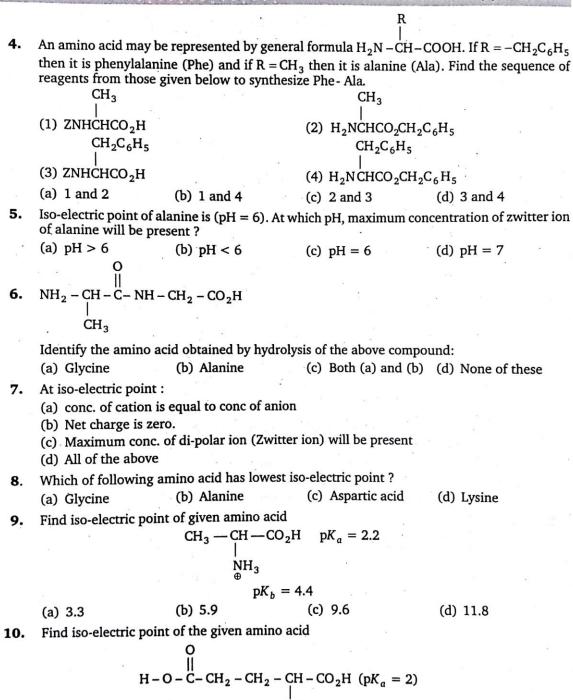
14 BIOMOLECULES

1. Which statement correctly completes the statement?

Except for glycine, which is achiral, all the amino acids present in proteins

- (a) are chiral, but racemic
- (b) have the L configuration at their α carbon
- (c) have the R configuration at their α carbon
- (d) have the S configuration at their α carbon
- 2. Assume that a particular amino acid has an isoelectric point of 6.0. In a solution at pH 1.0, which of the following species will predominate?



3. The p K_a values for the three ionizable groups X, Y and Z of glutamic acid are 4.3, 9.7 and 2.2 respectively

$$HO_2C - CH_2 - CH - CO_2 H$$

 $X + NH_3$

The isoelectric point for the amino acid is:

- (a) 7.00
- (b) 3.25
- (c) 4.95
- (d) 5.95

(c) 3

(d) 5

(b) 6.5

(a) 5.5

- $H-C \equiv C-H$ (B); Product (B) of given reaction is: H₂SO₄
 - (a) Glycine

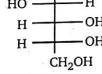
(b) Alanine

(c) valine

- (d) Leucine
- Which amino acid does not contain chiral centre? 12.
 - (a) Valine
- (b) Leucine
- (c) Glycine
- (d) Iso-leucine

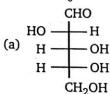
- 13. Which of the following is Sanger reagent?
 - (a) 2,4-Di-nitro flurobenzene
- (b) Phenyl isocyanate
- (c) 2, 4-Di-nitro chlorobenzene
- (d) 2, 4-Di-nitro iodobenzene

- 14. A D-carbohydrate is:
 - (a) Always dextrorotatory
 - (b) Always laevorotatory
 - (c) Always the mirror of the corresponding L-carbohydrate
 - (d) None of these
- Which L-sugar on oxidation gives an optically active dibasic acid (2 COOH groups)? 15.

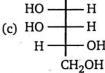


$$CH = N - NH - Ph$$

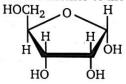
$$C = N - NH - Ph$$

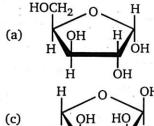

16.

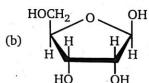
The given osazone can be obtained by:


- (a) D-glucose
- (b) D-mannose
- (c) D-Idose
- (d) Both (a) & (b)
- Which of the following pair gives same phenyl osazone?
 - (a) D-Glucose and D-Allose
- (b) D-Glucose and D-Alfrose
- (c) D-Glucose and D-Mannose
- (d) D-Glucose and D-Talose
- 18. Which of the following is the Fischer projection of L-threonine (also known as (2S, 3R)-2-amino-3-hydroxybutanoic acid)?

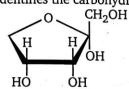
19. Among the three compounds shown below, two yield the same product on reaction with warm HNO3. The exception is:


CHO -H HO (b) HO


00°00°00°00°



CHO


- (d) None of these
- 20. The optical rotation of the α - form of a pyranose is + 150.7°, that of the β - form is + 52.8°. In solution an equilibrium mixture of these anomers has an optical rotation of + 80.2°. The percentage of the α -form in equilibrium mixture is :
 - (a) 28%
- (b) 32 %
- (c) 68%
- Which of the following represents the anomer of the compound shown? 21.

- (d) None of these
- Which set of terms correctly identifies the carbohydrate shown? 22.

- (1) Pentose
- (2) Pentulose
- (3) Hexulose
- (4) Hexose

- (5) Aldose
- (6) Ketose
- (7) Pyranose
- (8) Furanose

(a) 2, 6, 8 (c) 1, 5, 8

- (b) 2, 6, 7
- (d) A set of terms other than these For the complex conversion of D-glucose into the corresponding osazone, the minimum 23. number of equivalents of phenyl hydrazine required is:
 - (a) two
- (b) three
- (d) five
- Which one of the following compounds will form an osazone derivative? 24.
 - (a) CH₃CH₂COCH₂OH

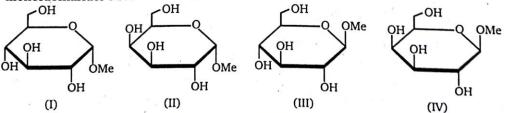
- (b) CH₃COCH₂CH₂OH
- (c) CH₃CH₂CHOHCH₂OH
- (d) CH₃CH₂COCH₂OCH₃

25. Which of the following structure is L-arabinose?

26. Which one of the statements concerning the equilibrium shown is true?

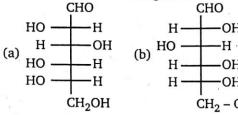
- (a) The two structures are enantiomers of each other. They have equal but opposite optical rotations and recemize slowly at room temperature
- (b) The two structures are enantiomers of each other. They racemize too rapidly at room temperature for their optical rotations to be measured
- (c) The two structures are diastereomers of each other. Their interconversion is called mutarotation
- (d) The two structures are diastereomers of each other. Their interconversion does not require breaking and making bonds, only a change in conformation
- 27. The configurations of the chirality centres in D-threose (shown) are:

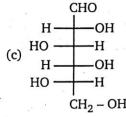
(a) 2R, 3R


(b) 2R, 3S

(c) 2S, 3R

(d) 2S, 3S


- **28.** Rapid interconversion of α -D-glucose and β -D-glucose in solution is known as :
 - (a) racemization


- (b) asymmetric induction
- (c) fluxional isomerization
- (d) mutarotation
- **29.** Identify the correct set of stereochemical relationships amongst the following monosaccharides I-IV.

- (a) I and II are anomers; III and IV are epimers
- (b) I and III are epimers; II and IV are anomers
- (c) I and II are epimers; III and IV are anomers
- (d) I and III are anomers; I and II are epimers

30. What is the structure of L-glucose?

(d) None of these

31. What is the structure of L-glyceraldehyde?

$$\begin{array}{c|c}
H - C = O \\
\text{(a)} \quad HO - CH_2 \longrightarrow OH \\
 & H \\
 & CH_2 - OH
\end{array}$$

$$_{(b)}$$
 HO $\stackrel{H}{\longrightarrow}$ CH₂OH

(c) HO
$$\frac{CH_2 - OI}{H}$$

 $H - C = O$
 $HC - OH$

|| C – OH —H , the given is enol form of : CH₂OH

- (a) D-glucose
- (b) D-mannose
- (c) D-fructose
- (d) All of these

D-glucose $\frac{HO^{-}}{A}$ A + B; A and B are :

- (a) D-mannose & D-mannitol
- (b) D-mannose & D-Fructose
- (c) D-Allose & D-Altrose

(d) D-Glucose & D-Idose

Stereoisomers of aldoheptose is (a) and stereoisomers of ketoheptose is (b). 34.

Ratio of a/b is:

(a)
$$\frac{1}{2}$$

(b)
$$\frac{2}{1}$$

(c)
$$\frac{4}{1}$$

(d)
$$\frac{1}{4}$$

D-Glucose $\xrightarrow{\text{HNO}_3}$ (A); Product (A) is: 35.

- (a) D-Gluconic acid (b) D-Glucitol
- (c) D-Fructose
- (d) D-Glucaric acid

D-glucose & D-fructose can be differentiated by: 36.

- (a) Fehling solution (b) Tollens reagent
- (c) Benedict test
- (d) Br_2/H_2O

D-Glucose exist in x different forms. The value of x (stereoisomer) is: 37.

- (a) 2
- (c) 4
- (d) 5

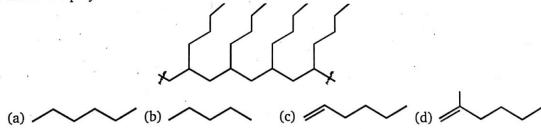
D-Mannose HO D-Glucose (A): 38.

Product (A) of above reaction is

- (a) D-glucose
- (b) D-fructose
- (c) D-talose
- (d) D-idose

39. Which of the molecules below will react with Ag+?

- (a) (i), (iii) and (v)
- (b) (ii) and (iv)
- (c) (iv) and (vi)
- (d) (i), (ii), (iii) and (vi)


Which of the compounds (A-D) depicted above is NOT a hemiacetal linkage?

- (a) Compound A
- (b) Compound B
- (c) Compound C
- (d) Compound D
- (e) None of the above (they are all hemiacetals)
- 41. Which of the following Fischer projection formula is same as D-Glyceraldehyde?

(a) OH
$$\stackrel{\text{CH}_2\text{OH}}{+}$$
 CHO

- (b) H—OH
- (c) OH $\stackrel{\text{CHO}}{+}$ CH₂OH
- CHO (d) H——CH₂OH HO
- 42. What is the structure of the monomer from which the following polymer was made?

43. The following structure represents a subunit of a hydrocarbon polymer that may be prepared by a radical polymerization method. Identify the monomer that has been polymerized to make this polymer chain.

44. Choose the answer that has correctly identified the number of acetals and hemiacetals in isomaltose.

 Acetal
 Hemiacetal
 Acetal
 Hemiacetal

 (a) 0
 0
 (b) 1
 0

 (c) 0
 1
 (d) 1
 1

45. Predict the product of the following reaction.

HO HO OH MeOH, H
$$^+$$
HO OH HO OH
HO OH
HO OH
HO OH
HO OH
HO OH
HO OH
HO OH
HO OH
HO OH
HO OH
HO OH

- 46 Which reagent/s can be used to distinguish glucose and fructose?
 - (I) Bromine water (II) Tollen's reagent (III) Schiff's reagent
 - (a) (I), (II) and (III) (b) (II) and (III) (c) Only (I) (d) Only (III)
- 47. Choose the peptide that matches the abbreviation Phe-Val-Ala.

49.

48. Which of the following carbohydrate(s) would not undergo mutarotation in aqueous solution?

(a) II only (b) I, III and IV only (c) The number of peptide bonds in the compound.

$$H_3C$$
 H_3C
 H_3C
 CH_3
 H_3C
 CH_3

(a) 1

(b) 2

(c) 3

II and IV only

(d) 4

(d) I and III only

50. Serine (HOCH₂CH(NH₂)COOH) is an essential amino acid. The correct Fisher projection of serine is

(a)
$$H$$

CH₂OH

COOH

CH₂OH

COOH

CH₂OH

COOH

CH₂OH

COOH

CH₂OH

CH₂OH

CH₂OH

ANSWERS — LEVEL 1															
1.	(b)	2.	(a)	3.	(b)	4.	(b)	5.	(c)	6.	(c)	7.	(d)	8.	(c)
9.	(b)	10.	(c)	11.	(b)	12.	(c)	13.	(a)	14.	(d)	15.	(a)	16.	(d)
17.	(c)	18.	(b)	19.	(b)	20.	(a)	21.	(b)	22.	(a)	23.	(b)	24.	(a)
25.	(c)	26.	(c)	27.	(c)	28.	(d)	29.	(d)	30.	(a)	31.	(d)	32.	(d)
33.	(b)	34.	(b)	35.	(d)	36.	(d)	37.	(b)	38.	(b)	39.	(c)	40.	(e)
41.	(c)	42.	(b)	43.	(c)	44.	(d)	45.	(a)	46.	(c)	47.	(a)	48.	(c)
49.	(a)	50.	(d)			- 19				100					,,,

BIOMOLECULES 595

LEVEL-2

1. Match the Column (I) and Column (II). (Matrix)

	Column (I)		Column (II)					
	Molecule	Configuration						
(a)	СНО Н — ОН СН ₂ ОН	(p)	R- (Rectus)					
(b)	СНО НО Н СН ₂ ОН	(q)	S- (Sinister)					
(c)	H CO_2H CH_3	(r)	D					
(d)	$H \longrightarrow \begin{array}{c c} NH_2 & & \\ & & \\ & & \\ & & \\ CO_2H & & \end{array}$	(s)	L					

.

2. Comprehension

596

One cyclic acetal form of D-galactose is shown above.

- **A.** Which atom is the anomeric carbon?
 - (a) Atom A
- (b) Atom B
- (c) Atom C
- (d) Atom D

- (e) Atom E
- (f) Atom F
- B. Which name most completely describes this cyclic acetal form?
 - (a) α-D-Galactofuranose
- (b) β-P- Galactofuranose
- (c) α-D- Galactopyranose
- (d) β-D- Galactopyranose
- **3.** How many compound which is given below is isomer of D-Glucose ?

D-Mannose, D-Fructose, D-Gulose, D-Idose, D-Galactose, D-Arabinose, D-Ribose.

4. How many acidic group is present in given amino acid?

$$\overset{\oplus}{\overset{}{\text{NH}_3}}\text{--CH}\text{--CH}_2\text{--CH}_2\text{--CO}_2\text{H}\\ \overset{\dagger}{\overset{}{\text{CO}_2^-}}$$

ANSWERS — LEVEL 2

- 1. a-p, r; b-q, s; c-q, s; d-p, r
- **2.** A f; B c
- **3.** 5
- 4. 2