## RELATIONS (XII, R. S. AGGARWAL)

## EXERCISE 1A (Pg.No.: 16)

- 1. Find the domain and range of the relation  $R = \{(-1, 1), (1, 1), (2, 4), (-2, 4)\}$
- **Sol.**  $dom(R) = \{-1, 1, -2, 2\}$ , range  $(R) = \{1, 4\}$
- 2. Let  $R = \{(a, a^3): a \text{ is a Prime Number less than 5}\}$ Find the range of R.
- Sol. Let  $A = \{ a : a \text{ is a prime number less then 5} \}$

$$\Rightarrow$$
 A = {2, 3}

Now,  $R = \{ (2, 8), (3, 27) \}$ 

By the definition of range R. Range(R) =  $\{8, 27\}$  Ans.

- 3. Let  $R = \{(a, a^3) : a \text{ is a prime number less than } 10\}$ .
  - Find (i) R (ii) dom(R) and (iii) range (R)
- **Sol.** a is a prime number less than 10

$$a = 2, 3, 5, 7$$

$$R = \{(2, 8), (3, 27), (5, 125), (7, 343)\}$$

$$dom(R) = \{2, 3, 5, 7\}$$
, range  $(R) = \{8, 27, 125, 343\}$ 



4. Let  $R = \{x, y\} : x + 2y = 8\}$  be a

Relation on N.

Write range of R.

Sol 
$$x + 2y = 8$$

$$\Rightarrow x = 8 - 2y$$

Putting 
$$y = 1$$
, we have  $x = 6$  Putting  $y = 2$ , we have  $x = 4$  Putting  $y = 3$ , we have  $x = 2$ 

Here, 
$$R = \{ (2, 3), (4, 2), (6, 1) \}$$

Range 
$$(R) = (3, 2, 6)$$

List the elements of each of the following relations. Find the domain and range in each case.

$$R_2 = \{(a, b) : a \in N, b \in N \text{ and } a + 3b = 12\}$$

**Sol.**  $R_2\{(a, b): a \in N, b \in N \text{ and } a+3b=12\}$ 

$$R_2 = \{(3, 3), (6, 2), (9, 1)\},\$$

$$dom(R_2) = \{3, 6, 9\},\$$

range 
$$(R_2) = \{3, 2, 1\}$$



6. Let  $R = \{(a,b): b = |a-1|, a \in \mathbb{Z} \text{ and } |a| < 3\}$ 

Find the domain and range of R

Sol. Let,  $A = \{a : a\varepsilon \ z \text{ and } |a| < 3\}$ 

$$\Rightarrow$$
 A = {-2, -1, 0, 1, 2}

$$R = \{(a, b) : b = |a - 1|, a \in z \text{ and } |a| < 3\}$$

$$\Rightarrow$$
 R = {(-2, 3), (-1, 2), (0, 1), (1, 0), (2, 1)}

Clearly domain (R) =  $\{-2, -1, 0, 1, 2\}$ 

Range(R) =  $\{0, 1, 2, 3\}$ 

7. Let  $R = \left\{ \left( a, \frac{1}{a} \right) : a \in \mathbb{N} \text{ and } 1 < a < 5 \right\}$ 

Find the domain and range of R

Sol. Let 
$$A = \{a: a \in \mathbb{N}, \& 1 \le a \le 5\}$$

$$\Rightarrow$$
 A = {2, 3, 4}

$$\therefore \mathbf{R} = \left\{ \left(2, \frac{1}{2}\right), \left(3, \frac{1}{3}\right), \left(4, \frac{1}{4}\right) \right\}$$

Domain = 
$$\{2, 3, 4\}$$
 Range =  $\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right\}$ 

8. Let  $R = \{(a,b): a,b \in N \text{ and } b = a+5, a < 4\}$ 

Find the domain and range of R

Sol. Let, 
$$A = \{a : a \in N \& a < 4\}$$

$$\Rightarrow$$
 A = {1, 2, 3}

$$R = \{(1, 6), (2, 7), (3, 8)\}$$

Clearly, Domain =  $\{1, 2, 3\}$  and Range =  $\{6, 7, 8\}$ 

- 9. Let S be the set of all sets and let  $R = \{(A, B) : A \subset B\}$ , i.e. A is proper subset of B. show that R is
  - (i) transitive
- (ii) not reflexive
- (iii) not symmetric

Sol. (i) transitivity: -

Let, A, B and  $C \in S$ , such that  $(A, B) & (B, C) \in R$ .

Let, A, B and  $C \in S$ , such that  $(A, B) & (B, C) \in R$ .

$$: (A, B) \in R \Rightarrow A \subset B \dots (i)$$

$$(B, C) \in R \Rightarrow B \subset C$$
....(ii)

From (i) and (ii), we have  $A \subset C \Rightarrow (A, C) \in R$ 

Thus, R is a transitive Relation S.

(ii) Non - reflexive; →

$$\Rightarrow$$
 (A, A)  $\in$  R

thus, R is non reflexive.

(iii) Non. Symmetric: →

Let,  $A \subset B$ 

$$(A, B) \in R$$

But,  $B \not\subset A R$ 

$$\therefore (B, A) \notin R : (A, B) \in R \& (B, A) \notin R$$

:. R is non - symmetric

- 10. Let A be the set of all points in a plane and let O be the origin. Show that the relation R, defined by  $R = \{(P, Q) : OP = OQ\}$  is an equivalence relation.
- **Sol.** Let O denote the origin in the given plane. Then,  $R = \{(P, O) : OP = OQ\}$ .

We observe the following properties of relation R:

**Reflexivity:** For any point P inset A, we have OP = OP

 $\Rightarrow$   $(P, P) \in R$ . Thus,  $(P, P) \in R$  for all  $P \in A$ . So, R is reflexive.

**Symmetric**: Let P and Q be two points inset A such that  $(P, Q) \in R$ 

$$\Rightarrow OP = OQ \Rightarrow OQ = OP \Rightarrow (Q, P) \in R$$
.

Thus,  $(P,Q) \in R \implies (Q,P) \in R$  for  $P,Q \in A$ . So, R is symmetric.

```
Transitivity: Let P, Q and S be three points in set A such that (P, Q) \in R and (Q, S) \in R
```

$$\Rightarrow OP = OQ$$
 and  $OQ = OS \Rightarrow OP = OS \Rightarrow (P, S) \in R$ 

So, R is transitive. Hence, R is an equivalence relation.

Let P be a fixed point in set A and Q be a point in set A such that  $(P, Q) \in R$ . Then,  $(P, Q) \in R$ .

- $\Rightarrow OP = OQ \Rightarrow Q$  moves in the plane in such a way that its distance from the origin. O(0, 0) is always same and is equal to OP.
- $\Rightarrow$  Locus of Q is circle with centre at the origin and radius OP.

Hence, the set of all points related to P in the circle passing through P with origin O as centre.

11. On the set S of all real numbers, define a relation  $R = \{(a,b) : a \le b\}$ 

Show that R is (i) reflexive (ii) transitive (iii) not symmetric

Sol. (i) Reflexivity: →

Let, a be an arbitrary element on S.

$$a \le a \Rightarrow (a, a) \in R$$
 thus, R is reflective.

(ii) Transitivity: →

Let, a, b &  $c \in s$  such that (a, b) and  $(b, c) \in s$ 

$$(a,b) \in R \Rightarrow a \leq b \dots (i)$$
 and  $(b,c) \in R \Rightarrow b \leq c \dots (ii)$ 

from (i) and (ii) we have  $a \le c \implies (a, c) \in R$ 

Thus, R is transitive.

(iii) Non symmetry : →

$$5 \le 6 \Rightarrow (5, 6) \in \mathbb{R}$$

But, 
$$6 \nleq 5 \Rightarrow (6, 5) \in R$$

thus, R is non symmetric

12. Let 
$$A = \{1, 2, 3, 4, 5, 6\}$$
 and let  $R = \{(a, b) : a, b \in A \text{ and } b = a + 1\}$ 

Show that R is (i) not reflexive (ii) not symmetric and (iii) not transitive

Sol. In roster form,

$$R = \{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)\}$$

Non - reflective: →

$$\cdot \cdot \cdot (1, 1) \in R$$
, but  $1 \in A$  thus, R is non-reflective.

Non – symmetric: 
$$\rightarrow$$
 :  $(1, 2) \in R$  but,  $(2, 1) \notin R$ 

thus, R is non-symmetric.

$$(1, 2) \in \mathbb{R} \& (2, 3) \in \mathbb{R}$$

But, 
$$(1,3) \notin R$$

thus, R is non-transitive

## EXERCISE 1B (Pg. No.: 18)

- 1. Define a relation on a set. What do you mean by the domain and range of a relation?
- **Sol.** Relation in a set: A relation R in a set A is a subset of  $A \times A$ .

Thus, R is a relation is a set  $A \Leftrightarrow R \subseteq A \times A$ , if  $(a, b) \in R$ , then we say that a is related to b and write, aRb. If  $(a, b) \notin R$ , then we say that a is not related to b and write  $a \not R b$ .

Domain and range of a relation. Let R be a relation in a set A. Then, the set of all first co-ordinate of element of R is called the domain of R, written as dom(R) and the set of all second co-ordinate of R is called the range of R, write as range (R).

2. Let A be the set of all triangles in a plane show that the relation

$$R = \{(\Delta_1, \Delta_2) : \Delta_1 \sim \Delta_2\}$$
 is an equivalence relation on A

Sol. Reflectivity:→

Let,  $\Delta$  be an arbitrary element on A.

$$\Delta \sim \Delta \Rightarrow (\Delta, \Delta) \in R \forall \Delta \in R$$
thus, R is reflective

Symmetricity:->

Let,  $\Delta_1$  and  $\Delta_2 \in A$ , such that  $(\Delta_1, \Delta_2) \in R$ 

$$(\Delta_1, \Delta_2) \in \mathbb{R} \Rightarrow \Delta, \sim \Delta_2$$

$$\Rightarrow \Delta_2 \sim \Delta_1 \Rightarrow (\Delta_2, \Delta_1) \in \mathbb{R}$$

thus, R is symmetric relation.

Transitivity: →

Let,  $\Delta_1$ ,  $\Delta_2$  and  $\Delta_3 \in$  a such that,  $(\Delta_1, \Delta_2 \& (\Delta_2, \Delta_3) \in R$ 

$$\therefore (\Delta_1, \Delta_2) \in \mathbb{R} \Rightarrow \Delta_1 \sim \Delta_2 \dots (i)$$

& 
$$(\Delta_2, \Delta_3) \in \mathbb{R} \Rightarrow \Delta_2 \sim \Delta_3$$
 .....(ii)

From (i) and (ii) we have

$$\Delta_1 \sim \Delta_3 \Rightarrow (\Delta_1, \Delta_3) \in \mathbb{R}$$

thus, R is transitive.

- 3. Let  $R = \{(a, b) : a, b \in \mathbb{Z} \text{ and } (a+b) \text{ is even}\}$ . Show that R is an equivalence relation on  $\mathbb{Z}$ .
- Sol.  $R = \{(a, b) : a, b \in \mathbb{Z} \text{ and } a+b \text{ is even}\}$

**Reflexive**: Let  $a \in Z$  then a + a = 2a, which is even  $\therefore$   $(a, a) \in R$ , hence it is reflexive.

Symmetric: Let  $(a, b) \in \mathbb{Z}$  then  $a+b = \text{even} \implies b+a = \text{even}$ . (b, a) also belongs to  $\mathbb{R}$ .

$$(a, b) \in R \implies (b, a) \in R$$
. Here R is symmetric also.

**Transitive:** Let (a, b) and  $(b, c) \in R$  then a+b = even = 2k and b+c = even = 2r

Adding then, 
$$a+2b+c=2k+2r \Rightarrow a+c=2(k+r-b) \Rightarrow a+c=\text{even}$$
  $\therefore$   $(a, c) \in R$ 

Hence, it is transitive also.

- :. Since, R is reflexive, symmetric and transitive. Hence, R is an equivalence.
- 4. Let  $R = \{(a, b) : a, b \in \mathbb{Z} \text{ and } (a b) \text{ is divisible by 5} \}$ . Show that R is an equivalence relation on  $\mathbb{Z}$ .
- **Sol.**  $(a, b) \in R \Leftrightarrow a b$  is divisible by 5.
  - (i) Reflexive: All  $(a, a) \in R$  as a a = 0 which is divisible by 5. Hence, R is reflexive.
  - (ii) Symmetric: If  $(a, b) \in R$ , then a b is divisible by 5.

```
\therefore a-b=5k and (b-a)=-5k \therefore (b-a) is also divisible by 5.
```

 $(b, a) \in R$   $\therefore$  R is symmetric also.

(iii) Transitive: If (a, b) and  $(b, c) \in R$  then we must have according to definition of R

$$a-b$$
 is divisible by 5.  $\therefore a-b=5m$  and  $b-c$  is divisible by 5

$$b-c=5n$$

Adding then we get, a-c=5(m+n)

- (a-c) is also divisible by 5. Hence,  $(a, c) \in R$ , hence the given ration is transitive also.
- :. R is reflexive, symmetric and transitive. Hence R is an equivalence relation.
- 5. Show that the relation R defined on the set  $A = \{1, 2, 3, 4, 5\}$ , given by  $R = \{(a, b) : |a-b| \text{ is even}\}$  is an equivalence relation.

**Sol.** We have, 
$$R = \{(a, b) : |a-b| \text{ is even}\}$$
, where  $a, b \in A = \{1, 2, 3, 4\}$ 

We observe the following proposition of relation R:

**Reflexivity:** For any  $a \in A$ , we have |a-a| = 0, which is even.

$$(a, a) \in R$$
 for all  $a \in A$ . So, R is reflexive.

Symmetry: Let 
$$(a, b) \in R \implies |a-b|$$
 is even  $\Rightarrow |b-a|$  is even  $\Rightarrow (b, a) \in R$ 

Thus, 
$$(a, b) \in R \implies (b, a) \in R$$
. So, R is symmetric.

**Transitivity**: Let 
$$(a, b) \in R$$
 and  $(b, c) \in R$ . Then,  $(a, b) \in R$  and  $(b, c) \in R$ 

$$\Rightarrow |a-b|$$
 is even and  $|b-c|$  is even

 $\Rightarrow$  (a and b both are even or both are odd) and (b and c both are even or both are odd).

Now two cases arise:

Case I: When b is even in this case,  $(a, b) \in R$  and  $(b, c) \in R$ 

$$\Rightarrow |a-b|$$
 is even and  $|b-c|$  is even  $\Rightarrow a$  is even and  $c$  is even [:  $b$  is even]

$$\Rightarrow |a-c|$$
 is even  $\Rightarrow (a, c) \in R$ 

Case II: When b is odd in this case,  $(a, b) \in R$  and  $(b, c) \in R$ 

$$\Rightarrow |a-b|$$
 is even and  $|b-c|$  is even  $\Rightarrow a$  is odd and c is odd [: b is odd]

$$\Rightarrow |a-c|$$
 is even  $\Rightarrow (a,c) \in R$ . Thus,  $(a,b) \in R$  and  $(b,c) \in R \Rightarrow (a,c) \in R$ 

So, R is transitive. Hence, R is an equivalence relation.

- 6. Show that the relation R on  $N \times N$ , defined by  $(a, b)R(c, d) \Leftrightarrow a+d=b+c$  is an equivalence relation.
- **Sol.** We observe the following proposition of relation R:

**Reflexivity**: Let (a, b) be an arbitrary element of  $N \times N$ 

Then, 
$$(a, b) \in N \times N \implies (a, b) \in N \implies a+b=b+a$$

$$\Rightarrow$$
  $(a, b)R(a, b)$ . Thus,  $(a, b)R(a, b)$  for all  $(a, b) \in N \times N$ . So, R is reflexive on  $N \times N$ .

Symmetry: Let 
$$(a, b), (c, d) \in N \times N$$
 be such that  $(a, b)R(c, d)$ . Then,  $(a, b)R(c, d)$ 

$$\Rightarrow a+d=b+c \Rightarrow c+b=d+a$$
 [By commutativity of order on N]

$$\Rightarrow$$
  $(c, d)R(a, b)$ , Thus  $(a, b)R(c, d) \Rightarrow (c, d)R(a, b)$  for all  $(a, b), (c, d) \in N \times N$ 

So, R is symmetric on  $N \times N$ .

**Transitivity**: Let  $(a, b), (c, d), (e, f) \in N \times N$  such that (a, b)R(c, d) and (c, d)R(e, f)

Then, 
$$(a, b)R(c, d) \Rightarrow a+d=b+c$$
,  $(c, d)R(e, f) \Rightarrow c+f=d+e$ 

$$\Rightarrow (a+d)+(c+f)=(b+c)+(d+e) \Rightarrow a+f=b+e \Rightarrow (a,b)R(e,f)$$

Thus, (a, b)R(c, d) and  $(c, d)R(e, f) \Rightarrow (a, b)R(e, f)$  for all  $(a, b), (c, d), (e, f) \in N \times N$ 

So, R is transitive on  $N \times N$ .

Hence, R being reflexive, symmetric and transitive is an equivalence relation on  $N \times N$ .

7. Let S be the set of all real numbers and let  $R = \{(a, b) : a, b \in S \text{ and } a = \pm b\}$ 

Show that R is an equivalence relation on S.

- **Sol.** As  $a = \pm b$  and  $a^2 = b^2$  have same meaning.
  - $\therefore$  Given relation R becomes  $R = \{(a, b) : a, b \in S \text{ and } a^2 = b^2\}$

Now,  $(a, a) \in R$  :  $a^2 = a^2$  is true. : R is reflexive and if  $(a, b) \in R$ 

$$\Rightarrow a^2 = b^2 \Rightarrow b^2 = a^2 \Rightarrow (b, a) \in \mathbb{R}$$
 :. R is symmetric

Also, if 
$$(a, b) \in R$$
 and  $(b, c) \in R$   $\Rightarrow a^2 = b^2$  and  $b^2 = c^2$   $\Rightarrow a^2 = c^2$   $\Rightarrow (a, c) \in R$ 

.: R is transitive.

- 8. Let S be the set of all points in a plane and let R be a relation in S defined by  $R = \{(A, B) : d(A, B) < 2 \text{ units}\}$ , where d(A, B) is the distance between the points A and B. Show that R is reflexive and symmetric but not transitive.
- Sol. (i) Reflexive:  $d(A, A) < 2 \implies (A, A) \in R$

(ii) Symmetric: 
$$(A, B) \in R \implies d(A, B) < 2 \implies d(B, A) < 2 \quad [\because d(B, A) = d(A, B)]$$
  
  $\Rightarrow (B, A) \in R$ 

(iii) Transitive: Consider points A(0,0), B(1.5,0), C(3,0)

Then, 
$$d(A, B) = 1.5$$
,  $d(B, C) = 1.5$  and  $d(A, C) = 3$ .

d(A, C) < 2 is not true.

Hence, R is reflexive and symmetric but not transitive.

- 9. Let S be the set of all real numbers. Show that the relation  $R = \{(a, b): a^2 + b^2 = 1\}$  is symmetric but neither reflexive nor transitive.
- **Sol.**  $S = \{(a, b); a^2 + b^2 = 1\}$

**Reflexive**: The given relation S is on the set of real numbers.

Let  $a \in R$  then  $a^2 + a^2 \ne 1$  for a = 2, 3... Hence, S is not reflexive.

**Symmetric:** Let  $(a, b) \in R$  then we must have  $a^2 + b^2 = 1$ 

 $(b, a) \in R$ , Hence  $(a, b) \in R \implies (b, a) \in R$ . S is symmetric.

**Transitive:** Let  $(a, b) \in R$  and  $(b, c) \in R$ .

 $(\cos 30^\circ, \sin 30^\circ) \in R$  and  $(\sin 30^\circ, \cos 30^\circ) \in R$ , but  $(\cos 30^\circ, \cos 30^\circ) \notin R$ 

Hence, S is not transitive.  $\therefore$  S is symmetric but neither reflexive nor transitive

- 10. Let  $R = \{(a, b) : a = b^2\}$  for all  $a, b \in N$ . Show that R satisfies none of reflexivity, symmetric and transitivity.
- **Sol.** We have,  $R = \{(a, b) : a = b^2\}$  where  $a, b \in N$

**Reflexivity:** We observe that  $2 \neq (2)^2 \implies 2$  is not related to 2, i.e.,  $(2, 2) \notin R$ 

So, R is not reflexive

Symmetry: We observed that  $4 = (2)^2$   $(4, 2) \in R$  but  $(2, 4) \notin R$   $[\because 4^2 \neq 2]$ 

So R is not symmetric.

**Transitive**: Clearly,  $(16, 4) \in R$  and  $(4, 2) \in R$  but  $(16, 2) \notin R$ . Hence not transitive.

- 11. Show that the relation  $R = \{(a, b) : a > b\}$  on N is transitive but neither reflexive nor symmetric.
- **Sol.** We have,  $R = \{(a, b) : a > b\}$ , where  $a, b \in R$ .

**Reflexivity:** For any  $a \in R$ , we have, (a > b)

 $\Rightarrow$   $(a, b) \notin R$  for all  $a \notin R$   $\Rightarrow$  so is not reflexive.

Symmetric: We observe that  $(3, 4) \in R$  but  $(4, 3) \notin R$ . So, R is not symmetric.

**Transitive**: Let  $(a, b) \in R$  and  $(b, c) \in R$ . Then,  $(a, b) \in R$ .

 $\Rightarrow a > b$  and b > c  $\Rightarrow a > c$   $\Rightarrow (a, c) \in R$ 

So, R is transitive. Hence, R is transitive but neither reflexive nor symmetric.

- 12. Let  $A = \{1, 2, 3\}$  and  $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)\}$ . Show that R is reflexive but neither symmetric nor transitive.
- **Sol.** Since 1, 2,  $3 \in A$  and (1, 1), (2, 2),  $(3, 3) \in R$  is for each  $a \in A$ ,  $(a, a) \in R$ .

So, R is reflexive. We observe that  $(1, 2) \in R$  but  $(2, 1) \notin R$ . So, R is not symmetric.

Also,  $(1, 2) \in R$  and  $(2, 3) \in R$  but  $(1, 3) \notin R$ . So, R is not transitive.

- 13. Let  $A = \{1, 2, 3, 4\}$  and  $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (3, 2)\}$ . Show that R is reflexive and transitive but not symmetric.
- **Sol.**  $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (3, 2)\}$

As (1, 1), (2, 2), (3, 3),  $(4, 4) \in R$  is reflexive and we observe that  $(1, 2) \in R$  but  $(2, 1) \in R$ .

So, R is not symmetric. Also,  $(1, 2) \in R$  and  $(2, 3) \in R$  but  $(1, 3) \in R$ . So, R is transitive.