¼ � dx€yy

where � is the density, or

@

@x
	
@�

@x

� �
¼ �€yy

but €yy ¼ @ 2�=@t 2, hence

@ 2�

@x2
¼ �

	

@ 2�

@t 2

the wave equation with a velocity given by c2 ¼ 	=�.
The effect of the transverse rigidity 	 is to stiffen the solid and increase the elastic

constant governing the propagation of longitudinal waves. In a bulk solid the velocity of

these waves is no longer given by c2 ¼ Y=�, but becomes

c2 ¼ �þ 2	

�

Since Young’s modulus Y ¼ �þ 2	� 2��, the elasticity is increased by the amount

2�� � �, so that longitudinal waves in a bulk solid have a higher velocity than the same

waves along a thin specimen.

In an isotropic solid, where the velocity of propagation is the same in all directions,

the concept of a bulk modulus, used in the discussion on waves in gases, holds equally

(x )

=   (xy )β

β

β
β

β 

x

dy

x

x

x + dx

(x + dx )

∂
∂

= transverse strain

Figure 6.5 Shear in a bulk solid producing a transverse wave. The transverse shear strain is @�=@x
and the transverse shear stress is 	 @�=@x, where 	 is the shear modulus of rigidity
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well. Expressed in terms of Lamé’s elastic constants the bulk modulus for a solid is

written

B ¼ �þ 2
3
	 ¼ Y ½3ð1� 2�Þ��1

the longitudinal wave velocity for a bulk solid becomes

cL ¼ Bþ ð4=3Þ	
�

� �1=2

whilst the transverse velocity remains as

cT ¼ 	

�

� �1=2

Application to Earthquakes

The values of these velocities are well known for seismic waves generated by earthquakes.

Near the surface of the earth the longitudinal waves have a velocity of 8 km s�1 and the

transverse waves travel at 4.45 km s�1. The velocity of the longitudinal waves increases

with depth until, at a depth of about 1800 miles, no waves are transmitted because of a

discontinuity and severe mismatch of impedances associated with the fluid core.

At the surface of the earth the transverse wave velocity is affected by the fact that stress

components directed through the surface are zero there and these waves, known as

Rayleigh Waves, travel with a velocity given by

c ¼ f ð�Þ 	

�

� �1=2

where

f ð�Þ ¼ 0:9194 when � ¼ 0 � 25

and

f ð�Þ ¼ 0:9553 when � ¼ 0 � 5

The energy of the Rayleigh Waves is confined to two dimensions; their amplitude is

often much higher than that of the three dimensional longitudinal waves and therefore they

are potentially more damaging.

In an earthquake the arrival of the fast longitudinal waves is followed by the Rayleigh

Waves and then by a complicated pattern of reflected waves including those affected by the

stratification of the earth’s structure, known as Love Waves.
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(Problem 6.9)

Longitudinal Waves in a Periodic Structure

Lamé’s elastic constants, � and 	, which are used to define such macroscopic quantities as

Young’s modulus and the bulk modulus, are themselves determined by forces which

operate over interatomic distances. The discussion on transverse waves in a periodic

structure has already shown that in a one-dimensional array representing a crystal lattice a

stiffness s ¼ T=a dyn cm�1 can exist between two atoms separated by a distance a.

When the waves along such a lattice are longitudinal the atomic displacements from

equilibrium are represented by � (Figure 6.6). An increase in the separation between two

atoms from a to aþ � gives a strain " ¼ �=a, and a stress normal to the face area a2 of a

unit cell in a crystal equal to s�=a2 ¼ s"=a, a force per unit area.

Now Young’s modulus is the ratio of this longitudinal stress to the longitudinal strain, so

that Y ¼ s"="a or s ¼ Ya. The longitudinal vibration frequency of the atoms of mass m

connected by stiffness constants s is given, very approximately by


 ¼ !

2�
¼ 1

2�

ffiffiffiffi
s

m

r
� 1

2�a

ffiffiffiffi
Y

�

s
� c0

2�a

where m ¼ �a3 and c0 is the velocity of sound in a solid. The value of

c0 � 5� 103 m s�1, and a � 2� 10�10 m, so that 
 � 3� 1012 Hz, which is almost

the same value as the frequency of the transverse wave in the infrared region of the

electromagnetic spectrum. The highest ultrasonic frequency generated so far is about a

factor of 10 lower than 
 ¼ c0=2�a. At frequencies � 5� 1012 to 1013 Hz many

interesting experimental results must be expected. A more precise mathematical treatment

yields the same equation of motion for the r th particle as in the transverse wave;

namely

m€�� r ¼ sð� rþ1 þ � r�1 � 2� rÞ

where s ¼ T=a and

� r ¼ �max e
ið!t�kraÞ

aa

ηr −1 ηr +1ηr 

Figure 6.6 Displacement of atoms in a linear array due to a longitudinal wave in a crysal structure
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The results are precisely the same as in the case of transverse waves and the shape of the

dispersion curve is also similar. The maximum value of the cut-off frequency !m is,

however, higher for the longitudinal than for the transverse waves. This is because the

longitudinal elastic constant Y is greater than the transverse constant 	; that is, the force

required for a given displacement in the longitudinal direction is greater than that for

the same displacement in the transverse direction.

Reflection and Transmission of Sound Waves at Boundaries

When a sound wave meets a boundary separating two media of different acoustic

impedances two boundary conditions must be met in considering the reflection and

transmission of the wave. They are that

(i) the particle velocity _��

and

(ii) the acoustic excess pressure p

are both continuous across the boundary. Physically this ensures that the two media are in

complete contact everywhere across the boundary.

Figure 6.7 shows that we are considering a plane sound wave travelling in a medium of

specific acoustic impedance Z1 ¼ �1c1 and meeting, at normal incidence, an infinite plane

boundary separating the first medium from another of specific acoustic impedance

Z2 ¼ �2c2. If the subscripts i, r and t denote incident, reflected and transmitted

respectively, then the boundary conditions give

� i þ _�� r ¼ _�� t ð6:1Þ
and

p i þ p r ¼ p t ð6:2Þ
For the incident wave p i ¼ �1c1 _�� i and for the reflected wave p r ¼ ��1c1 _�� r, so equation

(6.2) becomes

�1c1 _�� i � �1c1 _�� r ¼ �2c2 _�� t

reflected

incident
transmitted

2 C21 C1 ρρ

Figure 6.7 Incident, reflected and transmitted sound waves at a plane boundary between media of
specific acoustic impedances �1c1 and � 2c 2
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or

Z1 _�� i � Z1 _�� r ¼ Z2 _�� t ð6:3Þ

Eliminating _�� t from (6.1) and (6.3) gives

_�� r

_�� i

¼ !� r

!� i

¼ � r

� i

¼ Z1 � Z2

Z1 þ Z2

Eliminatiing _�� r from (6.1) and (6.3) gives

_�� t

_�� i

¼ � t

� i

¼ 2Z1

Z1 þ Z2

Now

p r

p i

¼ � Z1 _�� r

Z1 _�� i

¼ Z2 � Z1

Z1 þ Z2

¼ � _�� r

_�� i

and

p t

p i

¼ Z2 _�� t

Z1 _�� i

¼ 2Z2

Z1 þ Z2

We see that if Z1 > Z2 the incident and reflected particle velocities are in phase, whilst the

incident and reflected acoustic pressures are out of phase. The superposition of incident and

reflected velocities which are in phase leads to a cancellation of pressure (a pressure node

in a standing wave system). If Z1 < Z2 the pressures are in phase and the velocities are out

of phase.

The transmitted particle velocity and acoustic pressure are always in phase with their

incident counterparts.

At a rigid wall, where Z2 is infinite, the velocity _�� ¼ 0 ¼ _�� i þ _�� r, which leads to a

doubling of pressure at the boundary. (See Summary on p. 546.)

Reflection and Transmission of Sound Intensity

The intensity coefficients of reflection and transmission are given by

I r

I i
¼ Z1ð _�� 2

r Þ rms

Z1ð _�� 2
i Þ rms

¼ Z1 � Z2

Z1 þ Z2

� �2

and

I t

I i
¼ Z2ð _�� 2

t Þ rms

Z1ð _�� 2
i Þ rms

¼ Z2

Z1

2Z1

Z1 þ Z2

� �2

¼ 4Z1Z2

ðZ1 þ Z2Þ2

The conservation of energy gives

I r

I i
þ I t

I i
¼ 1 or I i ¼ I t þ I r
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The great disparity between the specific acoustic impedance of air on the one hand and

water or steel on the other leads to an extreme mismatch of impedances when the

transmission of acoustic energy between these media is attempted.

There is an almost total reflection of sound wave energy at an air-water interface,

independent of the side from which the wave approaches the boundary. Only 14% of

acoustic energy can be transmitted at a steel-water interface, a limitation which has severe

implications for underwater transmission and detection devices which rely on acoustics.

(Problems 6.10, 6.11, 6.12, 6.13, 6.14, 6.15, 6.16, 6.17)

Problem 6.1
Show that in a gas at temperature T the average thermal velocity of a molecule is approximatley

equal to the velocity of sound.

Problem 6.2
The velocity of sound in air of density 1.29 kg m�3 may be taken as 330 m s�1. Show that the

acoustic pressure for the painful sound of 10 W m�2 � 6:5� 10�4 of an atmosphere.

Problem 6.3
Show that the displacement amplitude of an air molecule at a painful sound level of 10 W m�2 at

500 Hz � 6:9� 10�5 m.

Problem 6.4
Barely audible sound in air has an intensity of 10�10 I0. Show that the displacement amplitude of an

air molecule for sound at this level at 500 Hz is � 10�10 m; that is, about the size of the molecular

diameter.

Problem 6.5
Hi-fi equipment is played very loudly at an intensity of 100 I 0 in a small room of cross section

3 m � 3 m. Show that this audio output is about 10 W.

Problem 6.6
Two sound waves, one in water and one in air, have the same intensity. Show that the ratio of their

pressure amplitudes (p water/p air) is about 60. When the pressure amplitudes are equal show that

the intensity ratio is � 3� 10�2.

Problem 6.7
A spring of mass m, stiffness s and length L is stretched to a length Lþ l. When longitudinal waves

propagate along the spring the equation of motion of a length dx may be written

� dx
@ 2�

@t 2
¼ @F

@x
dx

where � is the mass per unit length of the spring, � is the longitudinal displacement and F is the

restoring force. Derive the wave equation to show that the wave velocity v is given by

v 2 ¼ sðLþ lÞ=�
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Problem 6.8
In Problem 1.10 we showed that a mass M suspended by a spring of stiffness s and mass m oscillated

simple harmonically at a frequency given by

!2 ¼ s

M þ m=3

We may consider the same problem in terms of standing waves along the vertical spring with

displacement

� ¼ ðA cos kxþ B sin kxÞ sin!t

where k ¼ !=v is the wave number. The boundary conditions are that � ¼ 0 at x ¼ 0 (the top of the

spring) and

M
@ 2�

@t 2
¼ �sL

@�

@x
at x ¼ L

(the bottom of the spring). Show that these lead to the expression

kL tan kL ¼ m

M

and expand tan kL in powers of kL to show that, in the second order approximation

!2 ¼ s

M þ m=3

The value of v is given in Problem 6.7.

Problem 6.9
A solid has a Poissons ratio � ¼ 0:25. Show that the ratio of the longitudinal wave velocity to the

transverse wave velocity is
ffiffiffi
3

p
. Use the values of these velocities given in the text to derive an

appropriate value of � for the earth.

Problem 6.10
Show that when sound waves are normally incident on a plane steel water interface 86% of the

energy is reflected. If the waves are travelling in water and are normally incident on a plane water-ice

interface show that 82.3% of the energy is transmitted.

ð�c values in kg m�2 s�1Þ

water ¼ 1:43� 106

ice ¼ 3:49� 106

steel ¼ 3:9� 107
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Problem 6.11
Use the boundary conditions for standing acoustic waves in a tube to confirm the following:

Particle displacement Pressure
——————————— ————————————
closed end open end closed end open end

Phase change on reflection 180� 0 0 180�
node antinode antinode node

Problem 6.12
Standing acoustic waves are formed in a tube of length l with (a) both ends open and (b) one end

open and the other closed. If the particle displacement

� ¼ ðA cos kxþ B sin kxÞ sin!t
and the boundary conditions are as shown in the diagrams, show that for

ðaÞ � ¼ A cos kx sin!t with � ¼ 2l=n

and for

ðbÞ � ¼ A cos kx sin!t with � ¼ 4l=ð2nþ 1Þ
Sketch the first three harmonics for each case.

(a)

l

(b)

l

∂
∂x = 0
η ∂

∂x = 0
η ∂

∂x = 0 = 0
η η

Problem 6.13
On p. 121 we discussed the problem of matching two strings of impedances Z 1 and Z 3 by the

insertion of a quarter wave element of impedance

Z 2 ¼ ðZ 1Z 3Þ 1=2

Repeat this problem for the acoustic case where the expressions for the string displacements

y i; y r; y t

now represent the appropriate acoustic pressures p i, p r and p t.

Show that the boundary condition for pressure continuity at x ¼ 0 is

A1 þ B1 ¼ A2 þ B2

and that for continuity of particle velocity is

Z 2ðA1 � B1Þ ¼ Z1ðA2 � B2Þ

Similarly, at x ¼ l, show that the boundary conditions are

A2 e
�ik 2l þ B2 e

ik 2l ¼ A3
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and

Z3ðA2 e
�ik 2l � B2 e

ik 2lÞ ¼ Z 2A3

Hence prove that the coefficient of sound transmission

Z1

Z3

A2
3

A2
1

¼ 1

when

Z 2
2 ¼ Z 1Z 3 and l ¼ �2

4

(Note that the expressions for both boundary conditions and transmission coefficient differ from

those in the case of the string.)

Problem 6.14
For sound waves of high amplitude the adiabatic bulk modulus may no longer be considered as a

constant. Use the adiabatic condition that

P

P0

¼ V0

V0ð1þ �Þ
� � �

in deriving the wave equation to show that each part of the high amplitude wave has its

own sound velocity c 0ð1þ sÞ ð�þ1Þ=2
, where c 20 ¼ �P0=� 0, � is the dilatation, s the condensation and

� the ratio of the specific heats at constant pressure and volume.

Problem 6.15
Some longitudinal waves in a plasma exhibit a combination of electrical and acoustical phenomena.

They obey a dispersion relation at temperature T of !2 ¼ !2
e þ 3aTk 2, where ! e is the constant

electron plasma frequency (see Problem 5.18) and the Boltzmann constant is written as a to avoid

confusion with the wave number k. Show that the product of the phase and group velocities is related

to the average thermal energy of an electron (found from pV ¼ RT).

Problem 6.16
It is possible to obtain the wave equation for tidal waves (long waves in shallow water) by the

method used in deriving the acoustic wave equation. In the figure a constant mass of fluid in an

element of unit width, height h and length �x moves a distance � and assumes

∂
∂x
η

η

1+

∆ x
∆ x

hh

a

Liquid su
rfa

ce
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a new height hþ � and length ð1þ @�@xÞ�x, but retains unit width. Show that, to a first

approximation,

� ¼ �h
@�

@x

Neglecting surface tension, the force on the element face of height hþ � arises from the product of

the height and the mean hydrostatic pressure. Show, if �gh � P 0 (i.e. h � 10 m) and � � h, that

the net force on the liquid element is given by

� @F

@x
�x ¼ ��gh

@�

@x
�x

Continue the derivation using the acoustic case as a model to show that these waves are non-

dispersive with a phase velocity given by v 2 ¼ gh.

Problem 6.17
Waves near the surface of a non-viscous incompressible liquid of density � have a phase velocity

given by

v 2ðkÞ ¼ g

k
þ Tk

�

� �
tanh kh

where g is the acceleration due to gravity, T is the surface tension, k is the wave number and h is the

liquid depth. When h � � the liquid is shallow; when h 	 � the liquid is deep.

(a) Show that, when gravity and surface tension are equally important and h 	 �, the wave velocity
is a minimum at v 4 ¼ 4gT=�, and show that this occurs for a ‘critical’ wavelength
� c ¼ 2�ðT=�gÞ1=2.

(b) The condition � 	 � c defines a gravity wave, and surface tension is negligible. Show that
gravity waves in a shallow liquid are non-dispersive with a velocity v ¼ ffiffiffiffiffi

gh
p

(see Problem
6.16).

(c) Show that gravity waves in a deep liquid have a phase velocity v ¼ ffiffiffiffiffiffiffiffi
g=k

p
and a group velocity

of half this value.

(d) The condition � < � c defines a ripple (dominated by surface tension). Show that short ripples in

a deep liquid have a phase velocity v ¼ ffiffiffiffiffiffiffiffiffiffi
Tk=�

p
and a group velocity of 3

2
v. (Note the anomalous

dispersion).

Summary of Important Results

Wave Velocity

c2 ¼ Bulk Modulus

�
¼ �P

�
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Specific Acoustic Impedance

Z ¼ acoustic pressure

particle velocity

Z ¼ �c (for right-going wave)

¼ ��c (for left-going wave because pressure

and particle velocity become anti-phaseÞ

Intensity ¼ 1
2
�c _�� 2

m ¼ p2
rms

�c
¼ p rms _�� rms

Reflection and Transmission Coefficients

Reflected Amplitude

Incident Amplitude

displacement

and velocity

� �
¼ Z1 � Z2

Z1 þ Z2

¼ �Reflected pressure

Incident pressure

Transmitted Amplitude

Incident Amplitude

displacement

and velocity

� �
¼ 2Z1

Z1 þ Z2

¼ Z1

Z2

� Transmitted pressure

Incident pressure

Reflected Intensity

Incident Intensity
ðenergyÞ ¼ Z1 � Z2

Z1 þ Z2

� �2

Transmitted Intensity

Incident Intensity
ðenergyÞ ¼ 4Z1Z2

ðZ1 þ Z2Þ2
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