Electrochemistry

1. The charge required for the reduction of 1 mol of $\mathrm{MnO_4}^-$	to MnO ₂ is
(a) 1 F	

(b) 3 F

(c) 5 F (d) 6 F

▼ Answer

Answer: b

2. The cell reaction of the galvanic cell.

$$Cu(s) / Cu^{2+} (aq) // Hg^{2+} (aq) / Hg (l)$$
 is

(a) $Hg + Cu^{2+} \longrightarrow Hg^{2+} + Cu$

(b) $Hg + Cu^{2+} \longrightarrow Cu^{+} + Hg^{+}$

(c) $Cu + Hg \longrightarrow CuHg$

(d) $Cu + Hg^{2+} \longrightarrow Cu^{2+} + Hg$

▼ Answer

Answer: d

3. Which of the following reaction is used to make fuel cell?

(a) Cd (s) +
$$2Ni(OH)_3$$
 (s) \longrightarrow CuO (s) + $2Ni(OH)_2$ (s) + H_2O (l) (b) Pb (s) + PbO_2 (s) + $2H_2SO_4$ (aq) \longrightarrow $2PbSO_4$ (s) + $2H_2O$ (l) (c) $2H_2$ (g) + O_2 (g) \longrightarrow $2H_2O$ (l) (d) $2Fe$ (s) + O_2 (g) + $4H^+$ (aq) \longrightarrow $2Fe^{2+}$ (aq) + $2H_2O$ (l)

▼ Answer

Answer: c

- 4. If limiting molar conductivity of Ca²⁺ and Cl⁻ are 119.0 and 76.3 S cm² mol⁻¹, then the value of limiting molar conductivity of CaCl2 will be
- (a) 195.3 S cm² mol⁻¹
- (b) 271.6 S cm² mol⁻¹
- (c) 43.3 S cm² mol⁻¹
- (d) 314.3 S cm² mol⁻¹.

▼ Answer

Answer: b

- 5. NH4NC>3 is used in salt bridge because
- (a) it forms a jelly like material with agar-agar.
- (b) it is a weak electrolyte.
- (c) it is a good conductor of electricity.
- (d) the transport number of NH₄⁺ and NO₃⁻ ions are almost equal.

▼ Answer

Answer: d

6.

$$Cr_2O_7^{2-} + X \xrightarrow{H^+} Cr^{3+} + H_2O$$

+ Oxidised product of X

X in the above reaction cannot be

- (a) $Cr_2O_4^{2-}$
- (b) Fe²⁺
- (c) SO₄²⁻
- (d) S^{2-}

▼ Answer

Answer: b

- 7. The reaction, $3\text{ClO}^-(\text{aq}) \rightarrow \text{ClO}_3(\text{aq}) + 2\text{Cl}^-(\text{aq})$ is an example of
- (a) Oxidation reaction
- (b) Reduction reaction
- (c) Disproportionation reaction
- (d) Decomposition reaction

▼ Answer

Answer: c

8. The emf of the cell:

 $Ni / Ni^{2+} (1.0 \text{ M}) / / Au^{3+} (1.0 \text{ M}) / Au (E^{\circ} = -0.25 \text{ V for } Ni^{2+} / Ni; E^{\circ} = 1.5 \text{ V for } Au^{3+} / Au) is$

- (a) 1.25 V
- (b) -1.25 V
- (c) 1.75 V
- (d) 2.0 V

▼ Answer

Answer: c

- 9. The standard emf of a galvanic cell involving cell reaction with n=2 is formed to be 0.295 V at 25° C. The equilibrium constant of the reaction would be
- (a) 1.0×10^{10}
- (b) 2.0×10^{11}
- (c) 4.0×10^{12}
- (d) 1.0×10^2

[Given $F = 96500 \text{ (mol}^{-1}); R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$]

▼ Answer

Answer: a

- 10. If $E^{\circ}_{Fe^{2+}/Fe}$ = -0.441 V and $E^{\circ}_{Fe^{2+}/Fe^{2+}}$ = 0.771 V, the standard EMF of the reaction,
- $Fe + 2Fe^{3+} \rightarrow 3Fe^{2+}$ will be
- (a) 1.212 V
- (b) 0.111 V
- (C) 0.330 V
- (d) 1.653 V

▼ Answer

Answer: a