TANGENTS AND NORMALS

SYNOPSIS

SLOPE OF TANGENT:

• If the tangent drawn to the curve y = f(x) at $P(x_1, y_1)$ on it makes an angle θ with \overline{ox} then $Tan\theta$ is defined as the slope of the tangent and it is also called the gradient of the curve.

$$\operatorname{Tan} \theta = \left(\frac{dy}{dx}\right)_{(x_1, y_1)}$$

For the curve f(x, y) = 0 slope of tangent line at

$$p(x_1, y_1) \text{ is } - \left(\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}\right)_{(x_1, y_1)}$$

For the curve x = f(t); y = g(t). Slope of the tangent

at
$$p(t)$$
 is $\frac{g^1(t)}{f^1(t)}$.

SLOPE OF NORMAL:

A straight line perpendicular to the tangent to the curve at the point of contact is called the normal to the curve.

Slope of normal at any point $p(x_1, y_1)$ on a curve is

given by
$$\left(\frac{-1}{dy}\right)_{(x_1,y_1)}$$

For the curve f(x, y) = 0 the slope of the normal

line at p(x₁, y₁) is
$$\left(\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}}\right)_{(x_1, y_1)}$$

For the curve x = f(t); y = g(t) the slope of the

normal line at p(t) is $-\left(\frac{f^{1}(t)}{g^{1}(t)}\right)$

EQUATIONS OF TANGENT AND NORMAL:

• Equation of the tangent to the curve y = f(x) at

$$(x_1, y_1)$$
 is $(y - y_1) = m(x - x_1)$ where

$$m = \left(\frac{dy}{dx}\right)_{(x_1, y_1)}$$

Equation of the normal to the curve y = f(x) at

$$(x_1, y_1)$$
 is $(y - y_1) = \left(\frac{-1}{m}\right)(x - x_1)$.

LENGTHS OF TANGENT, NORMAL, SUB-TANGENT AND SUB-NORMAL:

• Let the tangent and Normal drawn to the curve y = f(x) at $p(x_1, y_1)$ meet the X-axis at T and N. Draw the line PM perpendicular to X-axis. If m is the slope of the tangent then

gPT - Length of Tangent =
$$\frac{y_1 \cdot \sqrt{1 + m^2}}{m}$$

gPN - Length of Normal =
$$y_1 \cdot \sqrt{1 + m^2}$$

gTM - Length of sub-tangent = $\left| \frac{y_1}{m} \right|$

gMN - Length of the sub-normal = $|y_1 m|$

ANGLE BETWEEN TWO CURVES:

- The angle between any two curves at the point of intersection is defined as the angle between the tangents to the curves at that point of intersection.
- Let P be a point of intersection of the two curves y = f(x), y = g(x) and m₁, m₂ be the slopes of the tangents to the curves at p. If θ is the angle

between the curves then
$$Tan\theta = \left(\frac{m_1 - m_2}{1 + m_1 m_2}\right)$$

• The curves y = f(x) and y = g(x) cut each other orthogonally if $m_1 m_2 = -1$.

4. The curves
$$f(x, y) = 0$$
 and $g(x, y) = 0$ cut each
 $\partial f \ \partial g \ \partial f \ \partial g$

other orthogonally if
$$\frac{\partial I}{\partial x} \cdot \frac{\partial g}{\partial x} + \frac{\partial I}{\partial y} \cdot \frac{\partial g}{\partial y} = 0$$

• The curves
$$y = f(x)$$
; $y = g(x)$ touch each other at $p(x_1, y_1)$ if $f^1(x_1) = g^1(x_1)$

• If the curves $xy = c^2$ and $y^2 = 4ax$ cut each other orthogonally then $c^4 = 32a^4$

If the curves
$$a_1x^2 + b_1y^2 = 1$$
 and
 $a_2x^2 + b_2y^2 = 1$ cut each other orthogonally then

$$\frac{1}{a_1} - \frac{1}{a_2} = \frac{1}{b_1} - \frac{1}{b_2}$$

- The curves f(x, y) = 0; g(x, y) = 0 touch each other if $\frac{\partial f}{\partial x} \cdot \frac{\partial g}{\partial y} = \frac{\partial f}{\partial y} \cdot \frac{\partial g}{\partial x}$
- The curves $y^2 = 4ax$; $x^2 = 4ay$ intersect at (0, 0)and (4a, 4a). At (0, 0) the curves cut each other orthogonally and at (4a, 4a) the angle between the

curves is
$$T \operatorname{an}^{-1}\left(\frac{3}{4}\right)$$
. The area between the two

curves is
$$16\frac{a}{3}$$
 sq.units

AREAS OF TRIANGLES:

- The area of the triangles formed by any tangent on the curve $xy = c^2$ and the coordinate axes is $2c^2$ sq.units.
- If the area of the triangle formed by any tangent to the curve $x.y^n = a^{n+1}$ and the co-ordinate axes is a constant then n = 1.
- The area of the triangle formed by the tangent, normal at a point $P(x_1, y_1)$ on the curve

$$y = f(x)$$
 and the line

gx = k is
$$\frac{1}{2} \frac{|(x_1 - k)^2 (m^2 + 1)|}{m}$$
 sq.units

$$gy = k$$
 is $\frac{1}{2} \left| \frac{(y_1 - k)^2 (m^2 + 1)}{m} \right|$ sq.units

g X-axis is
$$\frac{1}{2} \left| \frac{y_1^2 (m^2 + 1)}{m} \right|$$
 sq.units

gY-axis is
$$\frac{1}{2} \left| \frac{x_1^2 (m^2 + 1)}{m} \right|$$
 sq.units

If the area of the triangle formed by any tangent to the curve $x^m y^n = K(m \neq 0, n \neq 0)$ and the coordinate axes is a constant then m = n

OTHER POINTS:

A tangent to the curve
$$\sqrt{x} + \sqrt{y} = \sqrt{a}$$
 (or)

 $x = a \cos^4 \theta$; $y = a \sin^4 \theta$ cuts the axes in A and B then OA + OB = a.

- A tangent to the curve $x^{2/3} + y^{2/3} = a^{2/3}$ (or) $x = a \cos^3 \theta$; $y = a \sin^3 \theta$ cuts the co-ordinate axes in A and B then AB = a.
- The tangent at any point 't' of the curve $x = at^3$ and $y = at^4$ divides the abscissa of the point of contact in the ratio 1 : 3.
- If p and q are the lengths of perpendiculars from the origin to tangent and normal to the curve. $x = ae^{\theta}(\sin \theta - \cos \theta)$ and $y = ae^{\theta}(\sin \theta + \cos \theta)$ then p = q.
- The tangent and Normal at a point (x_1, y_1) on the curve meets the x-axis in T and G then

$$TG = \left| y_1 \left(m + \frac{1}{m} \right) \right|$$

•

•

- The length of the subnormal at any point on the curve $x.y^n = a^{n+1}$ is a constant then n = -2.
- At any point on the curve in the curve $by^2 = (x + a)^3, \frac{(L.S.T)^2}{L.S.N} = \frac{8b}{27}$
- The equation of the tangent at (a, b) to the curve

$$\left(\frac{x}{a}\right)^{n} + \left(\frac{y}{b}\right)^{n} = 2$$
 is $\frac{x}{a} + \frac{y}{b} = 2$ (which is independent of n)

• If the normal at (x_1, y_1) on the curve y = f(x) makes equal intercepts on the coordinate axes then

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(x_1,y_1)} = 1.$$

- Point on the curve $ay^2 = x^3$ the normal at which makes equal intercepts on the axes is $\left(\frac{4a}{9}, \frac{8a}{27}\right)$.
 - If p, q are the lengths of perpendiculars from the origin to tangent and normal at a point respectively on the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ then $4p^2 + q^2 = a^2$.
- If the length of the subnormal at any point on the curve $x^m y^n = K(m \neq 0, n \neq 0)$ is a constant then 2m + n = 0.

JR. MATHEMATICS

	CONCEPTUAL QUESTIONS	8.	The equation of the tangent to the curve
1.	If the tangent to the curve $y = f(x)$ is perpendicular to y-axis then		$\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$ at (a, b) on it is
	1) $\frac{dy}{dx} = 0$ 2) $\frac{dx}{dy} = 0$		1) $\frac{x}{a} + \frac{y}{b} = 1$ 2) $\frac{x}{a} - \frac{y}{b} = 0$
	3) $\frac{dy}{dx} = 1$ 4) $\frac{dx}{dy} = -1$	9.	3) $\frac{x}{a} + \frac{y}{b} = 2$ 4) $\frac{x}{a} + \frac{y}{b} = 0$ The equation of the tangent to the curve
2.	If the value of $\frac{dy}{dx}$ at (0, 0) to the given curve is not defined then the angle made by the tangent with		$\sqrt{\frac{x}{a}} + \sqrt{\frac{y}{b}} = 2$ at the point (a, b) is
	the positive x-axis is π π π 3π		1) $\frac{x}{a} - \frac{y}{b} = 0$ 2) $\frac{x}{a} + \frac{y}{b} = 2$
3.	1) $\frac{1}{4}$ 2) $\frac{1}{6}$ 3) $\frac{1}{2}$ 4) $\frac{1}{4}$ If the tangent line at the point of P(t) to the curve		3) $\frac{x}{a} - \frac{y}{b} = 1$ 4) $\frac{x}{a} + \frac{y}{b} = 0$
	$x = f(t), y = g(t)$ makes an angle θ with \overline{OX} .	10.	If the straight line $x \cos \alpha + y \sin \alpha = p$ touches
	1) $\tan \theta$ 2) $\cos \theta : \sin \theta$		the curve $\left(\frac{x}{a}\right) + \left(\frac{y}{b}\right) = 2$ at the point (a, b) on
	3) $-\cos\theta : \sin\theta$ 4) $-\tan\theta$		it, then $\frac{1}{a^2} + \frac{1}{b^2} =$
4.	The slope of the normal to the curve given by		
	$x = a(\theta - \sin \theta), y = a(1 - \cos \theta) \text{ at } \theta = \frac{\pi}{2}$		1) $\frac{1}{p^2}$ 2) $\frac{2}{p^2}$ 3) $\frac{3}{p^2}$ 4) $\frac{4}{p^2}$
	1) $\frac{-1}{2}$ 2) $\frac{1}{2}$ 3) -1 4) 2	11.	The equation of the tangent to the curve $x^2 = 4by$ at the origin is 1) $x = 0$ 2) $y = 0$ 3) $x = 2$ 4) $y = 2$
5.	The slope of normal to the curve $y = \log_x (\log_e x)$ at $x = e$ is	12.	The equation of the normal to the curve $y^2 = 4ax$
	1) - e 2) e	13	at the origin is 1) $x = 0$ 2) $x = 2$ 3) $y = 0$ 4) $y = 2$ The equation of the tangent at the point where the
G	3) $\frac{1}{e}$ 4) $\frac{-1}{e}$	15.	curve $y = be^{\frac{-x}{a}}$ cuts the y-axis
0.	The slope of normal to the curve $\left(\frac{x}{a}\right)^4 + \left(\frac{y}{b}\right)^4 = 2 \operatorname{at}(a, b) \operatorname{on} \operatorname{it} \operatorname{is}$		1) $\frac{x}{a} + \frac{y}{b} = 0$ 2) $\frac{x}{a} + \frac{y}{b} = 1$
	1) -2 2) -1 3) $\frac{-b}{a}$ 4) $\frac{a}{b}$		3) X + Y = a 4) $\frac{x}{a} - \frac{y}{b} = 1$
7.	The line $\frac{x}{a} + \frac{y}{b} = 2$ is a tangent to the curve	14.	The point on the curve $y = be^{\frac{-x}{a}}$ at which the
	$\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$ at (a, b) then n =		tangent drawn is $\frac{x}{a} + \frac{y}{b} = 1$ is
	1) $n \in Z$ 2) $n \in R - Z$ 3) $n \in N$ 4) $n \in R$		1) (0, b) 2) $\left(a, \frac{1}{e} \right)$ 3) (0, 1) 4) (1, 0)

JR. MATHEMATICS

The equation of the normal to the curve 22. 15. The sum of the squares of the intercepts on the axes of the tangent at any point on the curve $\frac{x^2}{r^2} + \frac{y^2}{r^2} = 1$ at the point (x₁, y₁) on it is $x^{2/3} + y^{2/3} = a^{2/3}$ is 1) $\frac{a^2}{2}$ 2) a^2 3) 2a 4) $\frac{3a}{2}$ 1) $\frac{a^2x}{x_1} - \frac{b^2y}{y_1} = a^2 - b^2$ 2) $\frac{a^2x}{x_1} + \frac{b^2y}{y_1} = a^2 + b^2$ The condition that the line $\frac{x}{a} + \frac{y}{b} = 1$ a tangent to 3) $a^{2}xx_{1} + b^{2}yy_{1} = 1$ 4) $b^{2}xx_{1} - a^{2}yy_{1} = 0$ 23. 16. The equation of the normal to the curve given by the curve $x^{2/3} + y^{2/3} = 1$ is $x = at^2$, y = 2at at the point 't' is 1) $a^2 + b^2 = 2$ 2) $a^2 + b^2 = 1$ 1) $xt + y = 2at + at^3$ 2) $x + yt = 2at + at^3$ 3) $\frac{1}{a^2} + \frac{1}{b^2} = 1$ 4) $a^2 + b^2 = \frac{2}{3}$ 3) $xt - y = at + at^3$ 4) x = 017. The equation of the tangent to the curve 24. If the tangent at any point on the curve $\frac{x^2}{r^2} + \frac{y^2}{h^2} = 1$ at the point θ on it is $\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} = 1$ makes intercepts p, q on the 1) bx $\cos \theta - ay \sin \theta = ab$ axes then $\frac{p^2}{a^2} + \frac{q^2}{b^2} =$ 2) bx sin θ + ay cos θ = ab 3) bx $\cos \theta + ay \sin \theta = ab$ 2) $\frac{2}{2}$ 3) 1 1)0 4) 2 4) y = 018. The equation of the tangent to the curve The tangent at the point P(x, y) on the curve 25. $x^{m}.y^{n} = a^{m+n}$ meets the axes at A and B. The $\frac{x^2}{r^2} - \frac{y^2}{h^2} = 1$ at the point θ on it is ratio in which P divides \overline{AB} is 1)m:12) 1 : n 3)n:m 4) m : n 1) bx sec θ – ay tan θ = ab 26. The tangent at point P(x, y) on the curve $xy = c^2$ 2) ax sec θ – by tan θ = ab meets the axes at A and B. The ratio in which P 3) ax sec θ + by tan θ = ab divides \overline{AB} is 1)1:22) 2 : 1 3) 1 : 1 4) 2 : 3 4) $x \sec \theta + y \tan \theta = ab$ The tangent to the curve $2a^2y = x^3 - 3ax^2$ is 27. 19. If the line ax + by + c = 0 is normal to the curve parallel to the x-axis at the points xy = 1 then 1) (0, 0), (2a, -2a)2) (0, 0), (-2a, -2a)1) a > 0, b > 02) a > 0, b < 0(0, 0), (-2a, 2a)(2, 2), (0, 0)3) a < 0, b < 04) a = 0, b = 028. The points on the curve y = sinx where the tangents 20. If the line ax - by + c = 0 is a tangent to are parallel to x-axis are given by xy + 1 = 0 then 1) $x = n\pi, n \in \mathbb{Z}$ 2) $x = 2n\pi, n \in z$ 1) ab > 02) ab < 03) $x = (2n+1)\frac{\pi}{2}, n \in z$ 4) $x = \frac{2n\pi}{2}, n \in z$ 4) a = 1, b = -13) ab = 1If the tangent to the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at any 21. 29. The points on the curve y = sinx, where the tangent is parallel to the x-axis is point θ on it meets the axes at A and B then OA + OB =1) $\left(\frac{n\pi}{2}, 1\right)$ 2) $\left((2n+1)\frac{\pi}{2}, (-1)^n \right)$ 1) $\frac{a}{2}$ 2) a 3) $\frac{3a}{2}$ 4) 2a 3) $\left((2n-1)\frac{\pi}{3}, (-2)^n \right)$ 4) $\left(n\pi, (-1)^n \right)$

JR. MATHEMATICS

462

The points on the curve $y = x^2 + \sqrt{1 - x^2}$ at which 30. the tangent is perpendicular to x-axis are 1)(1, 1) only 2) $(\pm 1, 1)$ 3) $(1, \pm 1)$ 4) (-1, 1) only 31. The point at which the tangent line to the curve $x^{3} + y^{3} = a^{3}$ is parallel to y-axis is 1) (0, a) 2) (a, 0)(-a, 0) (0, -a)32. All the the points of curve $y^2 = 4a \left[x + a \sin \frac{x}{a} \right] a \neq 0$ at which tangents are parallel to x-axis lie on 1) Circle 2) Straight line 3) Ellipse 4) Parabola All the points on the curve $y = \sqrt{x + \sin x}$ at 33. which the tangent are parallel to the x-axis lie on 1) a straight line 2) circle 3) a parabola 4) an ellipse 34. The length of the normal to the curve $y = c. \cosh\left(\frac{x}{c}\right)$ at the point (h, k) is 1) h^2c 2) k^2c 4) $\frac{h^2}{2}$ 3) $\frac{k^2}{2}$ The length of the sub-tangent at $\theta = \frac{\pi}{3}$ on the curve 35. given by $x = a(\theta - \sin \theta)$ and $y = a(1 - \cos \theta)$ is 1) $\frac{\sqrt{3}a}{2}$ 2) $\frac{a}{2\sqrt{3}}$ 3) $\frac{2a}{\sqrt{3}}$ 4) 2a The length of sub-normal to the curve $xy = a^2 at$ 36. (x, y) on it varies as 1) x^{2} 2) v^2 3) x^{3} 4) v^{3} The value of n for which the sub-normal to the 37. curve $xy^n = a^{n+1}$ is of constant length 1) - 22) - 13)0 4) 2 If the subnormal to the curve $x^2 \cdot y^n = a^2$ is a constant 38. then n =1) -4 2) - 3 3) -2 4) - 139. The value of k for which the length of the subtangent to the curve $xy^k = c^2$ is constant is 1)02) 1 3) 2 (4) - 2

40. The length of sub-tangent to the curve $y^n = a^{n-1} x$ at (x, y) on it is

1)
$$\frac{n}{x}$$
 2) nx 3) $n^2 x$ 4) $\frac{n^2}{x}$

41. At any point on the curve y = f(x), if the tangent makes an angle θ with positive x-axis, then

$$\left(\frac{\text{length of tan gent}}{\text{length of normal}}\right)^2$$
 is

1)
$$y^2$$
 2) $\left(\frac{dy}{dx}\right)^2$ 3) $\frac{1}{y^2}$ 4) $\left(\frac{dx}{dy}\right)^2$

42. The length of normal at θ on the curve given by $x = a \cos^3 \theta$, $y = a \sin^3 \theta$ is

1)
$$a \sin^2 \theta$$
 2) $a \sin^2 \theta |\cos \theta|$

3)
$$a \sin^2 \theta |\tan \theta|$$
 4) $a |\cos \theta|$

43. The length of the sub-tangent to the curve given by

$$x = a \left[\cos t + \log \left(\tan \frac{t}{2} \right) \right], y = a \sin t \text{ at } t = \frac{\pi}{3} \text{ is}$$

$$1) \frac{a}{2} \qquad 2) a \qquad 3) \frac{3a}{2} \qquad 4) 2a$$

44. The sub-normal at (x, y) on the curve $y^2x^2 = a^2(x^2 - a^2)$ varies as

1)
$$x^2$$
 2) $\frac{1}{x^2}$ 3) y^3 4) $\frac{1}{x^3}$

45. The length of sub-tangent to the curve $x^{m}.y^{n} = a^{m+n} at(x, y) on it is$ 1) |mx| 2) |nx|3) $\left|\frac{nx}{m}\right|$ 4) $\left|\frac{mx}{n}\right|$

46. At any point on the curve y = f(x), the sub-tangent, the ordinate of the point and the sub-normal are in 1) A.P. 2) G.P. 3) H.P. 4) A.G.P.
47. If the relation between the sub-normal and sub-tangent at any point on the curve y² = (x + a)³ is

p(S.N.) = q(S.T.)² then
$$\frac{p}{q}$$
 =
1) $\frac{8}{27}$ 2) $\frac{27}{8}$ 3) $\frac{4}{9}$ 4) $\frac{9}{4}$

48. If at any point on a curve the subtangent and subnormal are equal, then the length of the tangent is equal to
1) ordinate
2)
$$\sqrt{2}$$
 ordinate
3) $\sqrt{2}$ ordinate
49. The length of the tangent, normal, subtangent and
subnormal are respectively $p, q, s, then $p^2: q^2 =$
1) $s: t = 2) t: s = 3) s^2: t^2 = 4) t^2: q^2 =$
1) $s: t = 2) t: s = 3) s^2: t^2 = 4) t^2: q^2 =$
1) So. For the curve $y = a^* (a > 1)$ the torontate
1) Square 2) Cube 3) Twice 4) Thrice
51. The length of subnormal to the curve $y = be^{x/a}$ at
any point (x, y) is proportional to
1) $x = 2y = 3) x^2 = 4) y^2$
52. The subnormal at any point (x, y) on the ellipse
 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is
53. For the curve $y = f(x)$ at (x, y, i) the intercept made
by the normal on the y-axis is
1) $\frac{b^2}{x^2} \frac{|x|}{x^2} = 1$ is
53. For the curve $y = f(x)$ at (x, y, i) the intercept made
by the normal on the y-axis is
1) $\frac{|x_1 - \frac{x_1}{m}|}{|x_1 - \frac{x_1}{m}|} = 2) \frac{|x_1 + \frac{y_1}{m}|}{|x_1 - \frac{x_1}{m}|} = 2) \frac{|x_1$$

2) $\frac{3}{2}a^2$ sq.units 4) $4a^2$ sq.units its f the triangle formed by a tangent to $y = a^{n+1}$ and the coordinate axes is nn =2) -2 3) - 14) 1 riangle formed by the tangent, normal $\left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$ on the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ s is \mathbf{h}^2 2) 4ab ²) 4) 1 triangle formed by the tangent and a) on the curve $y(2a-x) = x^2$ and the 2) $5a^2$ sq.units its 4) a² sq.units nits at the curve $y = \frac{x}{x+1}$ makes with x-2) $\frac{\pi}{4}$ 3) $\frac{\pi}{3}$ 4) $\frac{\pi}{2}$ nade by the normal to the curve here it crosses the x-axis is 2) $\frac{3\pi}{4}$ 3) $\frac{\pi}{3}$ 4) $\frac{\pi}{6}$ between the curves $xy = 2a^2$ and (a, 2a) is 2) $\frac{\pi}{2}$ 3) $\tan^{-1}(3)$ 4) $\tan^{-1} 4$

between the curves y = sinx and

$$\frac{\pi}{3}$$
 2) $\frac{\pi}{2}$ 3) $\tan^{-1}(2)$ 4) $\tan^{-1}(2\sqrt{2})$

JR. MATHEMATICS

64.	The curves $y = e^{-ax}$. Sinbx, $y = e^{-ax}$ touch each	55.	1	56. 3	57.4	58. 3	59.	3	60. 2
	other at the points for which bx =	61. 2	2	62. 3	63. 4	64. 2	65.	4	66. 1
	π π	67. 1	3	68. 3	69. 4				
	1) $n\pi + \frac{1}{2}, n \in \mathbb{Z}$ 2) $2n\pi + \frac{1}{2}, n \in \mathbb{Z}$								
					LEV	EL-I			
	3) $2n\pi + \frac{\pi}{6}, n \in \mathbb{Z}$ 4) $2n\pi + \frac{\pi}{3}, n \in \mathbb{Z}$	1.	Т	he slop	e of the tar	ngent a	t (1, 6)	on	the curve
			2	$x^2 + 3y$	$^{2} = 5$ is				
65.	The angle between the curves $y = \cos^2 x$ and				1		1		
	$y = \sin^2 x is$		1)) –9	2) $\frac{-1}{9}$	3)	$\frac{1}{9}$	4) 9
	π π π π)		,		
	1) $\frac{1}{6}$ 2) $\frac{1}{4}$ 3) $\frac{1}{3}$ 4) $\frac{1}{2}$	2.	Т	he slope	e of the tang	gent to t	he curv	ле У	$=\frac{8}{4+\pi^2}$
66	If the two curve $y = a^x$ and $y = b^x$ intersect at		at	$\mathbf{v} = 20$	n it is	-			$4 + x^{-}$
00.	an angle α . Then tan α equals		a	IA 20	11 11 15				
			1)) –2	2) $\frac{-1}{2}$	3)	$\frac{1}{2}$	4) 2
	1) $\frac{\log a - \log b}{1 + \log a \log b}$ 2) $\frac{\log a + \log b}{1 + \log a \log b}$	2	т	1 1		m	2) m+n ·
	$1 + \log a \log b$ $1 - \log a \log b$	3.	1	ne grad	lent of the c	curve x ⁿ	$y_{n} = (y_{n})$	x + y)
	3) $\frac{\pi}{2}$ (4) $\frac{\pi}{2}$		1`	$\frac{x}{x}$	2) $\frac{y}{2}$	3)	$-\frac{x}{x}$	4	$-\frac{y}{2}$
	³ 4 ²		1,	' y	$\frac{2}{x}$	5)	У	•,	' x
67.	The condition for the curves $1x^2 + my^2 = 1$ and	4.	Т	he slope	es of the tan	igents at	t the po	ints	where the
	$1^{1}x^{2} + m^{1}y^{2} = 1$ to cut orthogonally is		cı	urve Y	$= x^2 - 4x^{1}$	ntersec	ts the x	-axis	sis
			1)) ±1	2) ± 2	3)	±3	4) ± 4
	1 - m = 1 - m $2 - m + m = 1 + m$	5	т	1 . a. i.e. a 1 i.e.	ation of the	taurant	at 0-	π	41. a arriera
	3) $\frac{1}{1} - \frac{1}{1} = \frac{1}{11} - \frac{1}{11}$ 4) $1 + m = 1^{1} - m^{1}$	3.	1.	nemenn	ation of the	langeni	at θ^{-1}	$\frac{1}{3}$ or	i the curve
			X	$=a(\theta \cdot$	$+\sin\theta$,y=	=a(1+a)	$\cos\theta$	is	
68.	If the curves $x = y^2$ and $xy = k$ cut orthogonally then $k^2 =$			#	7		\mathcal{T}_{π}		5 77
			1)	$\frac{\pi}{3}$	2) $\frac{\pi}{6}$	3)	$\frac{2\pi}{3}$	4)	$\frac{3\pi}{6}$
	1) $\frac{1}{2}$ 2) $\frac{1}{4}$ 3) $\frac{1}{8}$ 4) $\frac{1}{16}$	6	т	he slo	one of th	e tano	ent to	h th	e curve
	2 4 0 10	0.		_ + ² + ²	r = 0 in $r = 2 + 2$	$2t^2 - 2$	t_5 a1	t the	point
69.	If the curves $y^2 = 4ax$ and $xy = c^2$ cut		х (?	(-1) + .	$y_1 = 0, y =$	<i>2ι</i> - <i>2</i>	i ju		r · · · · ·
	orthogonally then $c^4 =$		(2	2, -1) OI	1 11 15				_
	1) $4a^2$ 2) $8a^2$ 3) $16a^4$ 4) $32a^4$		1	$\frac{6}{7}$	2)-6	3)	$\frac{22}{7}$	4	$\frac{7}{22}$
	KEV	7	T	/	1		/ (()		22
01		/.	11	the nor	mai to the c	urve y	– 1(X) a	ut (3,	4) makes
07 4	4 08. 3 09. 2 10 4 11 2 12 3		aı	n angle	$\frac{3\pi}{4}$ with C	X then	$f^{1}(3)$	=	
13	2 14. 1 15. 1 16. 1 17. 3 18. 1				4				
19	2 20. 1 21. 2 22. 2 23. 2 24.3		1`) 1	2) – 1	3)	$\frac{-3}{4}$	4	$\frac{4}{2}$
25.	3 26. 3 27. 1 28. 3 29. 2 30. 2			, 	, -	-)	4	-,	3
31.	2 32. 4 33. 3 34. 3 35. 2 36. 4	8.	If	the slop	pe of the ta	ngent to	the cu	rve :	$y = x^3$ at a
37.	1 38. 1 39. 1 40. 2 41. 4 42. 3		po th	e point	is equal to	uic ord		ule]	point uten
43.	1 44. 4 45. 3 46. 2 47. 1 48. 2		1) (27, 3)	(3, 2)	7) 3)	(3, 3)	4)(1,1)
49	1 50. 1 51. 4 52. 2 53. 4 54 1		,	. 、 , - ,	· · · · · · · · · · · · · · · · · · ·	, -)	、		

JR. MATHEMATICS

.

9. The point on the curve $y^2 = x$, the tangent at which	20.	Ap
has inclination $\frac{\pi}{2}$ is		tang
4 IS		1) (
1) $\left(\frac{1}{2}, \frac{1}{\sqrt{2}}\right)$ 2) $\left(\frac{1}{4}, \frac{1}{3}\right)$ 3) $(4, 2)$ 4) $\left(\frac{1}{4}, \frac{1}{2}\right)$	21.	The
10 The point on the surger $2 + 5$ studies		y =
10. The point on the curve $y = x^2 - 4x + 5$ at which the tangent drawn is parallel to x, axis is		1) >
1) (0, 5) 2) (1, 2) 3) (2, 1) 4) (3, 2)	22.	The
11. A point on the curve $y = x^4 - 4x^3 + 4x^2 + 1$ the		y =
tangent at which is parallel to x-axis is (1, 1) = 0 (2, 1) = 0 (2, 1) = (1, 2)		1)
1) (1, 1) 2) (2, 1) 3) (3, 1) 4) (1, 3)		1)
12. The point on the curve $y = \frac{x^3 - 3a x^2}{2a^2}$ at which	23.	3) The
tangent is parallel to the x-axis is $(2, 2, 3)$		
1) $(2a, 2a)$ 2) $(-2a, -2a)$ 3) $(2a, 2a)$ 4) $(-2a, 2a)$		y =
3)(2a, -2a) $4)(-2a, 2a)$		1)
15. The curve $y - e^{xy} + x = 0$ has a vertical tangent line at the point		3)
1) $(1, 1)$ 2) $(0, 1)$ 3) $(1, 0)$ 4) $(-1, -1)$	24.	The
14. If V is the set of points on the curve		me
$y^3 - 3xy + 2 = 0$ where the tangent is vertical then V =		1)
1) ϕ 2) {(1,0)}	25.	The
3) {(1,1)} 4) {(0,0), (1,1)}		at (
15. For the curve $x = t^2 - 1$, $y = t^2 - t$, the tangent is perpendicular to x-axis then		1) i 3) p
1) t = 0 2) t = $\frac{1}{2}$ 3) t = 1 4) t = $\frac{1}{\sqrt{3}}$	26.	4) p P(1 ver
16. The point on the curve $y = 3x^2 + 2x + 5$ at which		tan
the tangent is perpendicular to the line		
x + 2y + 3 = 0		1)
1) $(0, -5)$ 2) $(0, 5)$ 3) $(-5, 0)$ 4) $(5, 0)$	27.	Ea
17. The point on the curve $y = x^2 + 4$ at which the		y(2
tangent is perpendicular to the line $x + 2y = 3$ is		cur
1) $(-1, 5)$ 2) $(5, 1)$ 3) $(1, 5)$ 4) $(1, -5)$ 18 The point on the curve $y = 5y$, y^2 at which the		1) >
normal is perpendicular to the line $x + y = 0$ is		3) 2
1) $(3, -6)$ 2) $(3, 6)$ 3) $(-3, -6)$ 4) $(6, 3)$	28.	Equ
19. The point at which the tangent to the curve		the
$y = x^2 + 3x$ passes through the origin is		1) >
1) $(0, 3)$ 2) $(0, 0)$ 3) $(2, 0)$ 4) $(2, 3)$		3) 2

20.	A point on the curve $y =$	$2x^3 + 13x^2 + 5x + 9$ the
	tangent at which passes t 1) $(1, 15)$ 2) $(1, -15)$	3(15, 1) 4(-1, 15)
1.	The equation of the	tangent to the curve
	$y = \log(\sin x) \operatorname{at}\left(\frac{\pi}{2}, 0\right)$) on it is
	1) $x = 0$ 2) $x - 1 = 0$	(3) $y = 0$ (4) $Y = 1$
2.	The equation of the	tangent to the curve
	$y = 2\sin x + \sin 2x$ at 2	$x = \frac{\pi}{3}$ on it is
	1) $y - 3 = 0$	2) $y + \sqrt{3} = 0$
	3) $2y - 3 = 0$	4) $2y - 3\sqrt{3} = 0$
3.	The equation of the	normal to the curve
	$y = x + \sin x \cdot \cos x$ at 2	$x = \frac{\pi}{2}$ on it is
	$1) \mathbf{x} - \mathbf{\pi} = 0$	2) $x + \pi = 0$
	$3) 2x - \pi = 0$	$4) 2x + \pi = 0$
4.	The tangent to the curve meets the x-axis at the pe	$y = e^{2x}$ at the point (0,1) point
	1) $\left(0,\frac{1}{2}\right)$ 2) $\left(\frac{1}{2},0\right)$	3) $\left(\frac{-1}{2}, 0\right)$ 4) (1, 0)
5.	The tangent to the curve	$y = 2x^3 + 13x^2 + 5x + 9$
	at $(-1, 15)$ on it	
	3) passes through origin	2) is parallel to y-axis
	4) passing through $(0,1)$	
6.	P(1, 1) is a point on the vertex is A . The point of	e parabola $y = x^2$ whose the curve at which the
	tangent drawn is paralle	to the chord \overline{AP} is
	$\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \end{pmatrix}$	
	1) $\left(\frac{1}{2}, \frac{1}{4}\right)$ 2) $\left(\frac{1}{2}, \frac{1}{4}\right)$	3) (2, 4) 4) (4, 2)
7.	Equation of the ta (2)	ngent to the curve
	y(x-2)(x-3)-x+7 curve cuts x-axis is	= 0 at the point where the
	1) $x - 20y = 7$	2) $x - 20y + 7 = 0$
	3) $x + 20y - 7 = 0$	4) $x + 20y + 7 = 0$
8.	Equation of the tangent	to the curve $y = 1 - e^{\frac{x}{2}}$ at
	the point where the curve	e cuts y-axis is
	1) $x + y = 0$	2) $x + 2y = 0$
	3) 2x + y = 0	4) $2x - y = 0$

29.	The tangent to the curve point where the curve mee	39.	The length of sub-nor $y = 4x^2$ is		
	4x - y + 2 = 0 then b is	, 1			-1
	1) 7 2) 27	3) 3 4) 4		1) – 32	2) $\frac{1}{2}$
30.	Equation of the normal to	the curve $x = 1 + 2\log \frac{1}{2}$	40.	The lengt	h of norma
	$(\cot(t))$ and $v = \tan(t) + c$	$\cot(t)$ at $t = \frac{\pi}{2}$ on it is		xy + 2x -	y = 5 is
	π	4		1) $\sqrt{5}$	2) $\sqrt{\frac{5}{3}}$
	1) $x = \frac{\pi}{4}$ 2) $y = 2$	3) $x = 2$ 4) $x = 1$	41.	If the lengtl the subnor	n of the subta
31.	The equation of the norm	hal at $t = \frac{\pi}{2}$ to the curve		1) 36	2) ±9
	x = 2 sint, y = 2 cost is		42.	The tang	gent at A
	1) $x = 0$ 2) $y = 0$	3) $y = 2x+3$ 4) $y = 3$		$y = x^3 - 2.$	$x^2 + 4$ cuts
32.	Equation of the tangent	at $(1, -1)$ to the curve		length of	AT =
	$x^3 - xy^2 - 4x^2 - xy + 5x^2$	x + 3y + 1 = 0 is		1) $\sqrt{10}$	
	1) $x - 1 = 0$	2) $x + 1 = 0$		3) $\sqrt{15}$	
	3) $y - 1 = 0$	4) $y + 1 = 0$	12	If the our	100 m m ²
33.	Equation of a tangent to the $0 \le x \le 2\pi$ that is paralled	he curve $y = cos(x + y)$, el to the line $x + 2y = 0$ is	43.	each other	at $(2, 3)$ the
	1) $x + 2y = \pi/2$	2) $x + 2y = \pi/4$		1) $4x - y =$	= 5
	3) $x + 2y = \pi$	4) $x + y = \pi$		3) $x - 4y =$	= 5
34.	Equation of a normal to t	he curve $y = x \log x$,	44.	The two cu	urves $v = x^2$
	parallel to $2x - 2y + 3 =$	0 is		the point (2	2,3)
	1) $x + y = 3e^{-2}$	2) $x - y = 3e^{-2}$		1) have con	nmon tange
	3) $x - y = 3e^2$	4) $x + y = 3e^2$		2) have con	nmon tange
35.	The equation of the	normal to the curve		3) have cor	nmon norm
	$y = (1+x)^{y} + \sin^{-1}(\sin^{2})$	x) at $x = 0$ is		4) have cor	nmon norm
	1) $x + y = 1$	2) $x - y + 1 = 0$	45.	Point whe	ere $y = x^3 +$
0.0	3) $2x + y = 2$	4) $2x - y + 1 = 0$		touch each	other is
36.	It the normal line at	(1, -2) on the curve		1)(1,3)	2) (-1, -1
	$y^2 = 5x - 1$ is $ax - 5y + b$ and b are	= 0 then the values of a	46.	$xy = 4; x^2$	$-y^2 = 15$
	1)-14, 4 2) 4, -14	3) 4, 6 4) 4, 10		1) touch ea	ch other
37.	If $y = 4x - 5$ is a tangent to	the curve $y^2 = px^3 + a$		2) cut ortho	gonally
	at (2, 3) on it then (p,q) =	=		3) intersect	t at an angle
	1) (2, 7) 2) (-2, 7)	3) (-2, -7) 4) (2, -7)		4) intersec	t at an angle
38.	If the curve $y = ax^2 + bx$	x passes through $(-1,0)$	47.	The angle	e between
	and $y = x$ is the tangent li	ine at $x = 1$ then (a, b)		$y = e^{3(x-1)}$	at (1, 1) is
	1)(1,1)	2) (1/2, 1/2)		1) 0	$2) \frac{\pi}{\pi}$
	3) (1/3, 1/3)	4) (3, 3)		1)0	$\frac{2}{6}$

mal at (-1, 4) on the curve

$$)-32$$
 2) $\frac{-1}{2}$ 3) $\frac{1}{2}$ 4) 32

al at (2, 1) on the curve

$$\sqrt{5}$$
 2) $\sqrt{\frac{5}{3}}$ 3) $\sqrt{\frac{10}{3}}$ 4) $\sqrt{10}$

angent is 9 and the length of (x, y) on y = f(x) then y =

$$) 36 \qquad 2) \pm 9 \qquad 3) \pm 4 \qquad 4) \pm 6$$

(2, 4) on the curve the x-axis at T then the

1) \sqrt{10}	2) $\sqrt{12}$
3) $\sqrt{15}$	4) $\sqrt{17}$

 $-1, y = 8x - x^2 - 9$ touch en equation of the common

1)
$$4x - y = 5$$
2) $4x + y = 5$ 3) $x - 4y = 5$ 4) $x + 4y = 14$

 $-1 \text{ and } y = 8x - x^2 - 9 \text{ at}$

1) have common tangent
$$4x - y - 5 = 0$$

2) have common tangent
$$x + 4y - 14 = 0$$

hal 4x + y = 11

hal x - 4y = 10

+x+1 and $2y = x^3 + 5x$

1)
$$(1, 3)$$
 2) $(-1, -1)$ 3) $(0, 1)$ 4) $(-2, -9)$

- $\pi/3$
- $e_{\pi}/4$
- the curves $y = x^3$ and

0 2)
$$\frac{\pi}{6}$$
 3) $\frac{\pi}{4}$ 4) $\frac{\pi}{2}$

JR. MATHEMATICS

48.	The angle $3x^2y - y^3$	between the equation $= 2$ is	ne curves	$x^3 - 3xy$	$y^2 = 2$ and	18.	Find $\frac{dy}{dx}$ and equate to -1 (Q parallel)
	1) $\frac{\pi}{6}$	2) $\frac{\pi}{4}$	3) $\frac{\pi}{3}$	Z	$\frac{\pi}{2}$	19.	$mx_1 - y_1 = 0$ verify the options $\left(m = \frac{dy}{dx}\right)$
49.	If the cu orthogonal	irves ay lly at (1, 1)	$x + x^2 = 7$) then a =	and	$x^3 = y cut$	20.	$m = \frac{dy}{dx}$ which option is having $mx_1 - y_1$ as zero
	1) 1	2) – 6	3) 6	2	(1) $\frac{1}{6}$	21.	Find $\frac{dy}{dx}$ and find equation
		K	ΕY				
01. 2 07. 1	02. 2 08. 2	03. 2 09. 4	04. 4 10. 3	05.4 11.2	06. 1 12. 3	22.	Find $\frac{dy}{dx}$ and substitute $x = \frac{\pi}{3}$ and find equation
13 3	14 3	15 1	16.2	17 3	18.2		
19. 2	20. 4	21.3	22. 4	23.3	24. 3	23.	Find $-\left(\frac{dx}{dy}\right)$ substitute $x = \frac{\pi}{2}$ and find equation
25.3	26.1	27.1	28.2	29.4	30.4	24	Find Tangent equation at put $x = 0$ in that
31. 2 37. 4	32. 4 38. 3	33. 1 39. 4	34. 2 40. 4	35. 1 41. 4	36. 2 42. 4	25.	Find tangent equation at $(-1, 15)$ and observe
43.1	44.1	45.1	46.2	47.1	48.4		
49.3						26.	Vertex $A(0, 0)$ slope of Tangent = Slope of AP
		HI	<u>NTS</u>			27.	Put $y = 0$ in the equation and find the point and find equation of Tangent at that point.
1.	Find $\frac{dy}{dx}$ a	nd substit	ute (1, 6)			28.	Put $x = 0$ in curve and find point. At that point find the tangent.
2.	Find $\frac{dy}{dx}$ a	nd substit	ute $x = 2$			29.	Put $x = 0$ in the curve find the point at that point find tangent and compare.
4.	Put $y = 0$ as	nd find po	ints and s	ubstitute	$e \ln \frac{dy}{dx}$	30.	Find slope as $-\frac{dx}{dy}$ where t is the parameter and find the normal.
6.	At $(2, -1)$ f	ind value	oft. At th	at t find	slope $\frac{dy}{dx}$.	31.	Find $\frac{dy}{dx}$ at $t = \frac{\pi}{2}$ and find normal.
10.	Find $\frac{dy}{dx}$ a	nd equate	to zero			34.	$-\frac{\mathrm{dx}}{\mathrm{dy}} = 1$ then find normal.
11.	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$ and	d find poi	nt.			35.	Find $-\frac{dx}{dy}$ at x = 0, and find normal.
12.	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$					36.	Find normal at $(1, -2)$ on the curve and compare the given line.
13.	$\frac{dy}{dx}$ is not of	lefined.				37.	Find tangent at $(2, 3)$ and compae.
16.	Find $\frac{dy}{dx}$ a	nd equate	e to 2(Q⊥	. r)		38.	at $x = 1$, $\frac{dy}{dx} = 1$ and substitute (-1, 0) in the curve and solve the two equations for 'a' and 'b'.
17.	$\frac{\mathrm{d}x}{\mathrm{d}x} = 2 (\mathrm{Q}$	⊥γ)				39.	Find $\left y \cdot \frac{dy}{dx} \right $ at (-1, 4)
.IR	ΜΔΤΗΕΜΔ	TICS			Δ	68	

40. Find
$$\left|y\sqrt{1+\left(\frac{dy}{dx}\right)^2}\right|$$
 at (2, 1)
43. Find $\frac{dy}{dx}$ to any of the curve at (2, 3) and find
tangent.
44. Find $\frac{dy}{dx}$ at (2, 3) to any of the curve and tangent.
45. Slope are equal.
46. Product of the slopes is equal to -1.
47. Find $\frac{dy}{dx}$ to the two curves at (1, 1) they are m₁
and m₂. Then $\operatorname{Tan}\theta = \left|\frac{m_1 - m_2}{1 + m_1 m_2}\right|$.
48. m₁. m₂ = -1
LEVEL-II
1. If the slope of the tangent to the curve
xy + ax + by = 0 at the point (1, 1) on it is 2 then
values of a and b are
1) 1, 2 2) 1, -2
3) -1, 2 4) -1, -2
2. The distance of the origin from the normal to the
curve $y = e^{2x} + x^2$ at $x = 0$ is
11
1) $\frac{2}{5}$ 2) $\frac{2}{\sqrt{5}}$ 3) $2\sqrt{5}$ 4) $5\sqrt{2}$
3. Equation of the tangent to the parabola
y² = 4x + 5 which is parallel to the line
y = 2x + 7 is
1) y = 2x + 3 2) y = 2x - 3
3) y = 2x + 5 4) y = 2x - 5
4. If $y = x + c$ is a tangent to the curve
 $9x^2 + 16y^2 = 144$ then value of c is
1) -5 2) 5 3) \pm 5 4) 2
5. The equation of the normal at x = 2a for the curve
 $y = \frac{8a^3}{4a^2 + x^2}$ is
1) 2x - y = 3a 2) 2x + y = 2a
3) x + 2y = 6a 4) x + y = a

The point on the curve $y^2 = 4ax$ at which the normal makes equal intercepts on the coordinate axes is 2)(a, 0)1)(a, a)(-a, 2a)3)(a, 2a)7. The normal to the curve $x = a(1 + \cos \theta), y = a \sin \theta$ at θ always passes through the fixed point 1) (a, a) 2)(a, 0)(0, a)(0, 0)The equation of the tangent to the curve $y = e^{-|x|}$ 8. at the point where the curve cuts the line x = 1 is 1) x + y = e2) e(x + y) = 13) y + ex = 14) x + ey = 29. The slope of the tangent to the curve at a point (x, y) on it is proportional to (x-2). If the slope of the tangent to the curve at (10, -9) on it is -3The equation of the curve is 1) $Y = k(x-2)^2$ 2) $y = \frac{-3}{16}(x-2)^2 + 1$ 3) $y = \frac{-3}{16}(x-2)^2 + 3$ 4) $y = K(x+2)^2$ The values of 'a' for which $y = x^2 + ax + 25$ 10. touches x-axis are $1) \pm 10$ 2) ± 2 $3) \pm 1$ 4) 0 The area of the triangle formed by the tangent to 11. the curve $y = \frac{8}{4 + x^2}$ at x = 2 on it and the axes is 1) 2 sq.units 2) 4 sq.units 3) 8 sq.units 4) 16 sq.units The area of the triangle formed by the positive x-12. axis, the normal and the tangent to the curve $x^2 + y^2 = 4$ at $(1, \sqrt{3})$ in sq.units is 1) $2\sqrt{3}$ 2) $\sqrt{3}$ 3) $4\sqrt{3}$ 4) 6 13. The angle between the curves $x^2 = 4y$ and $y^2 = 4x$ at (4, 4) is 1) $\frac{\pi}{2}$ 2) T an⁻¹(3) 3) $\operatorname{Tan}^{-1}\left(\frac{3}{4}\right)$ 4) $\operatorname{Tan}^{-1}\left(\frac{4}{3}\right)$

JR. MATHEMATICS

469

14. The curves
$$y^{2} - 2x$$
 and $y - 3x^{2}$ intersect at the origin at an angle22. If the curves $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ and $\frac{x^{2}}{1^{2}} - \frac{y^{2}}{m^{2}} = 1$ cut each other orthogonally then.....1) $\frac{\pi}{2} = 2$, $\frac{\pi}{4} = 3$, $\frac{\pi}{6} = 4$, $\frac{\pi}{3}$ 15. The angle between the curves $2x^{2} + y^{2} = 20$ and $4y^{2} - x^{2} = 8$ at the point $(2\sqrt{2}, 2)$ 1) $\frac{\pi}{2} = 2$, 2 , $7 an^{-1}(\frac{1}{2})$ 3) $1^{2} - x^{2} = 8$ at the point $(2\sqrt{2}, 2)$ 1) $\frac{\pi}{4} = 2$, $\frac{\pi}{3} = 3$, $\frac{\pi}{2} = 4$, $7 an^{-1}(\frac{k_{1}}{2})$ 3) $1^{2} - x^{2} = 8$ at the point $(1, 1)$ is1) $\frac{\pi}{4} = 2$, $\frac{\pi}{3} = 3$, $\frac{\pi}{2} = 4$, $7 an^{-1}(\frac{k_{1}}{k_{2}})$ 16. The angle between the curves $y = x^{2}$ and $\frac{x^{2}}{4} + \frac{y^{2}}{b^{2} + k_{1}} = 1$ is17. The acute angle between ources $x^{2} + y^{2} = 4$ and $x^{2} - 3y^{2} = 5$ and $\frac{x^{2}}{4} + \frac{y^{2}}{8} = 1$ cut each other at the common point at an angle19. $\frac{\pi}{3} = 2$, $\frac{\pi}{3} = 3$, $\frac{\pi}{2} = 4$, $7 an^{-1}(\frac{k_{1}}{k_{2}})$ 19. $\frac{\pi}{3} = 2$, $\frac{\pi}{3} = 3$, $\frac{\pi}{2} = 4$, $7 an^{-1}(\frac{k_{1}}{k_{2}})$ 17. The acute angle between curves $x^{2} + y^{2} = 4$ and $x^{2} = 3y$ is19. $\frac{\pi}{3} = 2$, $\frac{\pi}{6} = 3$, $\frac{\pi}{3} = 4$, $\frac{\pi}{2} = 1$, $\frac{\pi}{3} = 3$, $\frac{\pi}{2} = 4$, $\frac{\pi}{8} = 4$, $\frac{\pi}{8} = 4$, $\frac{\pi}{8} = \frac{\pi}{8} = 1$ cut each other at the common point at an angle19. $\frac{\pi}{4} = 2$, $\frac{\pi}{3} = 3$, $\frac{\pi}{4} = 1$, $\frac{\pi}{4} = 2$, $\frac{\pi}{4} = 3$, $\frac{\pi}{4} = 1$, $\frac{\pi}{4} = 4$, $\frac{\pi}{4} = 1$ and $\frac{\pi}{4} = 4$, $\frac{\pi}{4} = 1$ and $\frac{\pi}{4} = 4$, $\frac{\pi}{4} = 1$, $\frac{\pi}{4} = \frac{\pi}{4} = 4$, $\frac{\pi}{4} = 1$, $\frac{\pi}{4} = \frac{\pi}{4} = \frac{\pi}{4} = \frac{\pi}{4} = 1$, $\frac{\pi}{4} = \frac{\pi}{4} = 1$, $\frac{\pi}{4} = \frac{\pi}{4} = \frac$

	KEY	27.	Apply $m_1 m_2 = -1$ and put $y^2 = 16x$.
01. 2	2 02. 2 03. 1 04. 3 05. 1 06. 3	28.	Find point of intersection and $m_1 m_2 = -1$ and find
07. 2	2 08. 4 09. 3 10. 1 11. 2 12. 1		a^2 .
13	3 14. 1 15. 1 16. 3 17. 4 18. 4		
19. 4	4 20. 3 21. 3 22. 3 23. 3 24. 3		
25. ž	2 26. 1 27. 3 28. 4 29. 2	1.	If the tangent to the curve $2y^3 = ax^2 + x^3$ at the
			point (a, a) cuts off intercepts α and β on the
	HINTS		coordinate axes such that $\alpha^2 + \beta^2 = 61$ then $a =$
1	$\frac{dy}{dt}$ at (1, 1) is 2 and obtain equation in a and b (1,		1) ± 30 2) ± 5 3) ± 6 4) ± 61
1 .	dx $u(1, 1)$ is 2 and obtain equation in a and $b(1, 1)$	2.	The equations of the tangents at the origin to the
	1) also lies on curve and obtain another equation and solve		curve $y^2 = x^2(1+x)$ are
			1) $y = \pm x$ 2) $y = \pm 2x$
2.	Find normal at $x = 0$ and apply $\frac{ c }{\sqrt{a^2 + b^2}}$		3) $y = \pm 3x$ 4) $x = \pm 2y$
	$\sqrt{a} + b$	3.	If the chord joining the points where $x = p, x = q$
3.	$\frac{dy}{dt} = 2$ and find point and at that point find tangent.		on the curve $y = ax^2 + bx + c$ is parallel to the
	dx i i i generalitation in generalitation i i i generalitation i generalitation i i generalitation i generalitation i generalitation i generalitation i i generalitation i generalitatio i generalitation i generalitation i generalitation i generalitat		tangent drawn to the curve at (α, β) then $\alpha =$
4.	Apply $c^2 = a^2m^2 + b^2$ where $a^2 = 16; b^2 = 9$		p+q $p-q$
	and $m = 1$.		1) 2pq 2) \sqrt{pq} 3) $\frac{1}{2}$ 4) $\frac{1}{2}$
р.	(2a, a) is a point on the curve. Substitute in the options	4.	The equation of the common normal at the point
9.	Substitute the point in the options.		of contact of the curves $\frac{1}{2}$
	Hint: Equate y-coordinate of the point of contact		$x^{2} = y$ and $x^{2} + y^{2} - 8y = 0$ 1) $x = y$ 2) $x = 0$
	to zero.		$\begin{array}{c} 1) x - y \\ 3) y = 0 \\ \end{array} \qquad \begin{array}{c} 2) x - 0 \\ 4) x + y = 0 \end{array}$
		5.	The length of perpendicular drawn from the origin
	Find the tangent and apply $\frac{1}{2 a.b }$ sq.units		to the normal at any point on the curve given by
	$v^{2}(1+m^{2})$		$x = a(\cos\theta + \theta\sin\theta), y = a(\sin\theta - \theta\cos\theta)$ is
12.	Find slope m. Apply formula $\frac{f'(1+m)}{2 m }$		1) $\frac{a}{a}$ 2) a 3) $\frac{3a}{a}$ 4) 2a
12	Angle between the evenue 2 4 and		$\frac{1}{2}$ $\frac{2}{2}$ $\frac{3}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
1 ^{13.}	Angle between the curves $x^2 = 4ay$ and	6.	If the normal at the point $p(\theta)$ of the curve
	$v^{2} = 4ax at (4a, 4a) is Tan^{-1} \left(\frac{3}{4}\right)$.		$x = 3\cos\theta - \cos^3\theta$, $y = 3\sin\theta - \sin^3\theta$ passes
	(4)		through the origin then
15	Find $\frac{dy}{dt}$ for the two curves m and m at		1) $\theta = \pi/3$ 2) $\theta = \pi/6$
	dx dx dx dx dx dx dx dx		3) $\theta = \pi/4$ 4) $\theta = \pi/2$
	$(2\sqrt{2}, 2)$, $T_{op0} = m_1 - m_2 $	/.	Area of the triangle formed by the tangent, normal
	$(2\sqrt{2}, 2)$ then $1 \text{ and } = \overline{1 + m_1 m_2} $		at (1, 1) on the curve $\sqrt{x} + \sqrt{y} = 2$ and the y-
16.	Same in problem 3		axıs is (in sq. units)
20.	Find m_1 and m_2 and apply $Tan\theta$		1) 1 2) 2 3) $\frac{1}{2}$ 4) 4
21	Point of contact is (2, 2) $Tan\theta = \frac{ \mathbf{m}_1 - \mathbf{m}_2 }{ \mathbf{m}_1 - \mathbf{m}_2 }$	8.	The sum of the lengths of the sub-tangent and
<u> </u> ∠1.	$\left 1 + m_1 m_2\right $		tangent drawn at the point (x, y) on the curve
26.	Find the point of intersections and find m_1 and m_2		$y = a \log(x^2 - a^2)$ varies as
	then $m_1 \cdot m_2 = -1$		1) x^2 2) y^2 3) xy 4) y/x

At origin the curve $y^2 = x^3 + x$ 1)Touches the x-axis *2) Touches the y-axis 3) Bisects the angle between the axes 4) touches both the axes The angle between the curves $y^2 = 4ax$ and 10. $ay = 2x^2$ is 1) $T \operatorname{an}^{-1}\left(\frac{3}{4}\right)$ 2) $T \operatorname{an}^{-1}\left(\frac{3}{5}\right)$ 3) $T \operatorname{an}^{-1}\left(\frac{4}{3}\right)$ 4) $T \operatorname{an}^{-1}\left(\frac{5}{3}\right)$ The angle between the curves $x^2 + y^2 = \sqrt{2}a^2$ and 11. $x^{2} - y^{2} = a^{2}$ is 1) $\frac{\pi}{4}$ 2) $\frac{\pi}{6}$ 3) $\frac{\pi}{3}$ 4) $\frac{\pi}{2}$ KEY 01. 1 04.2 02. 1 03.3 05. 2 06.3 07.1 08.3 09.2 11. 1 10.2 HINTS 2. Hint: The equations of the tangents at the origin can be obtained by equating the lowest degree terms to zero. LEVEL-IV **NEW MODEL QUESTIONS** I. 1. Observe the following statements Ŀ If p and q are the lengths of perpendiculars from the origin on the tangent and normal a any point on the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$ then $4p^2 + q^2 = 1$. II: If the tangent at any point P on the curve $x^{3}.y^{2} = a^{5}$ cuts the coordinate axes at A and B then AP : PB = 3 : 2which of the above statement is correct. 1) only I 2) only II 3) both I and II 4) neither I nor II 2. Observe the following statements for the curve $v = 2.e^{\frac{x}{3}}$. I: The slope of the tangent to the curve where it meets y-axis is $\frac{-2}{2}$.

II: The equation of normal to the curve where it meets y-axis is 3x + 2y + 4 = 0. Which of the above statement is correct 1) only I 2) only II 3) both I and II 4) neither I nor II 3. Observe the following statements for the curve x $= at^3$, y = at⁴ at t = 1. I: The equation of the tangent to the curve is 4x-3v - a = 0II : The equation of the normal to the curve is 3x +4y - 7a = 0III: Angle between tangent and normal at any point on the curve is $\frac{\pi}{2}$. Which of the above statements are correct. 1) I and II 2) II and III 3) I and III 4) I, II, III 4. I: The angle between the curves $y = x^3$, $6y = 7 - x^2$ at (1, 1) is $\frac{\pi}{2}$. II: The angle between the curves y = x, $y = \frac{1}{x}$ at (1,1) is $\frac{\pi}{2}$ Which of the above statements is correct. 1) I only 2) II only 3) both I and II 4) neither I nor II 5. I. The straight line x + y = a will be a tangent to the Ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ if $a = \pm 5$. II. The straight line x + y = a will be a tangent to the Hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ if $a = \pm 7$. Which of the above statements is correct? 1) only II 2) only I 3) both I and II 4) Neither I nor II I. If the subnormal to the curve x, $y^n = a^{n+1}$ is 6. constant then the value of n is -2. II. The length of the subtangent, ordinate of a point, (not the origin) length of the subnormal on $y^2 = 4ax$ are in G.P. Which of the above statements is correct 1) only I 2) only II 3) both I and II 4) Neither I nor II

7.	I. If the curve $y = x^2 + bx + c$ touches the straight line $y = x$ at the point (1, 1) then b and c are given		IV. Length of sub-	normal		d) $\frac{2}{3}\sqrt{10}$	
	by 1, 1. II. If the line $1x + my + n = 0$ is a normal to the					e) $\frac{2}{3}$	
	curve $xy = 1$, then $1 > 0$, $m < 0$.		Match the List-I fi	rom Lis	st-II and	d choose the cor-	
	Which of the above statements is correct		rect answer.		a \ 1		
	1) only I 2) only II		l)dace		2) d a (4) c a	ec de	
	3) both I and II 4) Neither I nor II	11	Observe the fol	llowin	a lists	for the curve	
8.	In the curve $y = ce^{x/a}$ the	11.	$v = 6 + x + x^2$ with	th the s	lones c	of tangents at the	
	a) Subtangent is constant		y = 0 + x - x with $y = 0 + x - x$	th the s	siopes c	frangents at the	
	b) subnormal varies as the square of the ordinate		Point		Tanger	nt slope	
	1) Both a, b are correct 2) Only b is correct		I:(1,6)		a) 3		
	3) only a is correct		II:(2,4)		b) 5		
	4) bour a, b are wrong		III : $(-1, -4)$		c) - 1		
по	Observe the following lists:		IV:(-2,0)		d) – 3		
11.)	List-I		Correct match is.				
	L Angle between the a) 0		1) a b c d		2) b c	d a	
	and and		3) c d b a		4) c d	a b	
	eurves y = x and	12.	Observe the follow	ving list	s:		
	$x^2 = y$ at the point (1, 1)		If the line $y = mx + c$ is a tangent to the following curves then				
	II. Angle between the curves b) $Tan^{-1}\left(\frac{4}{3}\right)$		List-I		Lis	st-II	
	$x^2y = 1$ and $y = e^{2(1-x)}$		A. $x^2 + y^2 = a^2$		1) c =	$\frac{a}{m}$	
	at the point (1, 1)		B. $y^2 = 4ax$		2) c ²	$=a^2m^2+b^2$	
	III. Angle between the curves c) $\frac{\pi}{2}$		C. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$		3) c ² =	$=\frac{a}{m}$	
	$xy = 4, x^2 - y^2 = 15$		\mathbf{x}^2 \mathbf{v}^2				
	at $(-4, -1)$ d) $Tan^{-1}(2\sqrt{2})$		D. $\frac{x}{a^2} - \frac{y}{b^2} = 1$		4) c^2 :	$=a^2m^2-b^2$	
	e) $Tan^{-1}\left(\frac{3}{4}\right)$				5) $c^2 =$	$=a^{2}(1+m^{2})$	
			The correct match	for list	t-I from	list-II is	
	1) L a H b H a 2) L b H a H a		A]	B	C	D	
	$(1)_{1-a}, (1-b), (11-c) = (2)_{1-b}, (11-a), (11-c) = (3)_{1-b}, (11-a), (11-c) = (3)_{1-b}, (11-a) = (3)_{1-b}, (11-a)_{1-b} = (3)_{1-b}, (11-a)$		A]	D 1	2	ע 2	
10	Observe the following lists for the sum $2 = -\frac{3}{2} + 1$		2) 1 2	т 2	3	4	
10.	at the point (1, 2)		3) 3	4	1	2	
	List-I List-II		4) 5	1	2	4	
	I. Length of tangent a) $2\sqrt{10}$	13.	Match List-I with answer using the c	n List-I code giv	I and s ven belo	elect the correct ow.	
	II Length of normal $(b) \frac{3}{2}$		List-I			List-II	
	11. Lengul of normal $0)\frac{1}{2}$		a) Equation of tar	ngent to	o the	1) $x - 2y = 2$	
	III. Length of sub-tangent c) 6		curve $y = be^{-x/a}$	at $\mathbf{x} = 0$	0		

1	b) Eq	uation of	ftangen	t to the	2) $y = 2$	2x	16.	Assertion A: The angle between the curves y =
¶	curve	$y = x^2 +$	⊦1 at (1.	,2)				$\sin x, y = \cos x$ is $\operatorname{Tan}^{-1} \sqrt{2}$.
	c) Equ	uation of	normal	l to the	3) x - :	$y = \pi$		Reason (R) : The slopes of their tangents at
	curve	y = 2x -	$-x^{2}$ at ((2,0)		¥7		$\left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$ are $\frac{1}{\sqrt{2}}$ and $-\frac{1}{\sqrt{2}}$ respectively.
	d) Eq	uation of	f norma.	l to the	4) $\frac{x}{a}$ +	$\frac{y}{b} = 1$		1) Both A and R are true R is the correct explana- tion of A
	curve	y= sinx a	at $x = \pi$	•			ļ	2) Both A and R are true but R is not correct ex-
		А	В	С	D		l	planation of A
	1)	4	1	2	3		l	3) A is true but R is false
	2)	4	2	1	3		l	4) A is false but R is true
	3)	1	2	3	4 2		17.	Assertion A: The curves $x^2 = y, x^2 = -y$ touch
	4)	1	4	3	L		l	each other at $(0, 0)$.
111	14	acout.	(A)	TI	10mm-1	hear	l	Reason R: The slopes of the tangents at $(0, 0)$ for both the average $(0, 0)$
111.	14. A	ssertion	(A):	The	uormal to t	uie curve	l	both A and P are true P in the
	$ay^2 =$	× x' (a ≠	$0, x \neq 0$	n) at a 1	point (x,	y) on it	l	tion of A
	makes	s equal					l	2) Both A and R are true but R is not correct ev
	interc	epts on fl	he axes t	then x =	$\frac{4a}{a}$.		l	planation of A
		intercepts on the axes then $x = \frac{1}{9}$.					l	3) A is true but R is false
	Reason (R): The normal at (x_1, y_1) on the curve					e curve	l	4) A is false but R is true
	y = f(x) makes equal intercepts on the coordinate				s on the co	ordinate	10	Assertion A. Thousand a first 12
							18.	Assertion A: The value of 'a' is $\frac{1}{5}$ when the two
	axes t	hen $\left(\frac{dy}{dx}\right)$	$=\int_{(X_1,Y_2)} =$	= 1			l	curves $2x^{2} + 3y^{2} = 1$ and $ax^{2} + 4y^{2} = 1$ to cut
	Char	se the co	(mi,yi)	Wer			ļ	orthogonally.
	U1100.	ы ин со th А ат 1	R are to	ue and T) is the se	rrect or	l	Reason R: If the curves
	г) во planat	ion for A	r are tr	ac and f	15 110 CO	nutex-		$a_1x^2 + b_1y^2 = 1$, $a_2x^2 + b_2y^2 = 1$ cut each other
	2) Bo explai	th A and nation for	R are tr	ue but R	t is not the	e correct		orthogonally then $\frac{1}{a_1} - \frac{1}{a_2} = \frac{1}{b_1} - \frac{1}{b_2}$
	3)Ais	s true but	R is fals	se			ļ	1) Both A and R are true R is the correct explana-
	4)Ais	s false bu	ıt R is trı	ue			l	tion of A
15.	Asser	tion (A):	- The	points	on the	curve	l	2) Both A and R are true but R is not correct ex- planation of A
	$y = x^3$	$^{\circ}-3x$ at v	which tł	he tange	nt is paral	llel to x-	l	3) A is true but R is false
	axis a	re $(1, -2)$) and				l	4) A is false but R is true
	(-1, 2	;).			_ `		19.	Assertion(A): If the tangent at any point P on the
	Keaso	on (R): Th	ne tange	ent at (\mathbf{x}_1)	$, \mathbf{y}_1)$ on the	e curve	l	curve $xy = a^2$ meets the axes at A and B then
	$\mathbf{v} = \mathbf{f}$	x) is ver	ical the	$n \frac{dy}{dt} at$:(x v);	s not de	l	AP : PB = 1 : 1
	ب ال 1	-, 10 VCI	ui uit	dx d	$(\mathbf{x}_1, \mathbf{y}_1)$ r		l	Reason(R): The tangent at $P(x, y)$ on the curve
	C^{1}	soth-	rrect	autor			l	$x^{m}.y^{n} = a^{m+n}$ meets the axes at A and B. Then
	し000 1) P	se ine co th A - 1	R or f	ower.	1 in the	rrect	l	the ratio of P divides \overline{AB} is n : m.
	1) BO	ion for A	r are tr	ue and h	x is the col	meet ex-	l	1) Both A and R are true R is the correct explana-
	2) D~	th A and	Rarat	ue hut P	is not +L -	Correct	l	tion of A
	explai	nation for	A	out F			l	2) Both A and R are true but R is not correct ex- planation of A
	3) A io	s true hut	R is fal	se			l	pranation of A 3) A is true but R is false
	4)Ais	s false bu	t R is tru	le			ļ	4) A is false but R is true
	,						<u> </u>	.,

20.	Assertion(A): The tangent to the curve	25.	The arr7angement of the slopes of the normals to
	$y = x^{3} - x^{2} - x + 2$ at (1, 1) is parallel to the x-		the curve $y = e^{\log(\cos x)}$ in the ascending order at
	axis.		the points given below.
	Reason(R): The slope of the tangent to the above		$A) = \pi \qquad \qquad D) = \pi - 7\pi$
	curve at (1, 1) is zero.		A) $x = \frac{1}{6}$ B) $x = \frac{1}{4}$
	1) Both A and R are true R is the correct explana- tion of A		C) $x = \frac{11\pi}{6}$ D) $x = \frac{\pi}{3}$
	2) Both A and R are true but R is not correct ex-		1) C, B, D, A 2) B, C, A, D
	planation of A 2) A is true but B is false		3) A, D, C, B 4) D, A, C, B
	4) A is false but R is true		KEY
IV. 2	21. A : Length of sub-normal to $y = 4x^2$ at $(-1, 4)$		01.1 02.1 03.4 04.3 05.2
	B : Length of sub-normal to $y = x^3 + 1$ at $(1, 2)$		06.3 07.2 08.1 09.3 10.2
	C : Length of sub-tangent to $xy = 12$ at $(3, 4)$		11. 4 12. 4 13. 2 14. 1 15. 2
	D: Length of normal to $x^3 + y^3 = 6xy$ at (3, 3)		16. 4 17. 1 18. 1 19. 1 20. 1
	Then the ascending order of the above values are		21. 3 22. 3 23. 4 24. 2 25. 1
	1) DCBA 2) ABCD 3) CDBA 4) DBCA		
22.	A: Angle between the curves $y^2 = x$, $y^2 = -x$ at		PREVIOUS EAMCET PAPERS
	(0, 0).		2004
	B : Angle between the curves $y = 3x^2$; $y^2 = 2x$	1.	Match the points on the curve $2y^2 = x + 1$ with
	at (0, 0)		the slope of normals at those points and choose the correct answer
	C : Angle between the curves $y^2 = 4x$, $x^2 = 4y$		Point Slope of normal
	at (4, 4)		I: (7, 2) a) $-4\sqrt{2}$
	Then the descending order of the above values are		$\begin{pmatrix} 0 & 1 \end{pmatrix}$
22	1) ABC 2) CBA 3) BCA 4) ACB		II: $\left(0, \frac{1}{\sqrt{2}}\right)$ b) - 8
25.	cending order of slopes of their tangents at the given		III: $(1,-1)$ c) 4
	points.		IV: $(3, \sqrt{2})$ d) 0
			e) $-2\sqrt{2}$
	A) $y = \frac{1}{1+x^2}$ at $x = 0$		1) b d c a 2) b e c a
	D) $\frac{-x}{x}$ where it outs the x onic		3) b c e a 4) b e a c
	$y = 2e^{4}$ where it cuts the y-axis		$\frac{2003}{200}$
	C) $y = \cos x$ at $x = \frac{-\pi}{4}$	۷.	$y = \cos x$ is
	D) $y = 4x^2$ at $x = -1$		1) $\operatorname{Tan}^{-1}(2\sqrt{2})$ 2) $\operatorname{Tan}^{-1}(3\sqrt{2})$
	1) DCBA 2) ACBD		3) $\operatorname{Tan}^{-1}(3\sqrt{3})$ 4) $\operatorname{Tan}^{-1}(5\sqrt{2})$
	3)ABCD 4)DBAC		
24.	The arrangement of following values for $y = x^2$ at (1, 1) in the descending order.	3.	a point then $a^2 =$
	A) Length of the tangent		1) $\frac{1}{3}$ 2) $\frac{1}{2}$ 3) 2 4) 3
	B) Length of the normal		2001
	C) Length of the subtangent	4.	The equation of the tangent to the curve
	$1) \land C \square B \qquad 2) \land B \square \land C$		$6y = 7 - x^3$ at (1, 1) is
	3) C, A, D, B 4) B, A, D, C		1) $2x + y = 3$ 2) $x + 2y = 3$
	, , , , , , , , , , , , , , , , , , , ,		3) $x + y = -1$ 4) $x + y + 2 = 0$
.IR	MATHEMATICS	75	

21.

	2000	14.	The length of the subtangent to the curve
5.	Area of the triangle formed by the normal to the		$x^{2} + xy + y^{2} = 7$ at (1, -3) is
	curve $x = e^{\sin y}$ at (1,0) with the coordinate axes is		
	1 1 3		1) 15 2) 7 3) 12 4) 10
	1) $\frac{1}{4}$ 2) $\frac{1}{2}$ 3) $\frac{1}{4}$ 4) 1	15.	The portion of the tangent to $xy = a^2$ at any point
6	The angle between the surges -2^2 $4-2^2$ $4-2$		on it between the axes is
0.	The angle between the curves $y = 4x, x = 4y$ at $(4, 4)$ is		1) Trisected at that point
	at (4, 4) is		2) bisected at that point 3) constant
	1) T an ⁻¹ $\frac{1}{2}$ 2) T an ⁻¹ $\frac{3}{2}$ 3) $\frac{\pi}{4}$ 4) $\frac{\pi}{4}$		4) with ratio 1 : 4 at the point
		16	1995 The sum of the longths of subten cont and ten cont
7	1999 If the coute angle between the survey $w_{1} = 2$ and	10.	to the curve
/.	In the acute angle between the curves $xy - 2$ and		$u = c \left[2 \cos \theta + \log \left(\cos \phi \right) + \cot \theta \right]$
	$y^2 = 4x$ is θ , then $\tan \theta =$		$x = C \left[2\cos\theta - \log\left(\cos\theta + \cot\theta\right) \right] ,$
	1) $\frac{1}{2}$ 2) 3		$y = a \sin 2\theta$ at $\theta = \frac{\pi}{2}$ is
	1) 3 2) 5		$y = c \sin 2\theta \operatorname{at} \theta$ 3 is
	3) 2 4) $\frac{2}{2}$		$1)\frac{c}{2}$ 2) 22 2) $\frac{3c}{2}$ (1) $\frac{5c}{2}$
0	The end of the tensor to the end		$1)_{2}$ $2)_{2}$ $3)_{2}$ $3)_{2}$ $4)_{2}$
8.	The equation of the tangent to the curve	17.	Sub-normal to $xy = c^2$ at any point on it varies
	$y = x^3 - 2x + 7$ at the point (1, 6) is		directly as
	1) $y = x + 5$ 2) $x + y = 7$		1) cube of ordinate 2) square of ordinate
	3) 2x + y = 8 4) x + 2y = 13		3) ordinate 4) cube or abscissa
9	At any point on the curve $y = f(y)$ the length of the	18.	Equation of the tangent line to $v = be^{\frac{-x}{a}}$ where it
<i>.</i>	sub-normal is constant, then the curve is		crosses y-axis is
	1) circle 2) ellipse		1) $ay + by = 1$ 2) $r y$
	3) parabola 4) straight line		1) $ax + by - 1$ 2) $\frac{x}{a} + \frac{y}{b} = 1$
	1997		<i>u U</i>
10.	Acute angle between the curves $xy = 2$ and		3) $\frac{x}{b} + \frac{y}{a} = 1$ 4) ax - by = 1
	$y^2 = 4x$ is		0 a 1994
	m = -1(1)	19.	An angle at which the two curves $x^3 - 3xy^2 = 4$
	1) T an $\left(\frac{-}{3}\right)$ 2) T an $^{-1}(3)$	-	and $3x^2y - y^3 = 4$ intersect is
	(1) (2)		π π π
	3) $Tan^{-1}\left(\frac{1}{2}\right)$ 4) $Tan^{-1}\left(\frac{2}{2}\right)$		1) $\frac{1}{2}$ 2) $\frac{1}{4}$ 3) $\frac{1}{3}$ 4) 0
		20.	For the parabola $y^2 = 4ax$, the ratio of the length
11.	The length of sub-tangent at any point θ on the		of the sub-tangent to the abscissa at any point on
	ellipse $\frac{x^2}{x} + \frac{y^2}{y} = 1$ is		the curve is
	$a^2 b^2$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	1) $a \sin \theta \sec^2 \theta$ 2) $a \sin \theta \sec \theta $		1993
	3) $a \sin \theta \cos \theta $ 4) $a \sin^2 \theta \sec \theta $	21.	The point on the hyperbola $y = \frac{x-1}{x+1}$ at which the
12.	The length of the sub-normal at $(-1, 4)$ on		tangents are parallel to $y = 2x + 1$ are
	$V = 4 V^2$ is		1) $(0, -1)$ only 2) $(-2, 3)$ only
	1) 4 2) 16 3) 32 4) 8		3) (0, -1), (-2, 3) 4) (2, 3) (5, 4)
	1996	22.	The length of the sub-tangent, ordinate of a point
13.	Acute angle between the curves $y^2 = x$ and		and length of the sub-normal at a point (not origin) on $y^2 = 4ay$ or a in
	$X^2 = Y$ at (1, 1) is		$\frac{1}{\Delta P} = \frac{4}{2} \frac{1}{2} $
	π _ (4)		1991
	1) $\frac{\pi}{2}$ 2) $Tan^{-1}\left(\frac{\pi}{3}\right)$	23.	If the relation between length of sub-normal and
	$\begin{array}{c} 2 \\ (1) \\ \end{array} $		length of sub-tangent at any point on the curve
	3) $Tan^{-1}\left(\frac{1}{2}\right)$ 4) $Tan^{-1}\left(\frac{3}{4}\right)$		$by^2 = (x + a)^3$ is $p(S.N) = q(S.T)^2$ then p:q =
	$(2) \qquad (4)$		1) b : a 2) a : b 3) 8b : 27a 4) 8b : 27
الــــــــــــــــــــــــــــــــــــ			

1990 The curve $x^4 - 2xy^2 + y^2 + 3x - 3y = 0$ cuts the 24. x-axis at (0, 0) at an angle 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{3}$ 4) $\frac{\pi}{2}$ 1) $\frac{\pi}{6}$ Equation of the normal to the curve $x^2 = 4y$ at 25. (1, 2) on it is 1) x - 2y = 32) 2x + y = 44) x + 2y = 3s3) 2x - y = 41985 The length of the sub-normal at any point on the 26. curve $y^2 = 2px$ is 1) Constant 2) Varies as abscissa 3) Varies as ordinate 4) Varies as P 1984 27. The length of sub-normal at x = a on the parabola $y^2 = 16x$ is 2) $\frac{2}{\sqrt{a}}$ 3) 2a 4) a 1)8 1983 28. If the sub-normal to the curve $xy^n = a^{n+1}$ is constant then value of n is 1) - 22) - 13)0 4) 2 1982 29. Equation of the tangent to the curve $y = 3x^3 + 6x^2 - 9$ at the point where the curve crosses y-axis is 2) y + 9 = 04) 2y + 9 = 01) y - 9 = 03) 2y - 9 = 0The curves $y = x^2$ and $6y = 7 - x^3$ intersect at 30. (1, 1) at an angle 2) $\frac{\pi}{3}$ 3) $\frac{\pi}{2}$ 1) $\frac{\pi}{4}$ 4) π **KEY** 4.2 1.2 2.1 3.2 5.2 6.2 7.2 8.1 9.3 11.4 12.3 10.2 13.4 14.1 15.2 16.3 17.1 18.2 19.1 20.2 21.3 22.2 23.4 24.2 25.2 28.1 26.1 27.1 29.2 30.3 LEVEL-V **COMPREHENSIVE OUESTIONS** 1. The portion of the tangent at any point to the curve $x^m y^n = K(m \neq 0 \& n \neq 0)$ intercepted between the coordinate axes is divded by the point of contact in the constant ratio and the triangle formed by the tangent with the axes is constant if m = n

The area of triangle formed by the tangent at any point on the curve $x_V = c^2$ with the coordenate axes is ____ sq.units 1) c^2 2) $2c^2$ 3) 2c 4) c If the area of triangle formed by the tangent at any point on the curve $xy^{K} = a^{n+2}$ with the coordinate axes is constant then K =1)1 2) 3 3) 2 (4) - 2A point P on the curve divides the portion of the tangent between the axes which is drawn at P on the curve $xy^2 = K$, in the ratio 1) 1:2 2)1:33) 2:1 4) 1:1 If the tangent at P on the curve $xy = c^2$ meets the coordinate axes in A & B respectively then 1) \overline{AB} is trisected by P 2) \overline{AB} is bisected by P 3) PA:PB = 3:24) PA:PB = 2:3KEY III. 3 IV. 2 I. 2 II. 1 If the tangent and normal at P (x_1, y_1) to the curve y = f(x) meet the X-axis in T & N respectively & PM be the perpendicular drawn to X-axis then i) PT is the length of the tangent ii) PN is the length of the normal iii) TM is the length of sub-tangent iv) MN is the length of sub-normal For the curve $v = 4x^2$; I) Length of the tangent to the curve at (-1,4)1) $\sqrt{65}$ 2) $2\sqrt{65}$ 4) $\frac{\sqrt{65}}{2}$ 3) $4\sqrt{65}$ Length of the normal to the curve at (-1,4)2) 32 3) $4\sqrt{65}$ 4) $\frac{\sqrt{65}}{2}$ 1) $\frac{1}{2}$ Length of the sub tangent to the curve at (-1,4)1) $\frac{1}{3}$ 2) $\frac{1}{2}$ 3) $\frac{1}{4}$ 4) $\frac{2}{3}$ Length of the sub normal to the curve at (-1,4)3) 30 4) 15 1) 32 2) 31 KEY III. 2 IV. 1 I. 4 II. 3

JR. MATHEMATICS

I.

II.

III.

IV.

2.

II.

III.

IV.