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Figure 1 (a) Relative shear of two planes of atoms (shown in section) in a uniformly strained clys- 
tal: (h) shear stress as a function of the relative displacement of the planes from their equilibrium 
position. The heavy broken hne drawn at the initial slope defines the shear modulus G. 



CHAPTER 21: DISLOCATIONS 

This chaptcr is concerned with the interpretation of the plastic mechani- 
cal properties of crystalline solids in terrrls of the thcory of dislocations. Plastic 
properties are irreversible defor~~iations; elastic properties are reversible. The 
easc with which pure single crystals deform plastically is striking. This i~itrinsic 
weakness of crystals is exhibited in various ways. Pure silver chloride melts at 
455*C, yet at room temperafirre it has a cheeselike consistency and can he 
rolled into sheets. Pure aluminum crystals are elastic (follow Hookc's law) only 
to a strain of about lo-', after which they deform plastically. 

Theoretical estimates of the strain at the elastic limit of perfect crystals 
may gyve val~ies 10%r lo4 higher than the lowest ohsenred values, although a 
factor 102 is more usual. There are few excrptions to the rule that pure crystals 
are plastic and are not strong: crystals of germanium and silicon are not plastic 
at room temperature and fail or yeld only by fracture. Glass at room tempcra- 
ture fails o~ily by fracture, but it is not crystalline. The fracture of glass is 
caused by stress concentration at minute cracks. 

SHEAR STRENGTH OF SINGLE CRYSTALS 

Frenkel gave a simple method of estiniating the theoretical shear strength 
of a perfect crystal. We consider in Fig. 1 the force needed to make a shear 
displacement of two planes of atoms past each other. For small elastic strains, 
the stress u is related to the displacement x by 

Here d is the interplanar spacing, and G denotes the appropriate shear 
modulus. When the displacement is large and has proceeded to the point that 
atom A is directly over atom B in the figure, the two planes of atoms arc in a 
configuratio~~ of unstable equilibriiim and the stress is zero. As a first approxi- 
mation we represent tlir stress-displacement relation by 

u = (Gd25-d) sin (2mlu) , (2) 

where a is the interatomic spacing in the direction of shear. This relation is con- 
structed to reduce to (1) for small values of x/u. The critical shear strcss uc at 
which the lattice becomes unstable is given by the niaximum valuc of u, or 

If a = d, then u, = (;/25-: the ideal critical shear stress is of the order or of 
the shear modulus. 



Table 1 Comparison of shear modulus G and observed elastic limit rrCA 

Shear modulus 6, Elastic limit a,., 
in dydr/crn2 in d>n/crn2 

Sn, single crystal 1.9 X 10" 1.3 X 10' 15,000 
Ag, single crystal 
A], single c~ystal 
Al, 1311re. I~olycrystt"l 
Al,  corr~rr~ercial drawn 
Duralumin 
Fe, soft, polycrystal 
Heat-treated carbon stccl 
Nickel-chrome steel 

"After Mott 

The observatior~s in Table 1 show the experimental values of the elastic 
limit are much smaller tlrm ( 3 )  \i~ou!d suggest. The theoretical estimate may 
he improvcd by consideration of the actual fonr~ of the intermolecular forces 
and by consideration of other configurations of mecl~anical stability available 
to the lattice as it is sheared. Mackcnzie has shown that these two effects may 
reduce the theoretical ideal shear strength to about G/,30, corresponding to a 
critical shear strain angle of about 2 degrees. The ohscrvcd low values o l  the 
shear strength can be explained only by the presence of impcrfkctions that 
can act as sources of rrrechariical weakness in real crystals. The movement of 
crystal imperlections called dislocations is responsible for slip at very low 
applied strcsses. 

Slip 

Plastic deformation in crystals occurs by slip, an example of which is 
shown in Fig. 2. In slip, one part of the crystal slides as a unit across an adja- 
cent pad. The surface on which slip takes place is known as the slip plane. The 
direction of motion is know11 as the slip direction. The great importance of lat- 
ticr properties lor plastic strain is indicated by the highly anisotropic nature of 
slip. Displacement takes place along crystallograpllic planes with a set of small 
Miller indices, such as thc {lll) planes in fcc metals and the (110), [llZ}, a ~ ~ d  
{I231 planes in bcc metals. 

The slip hrection is in the line of closest atomic packing, (110) in fcc 
111etals and (111) in bcc metals (Problem 1). To maintain the crystal striicturc 
after slip, the displacement or slip vector must equal a lattice translation vec- 
tor. The shortest lattice trans la ti or^ vector expressed in terms of the lattice con- 
stant n in a fcc structure is of the form (al2)(? + y); in a bcc structure it is 
(a/2)(% + y + 2). Bnt in fcc crystals one also observes partial displacarr~ents 
which upset the regular seqllence ABCABC . . . of closest-packed planes, to 



Figure 2 Translational slip in zinc single clystals. (E. R. Parker.) 

produce a stacking fault such as ABCABABC. . . . The result is then a mix- 
ture of fcc and hcp stacking. 

Deformation by slip is inhomogeneous: large shear displacements oocur 
on a few widely separated slip planes, while parts of the crystal lying between 
slip planes remain essentially undeformed. A property of slip is the Schmid law 
of the critical shear stress: slip takes place along a given slip plane and direction 
when the corresponding component of shear stress reaches the critical value. 

Slip is one mode of plastic deformation. Another mode, twinning, is ob- 
served particularly in hcp and bcc structures. During slip a considerable dis- 
placement occurs on a few widely separated slip planes. During twinning, a 
partial displacement occurs successively on each of many neighboring crystal- 
lographic planes. After twinning, the deformed part of the crystal is a mirror 
image of the undeformed part. Although both slip and twinning are caused by 
the motion of dislocations, we shall be concerned primarily with slip. 

DISLOCATIONS 

The low observed values of the critical shear stress are explained in terms 
of the motion through the lattice of a line imperfection known as a dislocation. 
The idea that slip propagates by the motion of dislocations was published in 
1934 independently by Taylor, Orowan, and Polanyi; the concept of dislocations 
was introduced somewhat earlier by Prandtl and Dehlinger. There are several 
basic types of dislocations. We first describe an edge dislocation. Figure 3 
shows a simple cubic crystal in which slip of one atom distance has occurred 
over the left half of the slip plane but not over the right half. The boundary be- 
tween the slipped and unslipped regions is called the dislocation. Its position is 
marked by the termination of an extra vertical half-plane of atoms crowded into 



Figure 3 An edge dislocation EF in the glide plane ABCD. The figure shows the slipped region 
ABEF in which the atoms have been displaced by more than half a lattice constant and the un- 
slipped region FECD with displacement less than half a lattice constant. 

Figure 4 Structure of an edge disloca- 
tion. The deformation may be thought 
of as caused by inserhng an extra plane 
of atoms on the upper half of they axis. 
Atoms in the upper half-crystal are 
compressed by the insertion; those in 
the lower half are extended. 

the upper half of the crystal as shown in Fig. 4. Near the dislocation the crystal 
is highly strained. The simple edge dislocation extends indefinitely in the slip 
plane in a direction normal to the slip direction. In Fig. 5 we show a photo- 
graph of a dislocation in a two-dimensional soap bubble raft obtained by the 
method of Bragg and Nye. 

The mechanism responsible for the mobility of a dislocation is shown in 
Fig. 6. The motion of an edge dislocation through a crystal is analogous to the 
passage of a ruck or wrinkle across a rug: the ruck moves more easily than the 
whole rug. If atoms on one side of the slip plane are moved with respect to 
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Figure 5 A dislocation in a hvo-dimensional bubble raft. The dislocation is ]nost eas~ly seen by 
turning the page by 30" in its plane and sighting at a low angle. (W. M. Lomer, after Bragg and Nye.) 

- -t -t 

Figure 6 Motion of a dislocation 
under a shear tending to move the 
upper surface of the s~ecimen to the - - - dght. (D. Hull.) 

those on the other side, atoms at the slip plane will experience repulsive forces 
from some neighbors and attractive forces from others across the slip plane. 
These forces cancel to a first approximation. The external stress required to 
move a dislocation has been calculated and is quite small, below lo5 dyn/cm2 
when the bonding forces in the crystal are not highly directional. Thus dis- 
locations may make a crystal very plastic. Passage of a dislocation through a 
crystal is equivalent to a slip displacement of one part of the crystal. 

The second simple type of dislocation is the screw disIocation, sketched 
in Figs. 7 and 8. A screw dislocation marks the boundary between slipped and 
unslipped parts of the crystal. The boundary parallels the slip direction, in- 
stead of lying perpendicular to it as for the edge dislocation. The screw dis- 
location may be thought of as produced by cutting the crystal partway through 
with a knife and shearing it parallel to the edge of the cut by one atom spacing. 
A screw dislocation transforms successive atom planes into the surface of a 
helix: this accounts for the name of the dislocation. 



Figure 7 A screw dislocation. A part ABEF of the slip plane has slipped in the direction parallel to 
the dislocation line EF A screw dislocation may be visualized as a helical arrangement of lattice 
planes, such that we change planes on going completely around the dislocation line. (After Cottrell.) 

Figure 8 Another view of a screw dislocation. The bro- 
ken vertical line that marks the dislocation is surrounded 
by strained material. 

Burgers Vectors 

Other dislocation forms may be constructed from segments of edge and 
screw dislocations. Burgers has shown that the most general form of a linear 
dislocation pattern in a crystal can be described as shown in Fig. 9. We con- 
sider any closed curve within a crystal, or an open curve terminating oil the 
surface at both ends: (a) Make a cut along any simple surface bounded by the 
line. (b) Displace the material on one side of this surface by a vector b relative 
to the other side; here b is called the Burgers vector. (c) In regions where b 
is not parallel to the cut surface, this relative displacement will either ~ r o d u c e  
a gap or cause the two halves to overlap. In these cases we imagine that we 
either add material to fill the gap or subtract material to prevent overlap. (d) 
Rejoin the material on both sides. We leave the strain dsplacement intact at 
the time of rewelding, but afterwards we allow the medium to come to internal 
equilibrium. The resulting strain pattern is that of the dislocation character- 
ized jointly by the boundary curve and the Burgers vector. The Burgers vector 
must be equal to a lattice vector in order that the rewelding process will main- 
tain the crystallinity of the material. The Burgers vector of a screw dislocation 
(Figs. 7 and 8) is parallel to the dislocation line; that of an edge dislocation 
(Figs. 3 and 4) is perpendicular to the dislocation line and lies in the slip plane. 
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Figure 9 General method of forming a dislocation ring in a medium. The medium is represented 
by the rectangular block. The ring is represented by the closed curve in the interior in the block. A 
cut is made along the surface bounded by the curve and indicated by the contoured area. The ma- 
terial on one side of the cut is displaced relative to that on the other by vector distance b, which 
may be oriented arbitrarily relative to the surface. Forces will be required to effect the displace- 
ment. The medium is filled in or cut away so as to be continuous after the displacement. It is then 
joined in the displaced state and the applied forces are relaxed. Here b is the Burgers vector of the 
dislocation. (After Seitz.) 

1 line Figure 10 Shell of elastically distorted cvstal surrounding 
screw dislocation with Burgers vector b; see also Fig. 16. 

Stress Fields of Dislocations 

The stress field of a screw dislocation is particularly simple. Figure 10 
shows a shell of material surrounding an axial screw dislocation. The shell of 
circumference 2nr has been sheared by an amount b  to give a shear strain 
e = b I 2 ~ r .  The corresponding shear stress in an elastic continuum is 



This cxprcssion does not hold in the region immediately around the disloca- 
tion line, as the strains here are too large for continuum or linear elasticity 
theory to apply. The elastic energy of the shell is dE, = ~GC' dV = (GhP/4v) drlr 
per unit length. The total elastic energy per unit length of a screw dislocation 
is found on integration to be 

wherc R and r,  are appropriate upper and lower limits for the variable r. A rea- 
sonable valile of r,  is comparable to the magnitudc b of the Burgers vector 
or to the lattice constant; the value of R cannot exceed thc dimensions of thc 
crystal. The value of the ratio R/r, is not very important hecalise it enters in a 
logarithm term. 

\17e now show the form of the energy of an edge dislocation. Let u, and 
u,, denote the tensile stresses in the radial and circulnferential hrections, and 
let u, denote the shear stress. In an isotropic elastic continuum, u7, and u,, 
are proportional to (sin 8)lr: wc nerd a function that falls off as l l r  and that 
changes sign when y  is replaced by -y .  The shear stress mro is proportional to 
(COS 0)lr;  considering the plane y  = 0, we see from Fig. 4 that the shear stress 
is an odd fur~ction of x. The constants of proportionality in the stress are propor- 
tional to the shear modulus G and to the Burgers vector b of the displacement. 
The final result is 

where the Poisson ratio v = 0.3 for most cry-stals. The strain energy of a unit 
length of edge dislocation is 

N7e want an expression for the shear stress component u,, on planes paral- 
lel to the slip plane in Fig. 4. From the stress components a,, a,,, and ud 
evaluated on the plane a &stance y above the slip plane, we find 

It is shown in Problem 3 that the force caused by a resolved unifornl shear 
strcss u is F = bu per unit length of dislocation. The force that an edge dislo- 
cation at thc origin cxcrts upon a similar onc at the location (y, 8 )  is 

per unit length. Here F is the component of force in the slip direction. 
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Low-angle Grain Boundaries 

Burgers suggested that low-angle boundaries between adjoining crystal- 
lites or crystal grains consist of arrays of dislocations. A simple example of the 
Burgers model of a grain boundary is shown in Fig. 11. The boundary occupies 
a (010) plane in a simple cubic Iattice and divides two parts of the crystal that 
have a [001] axis in common. Such a boundary is called a pure tilt boundary: 
the misorientation can be described by a small rotation 0 about the common 
[001] axis of one part of the crystal relative to the other. The tilt boundary is 
represented as an array of edge dislocations of spacing D = bl0, where b is the 
Burgers vector of the dislocations. Experiments have substantiated this model. 
Figure 12 shows the distribution of dislocations along small-angle grain 
boundaries, as observed with an eIectron microscope. Further, Read and 
Shockley derived a theory of the interfacial energy as a function of the angle of 
tilt, with results in excellent agreement with measurements. 

Direct verification of the Burgers model is provided by the quantitative 
x-ray and optical studies of low-angle boundaries in germanium crystals by Vogel 

Figure 11 (a) Low-angle grain boundary, after Burgers. (b )  Electron micrograph of a low-angle 
grain boundaly in molybdenum. The three dislocations in the image each have the same Burgers 
vector as in the drawing in Fig. l la .  The white circles mark the positions of atomic columns 
normal to the plane of the paper. Each array of circles defines the position of a dislocation, with 
four circles on the top of each array and three circles below. Closure failure is indicated by the 
arrows which define the Burgers vectors. (Courtesy of R. Gronsky.) 



Figure 12 Electron micrograph of dislocation structures in low-angle grain boundaries in 
an A1-7 percent Mg solid solution. Notice the lines of small dots on the right. Mag. X17,OOO. 
(R. Goodrich and 6. Thomas.) 

Figure 13 Dislocation etch pits in low-angle 
bounda~y on (100) face of germanium; the angle of 
the boundary is 27.5". The b o u n d v  lies in a (011) 
plane; the line of the dislocations is [100]. The 
Burgers vector is the shortest lattice translation vec- 
tor, or Ibl = a l l h  = 4.0 A. (F. L. Vogel, Jr.) 

and co-workers. By counting etch pits along the intersection of a low-angle 
grain boundary with an etched germanium surface (Fig. 13), they determined 
the dislocation spacing D. They assumed that each etch pit marked the end of 
a dislocation. The angle of tilt calculated from the relation 0 = b/D agrees well 
with the angle measured directly by means of x-rays. 

The interpretation of low-angle boundaries as arrays of dislocations is fur- 
ther supported by the fact that pure tilt boundaries move normal to them- 
selves on application of a suitable stress. The motion has been demonstrated in 



21 Dislocations 609 

Figure 14 Motion of a low-angle grain boundan, under stress. The boundary is the straight vertical 
line, and it is photographed under vertical illumination, thereby making evident the 2" angular 
change in the cleavage surface of the zinc clystal at the boundaly. The irregular horizontal line is a 
small step in the cleavage surface which serves as a reference mark. The crystal is clamped at the 
left; at the right it is subject to a force normal to the plane of the page. Top, oliginal position of 
boundary; bottom, moved back 0.4 mm. (J. Washburn and E. R. Parker.) 

a beautiful experiment, Fig. 14. The specimen is a bicrystal of zinc containing 
a 2" tilt boundary with dislocations about 30 atomic planes apart. One side of 
the crystal was clamped, and a force was applied at a point on the opposite side 
of the boundary. Motion of the boundary took place by cooperative motion of 
the dislocations in the array, each dislocation moving an equal distance in its 
own slip plane. The motion was produced by stresses of the order of magni- 
tude of the yield stress for zinc crystals, strong evidence that ordinay defor- 
mation results from the motion of dislocations. 

Grain boundaries and dislocations offer relatively little resistance to diffu- 
sion of atoms in comparison with diffusion in perfect crystals. A dislocation is 
an open passage for hffusion. Diffusion is greater in plastically deformed ma- 
terial than in annealed crystals. Diffusion along grain boundaries controls the 
rates of some precipitation reactions in solids: the precipitation of tin from 
lead-tin solutions at room temperature proceeds about lo8 times faster than 
expected from diffusion in an ideal lattice. 



Dislocation Densities 

The density of dislocations is the number of dislocation lines that inter- 
sect a unit area in the crystal. The density ranges from well below 10' 
&slocations/cm2 in the best germanium and silicon crystals to 1011 or 1012 dis- 
locations/cm2 in heavily deformed metal crystals. The methods available for 
estimating dislocation densities are compared in Table 2. The actual dislocation 
configurations in cast or annealed (slowly cooled) crystals correspond 
either to a group of low-angle grain boundaries or to a three-dimensional 
network of dislocations arranged in cells, as shown in Fig. 15. 

Lattice vacancies that precipitate along an existing edge dislocation will eat 
away a portion of the extra half-plane of atoms and cause the dislocation to climb, 
which means to move at right angles to the slip direction. If no dislocations are 

Table 2 Methods for estimating dislocation densitiesa 

W~dth of Maximum practical 
Techmque Speclmen thickness image density, per cm2 

Electron microscopy >lo00 -100 A 10"- 10l2 
X-ray transmission 0.1- 1.0 mm 5 ~m lo4-lo5 
X-ray reflection <2 pm (min.) - 50 pm (max.) 2 pm l0~-10' 
Decoration -10 pm (depth of focus) 0.5 pm 2 x lo7 
Etch pits no limit 0.5 p,mb 4 X lo8 

"W. 6. Johnston. 
' ~ imi t  of resolution of etch pits. 

Figure 15 Cell structure of three-dimensional tangles of dislocat~ons in deformed aluminum. 
(P. R. Swann.) 
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Figure 16 Electron micrograph of dislocation loops formed by aggregation and collapse of 
vacancies in A15 percent Mg quenched from 550°C. The helical dislocations are formed by 
vacancy condensation on a screw dislocation. Mag. X43.000. (A. Eikum and 6. Thomas.) 

present, the crystal will become supersaturated with lattice vacancies; their pre- 
cipitation in cylindrical vacancy plates may be followed by collapse of the plates 
and formation of dislocation rings that grow with further vacancy precipitation, as 
in Fig. 16. 

Dislocation Multiplication and Slip 

Plastic deformation causes a very great increase in dislocation density, 
typically from lo8 to about 10" dislocations/cm2 during deformation. If a dis- 
location moves completely across its slip plane, an offset of one atom spacing is 
produced, but offsets up to 100 to 1000 atom spacings are observed. This 
means that dislocations multiply during deformation. 

Consider a closed circular dislocation loop of radius r surrounding a 
slipped area having the radius of the loop. Such a loop will be partly edge, 
partly screw, and mostly of intermediate character. The strain energy of the 
loop increases as its circumference, so that the loop will tend to shrink in size. 
However, the loop will tend to expand if a shear stress is acting that favors slip. 



Figure 17 Frank-Read mechanism 
for multiplication of dislocations, 
showing successive stages in the gen- 
eration of a dislocation loop by the 
segment BC of a dislocation line. The 
process can be repeated indefinitely 

Figure 18 A Frank-Read dislocation source in silicon, decorated with copper precipitates and 
viewed with infrared illumination. Two complete dislocation loops are visible, and the third, inner- 
most loop is near completion. (After W. C. Dash.) 

A common feature of all dislocation sources is the bowing of dislocations. 
A dislocation segment pinned at each end is called a Frank-Read source, and 
it can lead (Fig. 17) to the generation of a large number of concentric disloca- 
tions on a single slip plane (Fig. 18). Related types of dislocation multiplica- 
tion mechanisms account for slip and for the increased density of dislocations 
during plastic deformation. Double cross-slip is the most common source. 
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STRENGTH OF ALLOYS 

Pure crystals are very plastic and yield at very low stresses. There appear 
to be four important ways of increasing the yield strength of an alloy so that it 
will withstand shear stresses as high as lo-' 6. They are mechanical blocking 
of dislocation motion, pinning of dislocations by solute atoms, impeding dis- 
location motion by short-range order, and increasing the dislocation density so 
that tangling of dislocations results. All four strengthening mechanisms de- 
pend for their success upon impeding dislocation motion. A fifth mechanism, 
that of removing all dislocations from the crystal, may operate for certain fine 
hairlike crystals (whiskers) that are discussed in the section on crystal growth. 

Mechanical blocking of dislocation motion can be produced most directly 
by introducing tiny particles of a second phase into a crystal lattice. This 
process is followed in the hardening of steel, where particles of iron car- 
bide are precipitated into iron, and in hardening aluminum, where particles 
of A1,Cu are precipitated. The pinning of a dislocation by particles is shown 
in Fig. 19. 

In strengthening by the addition of small particles there are two cases to 
be considered: either the particle can be deformed with the matrix, which re- 
quires that the particle can be traversed by the dslocation, or the particle 
cannot be traversed by the dislocation. If the particle cannot be cut, the stress 

Figure 19 Dislocations pinned hy particles in magnesium oxide. (Electron micrograph by 
6.  Thomas and J. Washburn.) 



necessary to force a dislocation between particles spaced L apart on a slip 
plane should be approximately 

u/G = b/L . (10) 

The smaller the spacing L, the higher is the yield stress cr. Before particles pre- 
cipitate, L is large and the strength is low. Immediately after precipitation is 
complete and many small particles are present, L is a minimum and the strength 
is a maxi~nurn. If the alloy is then held at a high tempcraturc, some particles 
grow at the expense of others, so that L increa~es and the strength drops. Hard 
intermetallic phases, such as refractory oxides, cannot be cut by dislocations. 

The strength of dilute solid solutions is believed to result fro111 the pi~ining 
of dislocations by solute atoms. The solubility of a foreign atom will be greater 
in the neighborhood of a dislocation than elsewhere in a crystal. An atom that 
tends to expand the crystal will dissolve peferentially in the expandcd region 
near an edge dislocation. A small atom will tend to dissolve preferentially in 
the contracted region near the dislocation-a dislocation offers both expanded 
and contracted regions. 

As a resnlt of the affinity of solute atoms for dislocations, each dislocation 
will collect a cloud of associated solute atoms during cooling, at a time when 
the mobility of solute atoms is high. At still lower temperatures, diffusion of 
solute atorns effectively ceases, and the solute atom cloud becomcs fixed in the 
crystal. When a dislocation moves, leaving its solutc clond behind, the energy 
of the crystal must increase. The incrcasc in energy can only he provided by an 
increased stress acting on the dislocation as it pulls away from the solute atom 
cloud, and so the presence of the cloud strengthens the crystal. 

The passage of a dislocation across a slip plane in pure crystals does not 
alter the binding energy across the plane after the dislocation is gone. The in- 
ternal energy of the crystal remains unaffected. The same is true for random 
solid solutions, because the solution is equally random across a slip plane after 
slip. Most solid solutions, however, have short-rangc order. Atoms of different 
species are not arranged at random on the lattice sites, but tend to have an ex- 
cess or a deficiency of pairs of unlike atoms. Thus in ordered alloys disloca- 
tions tend to move in pairs: the second dislocation reorders the local disorder 
left by the first dislocation. 

The strength of a crystalline material increases with plastic delormation. 
The phenomenon is called work-hardening or strain-hardening. The 
strengtt~ is believed to increase because of the incrcascd density of disloca- 
tions and the greater difficulty of moving a given dislocation across a slip plane 
that is threaded by many dislocations. Strain-hardening frequently is em- 
ployed in the strengthening of materials, but its usefulness is limited to low 
enough temperatures so that annealing does not occur. 

An important factor in strain-hardening is the total density of dislocations. 
In most metals dislocations tend to form cells (Fig. 15) of dislocation-free 



areas of dinlensions orthe order of 1 pm. But unlcss we can get a uniform high 
density of dislocations wc cannot strain-harden a metal to its theoretical 
strength, because of slip in the dislocation-free areas. A high total density is 
accomplished by explosive deformation or by special therrnal-mechanical 
treatments, as of martensite in steel. 

Each of the rneclianisms of strengthening crystals can raise the yield 
strength to the range of G to lo-' G. All mechanisms begin to brcak 
down at temperatures where diffusion can occur at an appreciable rate. When 
diffusion is rapid, precipitated particles dissolve; solute clouds drift along with 
dislocations as they glide; short-range order repairs itself behind slowly mov- 
ing dislocations; and dislocation climb and annealing tend to decrease the dis- 
location density. The resulting time-dependent deformation is called creep. 
This irreversible motion precedes the elastic limit. The search for alloys for 
use at very high temperatures is a search Tor reduced diffusion rates, so that 
the four strengthening mechanisms will survivc to high temperatnres. But the 
central problcm of strong alloys is not strength, but ductility, for failure is 
oftcn by fracture. 

DISLOCATIONS AND CRYSTAL GROWTH 

In some cases the prcscncc of dislocations may he the controlling factor in 
crystal growth. \tihcn cry-stals are grown in conditions of low supersaturation, 
of the order of 1 percent, it has been observed that the growth rate is enor- 
mously faster than that calculated for an ideal crystal. The actual growth rate 
is explained in terms of the effect of dislocations on growth. 

The theory of growth of ideal crystals predicts that in crystal growth Gom 
vapor, a supersaturation (pressure/equilibrium vapor pressure) of the order of 
10 is required to nucleate new crystals, of thc ordcr of 5 to form liqnid drops, 
and of 1.5 to form a two-dimensional monolayer of molecules on the face of a 
perfect crystal. \Jolmer and Schultze observed growth of iodine crystals at 
vapor supersaturations down to less than 1 percent, where the growth rate 
should have been down by the factor exp(-3000) frorn the rate defined as the 
rninirriurn observable growth. 

The large disagreement expresses the difficulty of nucleating a new mono- 
layer on a completed surface of an ideal clystal. Rut if a screw dislocation is 
present (Fig. 20), it is never necessary to nucleate a new layer: the crystal will 
grow in spiral fashion at the edge of the discontinuity shown. An atom can be 
bound to a step more strongly than to a plane. The calculated growth rates for 
this mechanism are in good agreement with observation. \%'e expect that nearly 
all crystals in irature grown at low supersaturation will contail1 dislocations, as 
otherwise the>. could not have grown. Spiral growth patterns havc bccn oh- 
sen~cd on a largc number of crystals. A heantifill example of the growth pat- 
tern from a single screw dislocation is given in Fig. 21. 



Figure 20 Development of a spiral step produced by intersection of a screw dislocation with the 
surface of a crystal as in Fig. 8. (F. C. Frank.) 

Figure 21 Phasecontrast micrograph of a hexagonal spiral growth pattern on a Sic  crystal. The 
step height is 165 A. (A. R. Verma.) 

If the growth rate is independent of direction of the edge in the plane of 
the surface, the growth pattern is an Archimedes spiral, r = a0, where a is a 
constant. The limiting minimum radius of curvature near the dislocation is 
determined by the supersaturation. If the radius of curvature is too small, 
atoms on the curved edge evaporate until the equilibrium curvature is at- 
tained. Away from the origin each part of the step acquires new atoms at a con- 
stant rate, so that drldt = const. 

Whiskers 

Fine hairlike crystals, or whiskers, have been observed to grow under con- 
ditions of high supersaturation without the necessity for more than perhaps one 
dislocation. It may be that these crystals contain a single axial screw dislocation 
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Figure 22 .4 nickel whisker of diameter 1000 bent in a loop. (R.  W De Blois.) 

that aids their essentially one-dimensional growth. From the absence of dis- 
locations we would expect these crystal whiskers to have high yield strengths, of 
the order of the calculated value C/30 discussed earlier i11 this chapter. A single 
axial screw dislocatior~, if present, could not cause yielding, because in bending 
the crystal the dislocation is not subjected to a shear stress parallel to its 
Burgers vector. That is, the stress is not in a dircction that can cause slip. 
Hcrring and Galt obsen~cd whiskers of tin of radu~s -10-Qm with elastic 
properties near those expected from theoretically perfect crystals. They ob- 
served peld strains of the order of lo-', which correspond to shear stresses of 
order C ,  about 1000 times greater than in bulk tin, confirming the early 
estimates of the strength of perfect crystals. Theoretical or ideal elastic proper- 
ties have bee11 observed for a nu~nber of materials as lor carbon nanotubes. A 
single domain whisker of nickel is shown in Fig. 22. 

HARDNESS OF MATERIALS 

The hardness of materials is measured in several ways, the simplest test 
for nonmetals being the scratch test. Substance A is harder than substance B if 
A will scratch B but B will not scratch A. A standard scale is used for represen- 
tative minerals, wit11 diarr~or~d, the hardest, assigned the value 10 and talc, the 
softest, assigned the value 1: 

10 diamond C $5 apatitc Ca,(PO,),F 
9 cori~ndl~m AlzO, 4 fll~orite CaF, 
8 topaz AlzS~O,Fz 3 calcite CaCO, 
7 quartz SiO, 2 gjpsum CaSO, - 2H20 
6 orthoclase K.41Si308 1 talc 3Mg0 . 4Si02 . H,O 

There is great current interest in the development of materials of great 
hardness, lor example as films for use as scratch-resistant coating? on Ien~es. 



It is widely felt that the scale between diamond and corundum is misleading, 
because diamond is much, much harder than corundum. I t  has been suggested 
that one might assign diamond the hardness 15, with the gap between 9 and 15 
to be  filled in eventually by synthetic materials, such as compounds of C and B. 

Modern scales of hardness, such as the VHN scale, are based on indcntcr 
tests in which an indenter is pressed into the surface of the material and the 
sizc of the impression is measured. The Vickers Hardness Numbers of se- 
lected materials are tabulated below, after conversion by E. R. m7eber to units 
of CPa [CN/m": 

Diamond 45.3 B e 0  7.01 
SiC 20.0 Steel (quenched) 4.59 
Si3N4 18.5 Cu (annealed) 0.25 

A1203 14.0 A1 (annealed) 0.12 
B 13.5 Pb 0.032 
WC 11.3 

The data are from J. C. Anderson and others. 

Problems 

1. Lines of closest packing. Show that the lines of closest atomic pachng are (110) in 
fcc structures and (111) in bcc structures. 

2. Dinlocation pairs. (a) Find a pair of dislocations equivalent to a row of lattice 
vacancies; (h) find a pair oidislocations cquivalcnt to a row of interstitial atoms. 

3. Force on dislocation. Consider a crystal in thc form of a cube of side L containing 
an edge dislocation of Burgers vector h. If the crystal is subjcctcd to a shear stress a 
on the upper and lower faces in the directio~r of slip, sho\v, by considcring energy 
balance, that the force acting on the dislocatiorr is F = hrr per unit length. 


