# Unit 1

# **Relations and Functions**

## **Teaching-Learning Points**

• Let A and B are two non empty sets then a relation from set A to set B is defined as  $R = \{(a.b) : a \in A and b \in B\}$ . If  $(a.b) \in R$ , we say that a is related to b under the relation R and we write as a R b.

- R  $R \subseteq A \times B$  .
- A relation R in a set A is a subset of A × A.

Types of relations :

- (i) empty relation :  $R = \phi CA \times A$
- (ii) Universal relation R = A × A
- (iii) Reflexive relation :  $(\ddot{u}, ) \in \forall \in A$ .
- (iv) Symmetric relation : If  $(a,b) \in R \Rightarrow (b,a) \in R \quad \forall a,b \in A$  .
- (v) Transitive relation : If  $\ddot{u}\ddot{u} \in and$
- $(a,c) \in R \quad \forall a,b,c \in A$ .
- A relation R is set A is said to be equivalence relation. If R is reflexive, symmetric and transitive.

• Let R is an equivalence relation is set A and R divides A into mutually disjoint subset A called partitions or subdivisions of A subsfying the conditions :

(i) all element of  $\mathsf{A}_i$  are related to each other,  $_\forall$  i.

- (ii) no element of  $A_i$  is related to any element of  $A_i$ , it j
- (iii) UA<sub>i</sub> = A and A<sub>i</sub>  $\cap$  Aj =  $_{\phi}$ ,  $_{\neq}$  j.
- Type of Functions :

(i) one-one (or injective) function : Let F : A  $\rightarrow$  B, then for every  $x_1, x_2 \in A$ ,  $f(x_1) = f(x_2)$ 

$$\Rightarrow x_1 = x_2.$$

(ii) onto (or surjective function) : Let  $F : A \rightarrow B$ , then for every  $y \in B$ , there exists an element  $x \in A$  such that f(x) = y.

(iii) A function which is not one-one is called many-one function.

- A function which is not onto is called into function.
- A function which is both one-one and onto is called a bijective function.

• Let A be a finite set then an injective function F : A \_ A is subjective and conversely.

• Let  $F : A \rightarrow B$  and  $g : B \rightarrow C$  be two functions. Then the composition of F and g, denoted as gof is defined as the function gof : A  $\rightarrow C$  given by g of (x) = g [f(x)]

### $\forall \ x \in \mathsf{A}$

• Composition of functions need not to be commutative and associative.

• If F : A → B and g : B → C be one-one (or on to) functions, then gof : A → c is also one-one (or on to) but converse is not true.

• A function F : A  $_{\rightarrow}$  B is said to be invertible if there exists another function g : B  $_{\rightarrow}$  A such that

gof =  $I_A$  and fog =  $I_B$ . The function g is called the inverse of the function F.

• A function F : A → B is said to be invertible if and only if F is one-one and onto (i.e. bijective).

• If F : A → B and g : B → C are invertible functions, then gof : A → C is also invertible and (gof)<sup>-1</sup> = F<sup>-1</sup> og<sup>-</sup> 1

## **Binary operations :**

- A binary operation \* on a set A is a function \* A × A , A we denoted \* (a, b) by a \* b.
- A binary operation \* on a set A is called commutative if a \* b = b \* a ∀ a, b ∈ A.
- A binary operation \* on a set A is said to be associative if a \* (b \* b) \* c ∀ a, b, c ∈ A.

 The element e ∈ A, if it exists, is called identity element for binary operation \* if a \* e = a = e \* a ∀a ∈A.

• The element  $a \in A$  is said to be invertible with respect to the binary operation \* if there exile  $b \in A$  such that a \* b = e = b \* a. The element b is called morse of a and is denoted as  $a^{-1}$ .

# **Question for Practice**

## **Evaluate the following Integrals**

#### Very Short Answer Type Questions (1 Mark)

Q1. Let R be a relation on A defined as R = {(a, b)  $\in$  A × A : a is a husband of b} can we say R is symmetric? Explain your answer.

Q2. Let A = {a, b, c} and R is a relation on A given by R = {(a, a), (a, b), (a, c), (b, a), (c, c)}. Is R symmetric? Give reasons.

Q3. Let R = {(a, b), (c, d), (e, f)}, write  $R^{-1}$ .

Q4. Let L be the set of are straight lines in a given plane and R = {(x, y) :  $x \perp y \forall x, y \in L$ }. Can we say that R is transitive? Give reasons.

Q5. The relation R in a set A = {x :  $x \in z$  and  $0 \le x \le 12$ } is given by R = {(a, b) : |a - b| is a multiple if 4} is an equivalence relation. Find the equivalence class related to {3}.

Q6. Let  $R_1$  be the relation on R defined as  $R = \{(a, b) : a \le b^2\}$ . Can we say that R is reflexive? Give reasons.

Q7. Let R {(a, b) : a, b  $\in$  Z (Integers) and  $|a - b| \le 5$ }. Can we say that R is transitive? Give reason.

Q8. If A =  $\{2, 3, 4, 5\}$ , then write the relation R on A, where R =  $\{(a, b) : a + b = 6\}$ .

Q9. If A {1, 2}, and B = {a, b, c}, then what is the number of relations on  $A \times B$ ?

Q10. State reason for the relation R in the set  $\{1, 2, 3\}$  given by R  $\{(1, 2), (2, 1)\}$  not to be transitive.

$$3x - 2$$

Q11. If f is invertible function, find the inverse of f(x) = 5.

Q12. If f(x) = x + 7 and g(x) = x - 7,  $x \in R$ , find fog (x).

Q13. Write the inverse of the function f(x) = 5x + 7,  $x \in R$ .

Q14. Show that f : R  $\ R$  defined as f(x) = x<sup>2</sup> + 1 is not one-one.

Q15. Show that the function  $f : N \rightarrow N$  defined by f(x) = 3x is not an onto function.

Q16. Let \* be a binary operation on Z defiand by a \* b = 2a + b - 3, find 3 \* 4.

Q17. Let \* be a binary operation on N defined by a \* b =  $a^2$  + b and O be a binary operation on N defined by aob = 3a - b find (2 \* 1) 02.

Q18. let \* be a binary operation on R defined by a \* b = a - b. Show \* is not commutative on R.

Q19. Let \* be a binary operation on N given by a \* b = l.c.m (a, b), a,  $b \in N$  find (2 \* 3) \* 6.

Q20. Can we say that division is a binary operation on R? Give reasons.

Q21. Show that \* :  $R \times R \rightarrow R$  given by a \* b = a + 2b is not associative.

Q22. Explain that addition operation on N does not have any identity.

Q23. What is inverse of the element 2 for addition operation on R?

Q24. Let \* be the binary operation on N given by I.c.m (a : b) find the identify element for \* on N.

Q25. Let \* be the binary operation on N defined by a \* b = HCF (a, b). Does there exist identify element for \* on N?

#### Short Answer Type Questions (4 Marks)

Q26. Show that  $f : N \rightarrow N$  givne by

- $f(x) = \{x + 1 \text{ if } x \text{ is odd} \}$
- x 1 is x is even, is bijective

Q27. Let \* be a binary operation on the set  $A = \{0, 1, 2, 3, 4, 5\}$  as

a \* b = { a + b if a + b < 6

a + b - 6 if  $a + b \ge 6$ ,

Show that O is the identify element for this operation and each element a of the set is invertible with 6 - a being the inverse of a.

Q28. Let N be the set of all natural numbers and R be a relation on N × N, defined by (a, b) R (c, d)  $\Rightarrow$  ad = bc  $\forall$  (a, b), (c, d)  $\in$  N × N. Show that R is an equivalence relation.

Q29. Let f : R  $\rightarrow$  R be defined by f(x) = 3x + 2. Show that f is invertible. Find f : R  $\rightarrow$  R.

Q30. Let \* be a binary operation on N × N defined by (a, b) \* (c, d) = (a + c, b + d). Show that \* is commutative as well as associative. Find the identity element for \* on N × N if any.

Q31. Let T is a set of all triangles in a plane and R be a relation as  $R : T \rightarrow T = \{(\Delta_1, \Delta_2) : \Delta_1 \cong \Delta_2 \forall \Delta_1, \Delta_2 \in T\}$ . Show that R is an equivalence relation.

Q32. Let \* be the binary operation on Q (Rational numbers) defiend by a \* b = |a - b|, show that

- (i) \* is commutative
- (ii) \* is not associative
- (iii) \* does not have identity element

Q33. Show that f : R  $\rightarrow$  R defined by f(x) =  $x^3 - 1$ ; is invertible. Find f(x).

Q34. Show that if f : B  $\rightarrow$  A is defined by f(x) =  $\frac{3x+4}{5x-7}$  and g : A  $\rightarrow$  B is defined by g(x) =  $\frac{7x+1}{5x-3}$ ,

then Fog = I<sub>A</sub> and gof = I<sub>B</sub>, where A = R -  $\left\{\frac{3}{5}\right\}$  and B = R -  $\left\{\frac{7}{5}\right\}$ .

Q35. Show that the function F : Q – {3}  $\rightarrow$  Q, given by F(x) =  $\frac{2x+3}{x-3}$  is not a bijective function.



#### Very Short Answer (1 Mark)

1. No, if is a husband of b, then b being a female can not be husband of anybody.

2. No, because (a, c) 
$$\in$$
 R but  $(c, a) \not\in R$ 

- 4. No, If x  $_{\perp}$  y & y  $_{\perp}$  z  $_{\Rightarrow}$  x || z.
- 5. {3, 7, 11}.

6. No, example 
$$\frac{1}{3} \not\leq \left(\frac{1}{3}\right)^2$$

7. No, Let a = 5, b = 10, c = 12, then (a, b)  $\in \mathbb{R}$ , (b, c)  $\in \mathbb{R}$  but  $(a, c) \notin \mathbb{R}$ .

8. 
$$R = \{(2,4), (3,3), (4,2)\}$$
 9. 64

10. (1,1) 
$$\notin R$$
. 11.  $f^{-1}(x) = \frac{5x+2}{3}$ 

12. x 13.  $\frac{x-7}{5}$ 

- 16.7 17.13
- 19.6
- 20. No, because Number divided by 0 does not belong to R.
- 21. Let a = 2, b = 5, c = 8, (a \* b) \* c = (2 + 2 × 5) \* 8 = 12 \* 8
- =  $12 + 2 \times 8 = 28$  and  $\alpha^*(b^*c) = 2^*(5^*) = 2^*(5 + 2 \times 8)$
- $= 2 * 21 = 2 + 2 \times 21 = 44$ .
- 22. Because O + number = Number but O does not belong to N.
- 23. –2 24. 1
- 25. No

## Very Short Answer (4 Mark)

29. f<sup>-1</sup> = (x) =  $\frac{x-2}{3}$  30. Identity does not exist

- 33.  $f^{-1}(x) = (x+1)^{1/3}$
- 35.  $f(x_1) = f(x_2) \xrightarrow{} x_1 = x_2 \xrightarrow{} is$  one-one.
- Let  $y \in \text{codomain then } f(x) = y$

$$= \frac{-3 - 3y}{2 - y} \not\in Q - \{3\} \text{ for some } y \in Q$$

Example 2  $_{\in}$  codomain but

$$= \frac{-3 - 3 \times 2}{2 - 2}$$
 = Not defined, does not belong to domain

# Unit 2

# **Inverse Trigonometric Functions**

# **Teaching-Learning Points**

## • The sine function is defined as

sin : R  $\rightarrow$  [-1, 1]

Which is not a one-one function over the whole domain and hence its inverse does not exist but if we

restrict the domain to  $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$  then the sine function becomes a one-one and onto function and

therefore we com define the inverse of the function sin :  $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \rightarrow$  [-1, 1] as

 $\sin^{-1}:[-1,1] \rightarrow \left[\frac{-\pi}{2},\frac{\pi}{2}\right]$  In fact there are other intervals also like

 $\left[\frac{-3\pi}{2}, \frac{-\pi}{2}\right], \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$  etc which may also be taken as range of the function sin<sup>-1</sup>. Corresponding

to each interval we get branch of sin<sup>-1</sup>. The branch with range  $\begin{bmatrix} -\pi & \pi \\ 2 & 2 \end{bmatrix}$  is called principal value branch similiary for other inverse trigonometric functions we have principal value branches.

• List of principal value branches and the domain of inverse trigonometric functions.

| Functions                         | Domain                                                             | Range (Principal value Branch)                             |
|-----------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|
| $y = \sin^{-1}x$                  | $-1 \le x \le 1$ $-1 \le x \le 1$                                  | $\frac{-\pi}{2} \le y \le \frac{\pi}{2}$ $0 \le y \le \pi$ |
| $y = \cos^{-1}x$ $y = \tan^{-1}x$ | $-\infty < x < \infty$                                             | $\frac{-\pi}{2} < y < \frac{\pi}{2}$                       |
| $y = \cot^{-1}x$                  | $-\infty < x < \infty$                                             | $0 < y < \pi$ $\frac{\pi}{2} < y \le \pi$                  |
| $y = \sec^{-1}x$                  | $\begin{cases} -\infty < x \le -1 \\ 1 \le x < \infty \end{cases}$ | $2^{-y} \le \frac{\pi}{2}$ $0 \le y < \frac{\pi}{2}$       |
| $y = \operatorname{cosec}^{-1} x$ | $\begin{cases} -\infty < x \le -1 \\ 1 \le x < \infty \end{cases}$ | $\frac{-\pi}{2} \le y < 0$ $0 < y \le \frac{\pi}{2}$       |

• Properties of inverse trigonometric functions :

1. (i) 
$$\sin^{-1}(\sin x) = x$$
,  $x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$   
(ii)  $\sin(\sin^{-1} x) = x$ ,  $x \in [-1,1]$   
(iii)  $\cos^{-1}(\cos x) = x$ ,  $x \in [0,\pi]$   
(iv)  $\cos(\cos^{-1} x) = x$ ,  $x \in [-1,1]$   
(v)  $\tan^{-1}(\tan x) = x$ ,  $x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$   
(vi)  $\tan(\tan^{-1} x) = x$ ,  $x \in \mathbb{R}$ .  
2. (i)  $\sin^{-1}\left(\frac{1}{x}\right) = \csc^{-1}x$ ,  $|x| \ge 1$   
(ii)  $\cos^{-1}\left(\frac{1}{x}\right) = \sec^{-1}x$ ,  $|x| \ge 1$ 

$$\tan^{-1}\left(\frac{1}{x}\right) = \cot^{-1} x, \quad x \ge 0$$
3. (i)  $\sin^{-1}(-x) = -\sin^{-1} x, \quad x \in [-1, 1]$ 
(ii)  $\tan^{-1}(-x) = -\tan^{-1} x, \quad x \in \mathbb{R}$ 
(iii)  $\csc^{-1}(-x) = -\csc^{-1} x, \quad |x| \ge 1$ 
(iv)  $\cos^{-1}(-x) = \pi - \cos^{-1} x, \quad x \in [-1, 1]$ 
(v)  $\sec^{-1}(-x) = \pi - \sec^{-1} x, \quad |x| \ge 1$ 
(vi)  $\cot^{-1}(-x) = \pi - \cot^{-1} x, \quad x \in \mathbb{R}$ 

4. (i) 
$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}, x \in [-1, 1]$$

(ii) 
$$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}, x \in \mathbb{R}.$$

(iii) 
$$\operatorname{cosec}^{-1} x + \operatorname{sec}^{-1} x = \frac{\pi}{2}, |x| \ge 1$$

5. (i) 
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}, xy < 1$$

(ii) 
$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy}, xy > -1$$

6. (i) 
$$2 \tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2}$$
,  $|x| < 1$ 

(ii) 
$$2 \tan^{-1} x = \sin^{-1} \frac{2x}{1+x^2}, |x| \le 1$$

(iii) 
$$2 \tan^{-1} x = \cos^{-1} \frac{1 - x^2}{1 + x^2}, x \ge 0$$

# **Question for Practice**

# **Evaluate the following Integrals**

Very Short Answer Type Questions (1 Mark)

$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right).$$

Q1. Write the principal value of

Q2. Write the principal value of 
$$\operatorname{cosec}^{-1}(-\sqrt{2})$$
.

$$\cot^{-1}\left(-\frac{1}{\sqrt{3}}\right)$$

Q3. Write the principal value of

Q4. Write the principal value of  $\ tan^{-1}(-\sqrt{3})$  .

Q5. Write the principal value of 
$$\sec^{-1}(-\sqrt{2})$$
.

Q6. Write the principal value of 
$$\cos^{-1}\left(\frac{1}{2}\right)$$

Q7. Show that 
$$\sin^{-1} x = \cos^{-1} \sqrt{1 - x^2}$$
.

$$\cos^{-1} x = \tan^{-1} \left( \frac{\sqrt{1-x^2}}{x} \right)$$

2

Q8. Show that

tan<sup>-1</sup> 
$$x = \sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)$$

Q9. Show that

Q10. Show that 
$$\sin^{-1} x = \tan^{-1} \left( \frac{x}{\sqrt{1 - x^2}} \right)$$

Q11. Show that 
$$\cos^{-1} x = 2\sin^{-1} \sqrt{\frac{1-x}{2}}$$
.

Q12. Write  $\sin^{-1}(3x - 4x^3)$  in the simplest form.

Q13. Write  $\cos^{-1}(4x^3 - 3x)$  in the simplest form.

Q14. Evaluate 
$$\operatorname{cosec}^{-1}\left\{\operatorname{cosec}\left(\frac{-\pi}{4}\right)\right\}$$
.

Q15. Evaluate 
$$\cos\left\{\frac{\pi}{3} - \cos^{-1}\left(\frac{1}{2}\right)\right\}$$
.

Q16. Show that 
$$\cos^{-1} x = 2\cos^{-1} \sqrt{\frac{1+x}{2}}$$

Q17. Write  $\cos^{-1}(2x^2-1)$  in the simplest form.

Q18. Write  $\cos^{-1}(1-2x^2)$  in the simplest form.

Q19. Write 
$$\tan^{-1} \sqrt{\frac{1 - \cos x}{1 + \cos x}}$$
,  $0 \le x < \pi$ .

Q20. Show that  $\sin^{-1} 2x\sqrt{1-x^2} = 2\sin^{-1} x$ .

Q21. Evaluate : 
$$\sin\left\{\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right\}$$

Q22. Evaluate : 
$$\cos^{-1}\left(\cos\frac{2\pi}{3}\right) + \sin^{-1}\left(\sin\frac{2\pi}{3}\right)$$
.

.

Q23. Find x, if  $\tan^{-1} x = \pi / 4$ .

Q24. Evaluate 
$$\tan^{-1}\left(\tan\frac{3\pi}{4}\right)$$

Q25. Evaluate 
$$\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$$
.  
Q26. Evaluate  $\sin^{-1}(\sin 2\pi/3)$ .  
Q27. Evaluate  $\csc^{-1}\left\{\csc \frac{3\pi}{4}\right\}$ .  
Q27. Evaluate  $\cos^{-1}\left\{\cos \frac{5\pi}{3}\right\}$ .  
Q28. Evaluate  $\cos^{-1}\left(\cos\frac{5\pi}{3}\right)$ .  
Q29. Write  $\tan^{-1}\left\{\frac{x}{\sqrt{a^2 - x^2}}\right\}$ ,  $|x| < a$  in the simplest form.  
Q30. Find x, if  $\cot^{-1}x + \tan^{-1}7 = \frac{\pi}{2}$ .  
Q31. Find x, if  $\sin^{-1}x = \frac{\pi}{6} + \cos^{-1}x$ .  
Q32. Find x, if  $4\sin^{-1}x = \pi - \cos^{-1}x$ .  
Q33. Find x, if  $\tan^{-1}x + 2\cot^{-1}x = \frac{2\pi}{3}$ .  
Q34. Write  $\sin^{-1}\left(\frac{2x}{1 + x^2}\right) - 1 \le x \le 1$ , in the simplest form.  
Q35. Write  $\sin^{-2}\left(2x\sqrt{1 - x^2}\right)$  in the simplest form.  
Short Answer Questions Carrying 4 Marks each

Q36. Solve for x : 
$$\tan^{-1}(x+1) + \tan^{-1}(x-1) = \tan^{-1}\frac{8}{31}$$

Q37. Solve for x : 
$$\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}$$
.

Q38. If  $\tan^{-1}a + \tan^{-1}b + \tan^{-1}c = \pi$  , prove that a + b + c = abc.

Q39. Solve for x : 
$$\tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\tan^{-1}x, x > 0.$$

Q40. Solve for x : 
$$\tan^{-1}\left(\frac{x+1}{x-1}\right) + \tan^{-1}\left(\frac{x-1}{x}\right) = -\tan^{-1}7.$$

Q41. Solve for x: 
$$\tan^{-1}\left(\frac{2x}{1+x^2}\right) + \cot^{-1}\left(\frac{1-x^2}{2x}\right) = \frac{-\pi}{2}$$
.

Q42. Solve for x : 
$$\tan^{-1}\left(\frac{x-1}{x+1}\right) + \tan^{-1}\left(\frac{2x-1}{2x+1}\right) = \tan^{-1}\frac{23}{36}$$
.

Q43. Solve for x : 
$$\sin^{-1}\frac{8}{17} = \sin^{-1}x - \sin^{-1}\frac{3}{5}$$
.

Q44. Solve for x : 
$$\tan^{-1}(2x) + \tan^{-1}(3x) = n\pi + \frac{3\pi}{4}$$
.

Q45. Solve for x:  $\tan^{-1}(x-1) + \tan^{-1}x + \tan^{-1}(x+1) - \tan^{-1}3x = 0$ .

Q46. Prove that 
$$\sin^{-1}\left(\frac{12}{13}\right) + \cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{63}{16}\right) = \pi.$$

Q47. Prove that 
$$\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}.$$

Q48. Prove that 
$$2\tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{8} = \tan^{-1}\frac{4}{7}$$
.

Q49. Prove that 
$$\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{8}{17} = \sin^{-1}\frac{77}{85}$$
.

Q50. Prove that 
$$\sin^{-1}\frac{5}{13} + \sin^{-1}\frac{7}{25} = \cos^{-1}\left(\frac{253}{325}\right).$$

Q51.

Prove that 
$$\tan^{-1}\left(\frac{1-x^2}{2x}\right) + \tan^{-1}\left(\frac{2x}{1-x^2}\right) = \frac{\pi}{2}.$$

Q52. Prove that 
$$\cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{27}{11}\right).$$

Q53. Prove that 
$$\cos^{-1}\left(\frac{63}{65}\right) + 2\tan^{-1}\left(\frac{1}{5}\right) = \sin^{-1}\left(\frac{3}{5}\right).$$

Q54. Prove that 
$$\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9} = \frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right).$$

Q55. Prove that : 
$$2 \tan^{-1} \left( \frac{5}{12} \right) - \tan^{-1} \left( \frac{1}{70} \right) + \tan^{-1} \left( \frac{1}{99} \right) = \frac{\pi}{4}.$$

Q56. Prove that : 
$$\tan^{-1} \left( \frac{\cos x}{1 + \sin x} \right) = \frac{\pi}{4} - \frac{x}{2}.$$

Q57. Prove that  $\cos^{-1}\left(\frac{12}{13}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \sin^{-1}\left(\frac{56}{65}\right).$ 

Q58. Prove that 
$$\cos\left(2\tan^{-1}\frac{1}{7}\right) = \sin\left(4\tan^{-1}\frac{1}{3}\right).$$

Q59. Prove that : 
$$2\tan^{-1}\frac{1}{5} + \csc^{-1}5\sqrt{2} + 2\tan^{-1}\frac{1}{8} = \frac{\pi}{4}$$
.

Q60. Prove that : 
$$2\sin^{-1}\frac{3}{5} - \tan^{-1}\frac{17}{31} = \frac{\pi}{4}$$
.

Answers

 $\frac{\pi}{1.3}$   $\frac{-\pi}{2.4}$   $\frac{2\pi}{3.4}$   $\frac{-\pi}{3}$ 5.  $\frac{3\pi}{4}$  6.  $\frac{\pi}{3}$  12.  $3\sin^{-1}x$  13.  $3\cos^{-1}x$ 14.  $\frac{-\pi}{4}$  15. 1 17.  $2\cos^{-1} x$  18.  $2\sin^{-1} x$ 19.  $\frac{x}{2}$  21. 1 22.  $\pi$  23.  $\frac{\pi}{4}$ 24.  $\frac{-\pi}{4}$  25.  $\frac{5\pi}{6}$  26.  $\pi/3$  27.  $\pi/4$ 28.  $\pi/3$  29.  $\sin^{-1}\left(\frac{x}{a}\right)$  30.731.  $\frac{\sqrt{3}}{2}$ 32.  $\frac{1}{2}$  33.  $\sqrt{3}$  34.  $2 \tan^{-1} x$  35.  $2 \sin^{-1} x$ 36.  $-8, \frac{1}{4}$  37.  $\frac{1}{6}$  39.  $\frac{1}{\sqrt{3}}$  40. x = 2 41. x = 1.42.  $\frac{-3}{8}, \frac{4}{3}, \frac{77}{43}, \frac{77}{85}, \frac{-1}{44}, \frac{-1}{6}, 1$ 45.  $0, \frac{1}{2}, -\frac{1}{2}$