UPSEE- 2009 ### **Physics** | If 3.8× regard will be | to | o ⁻⁶ is added
significant | to 4.2× figures, | 10 ⁻⁵
then | giving the | ng du
resul | |------------------------|----|-----------------------------------------|------------------|--------------------------|------------|----------------| | will be | | | | | | | - (a) 4.58×10^{-5} - (b) 4.6×10^{-5} - (c) 4.5×10^{-5} - (d) None of these - 2. A ball is dropped from a bridge at a height of 176.4 m over a river. After 2 s, a second ball is thrown straight downwards. What should be the initial velocity of the second ball so that both hit the water simultaneously? - (a) 2.45 ms⁻¹ - (b) 49 ms^{-1} - (c) 14.5 ms⁻¹ - (d) 24.5 ms⁻¹ - 3. Which of the following are true? - (i) A body having constant speed can have varying velocity. - (ii) Position time graphs for two objects with zero relative velocity are parallel. - (iii) The numerical ratio of velocity to speed of an object can never be more than one. - (a) (i) (b) (ii) and (iii) - (c) All - (d) None of these - 4. The centripetal acceleration of a body moving in a circle of radius 100 m with a time period of 2 s will be - (a) 98.5 ms⁻² - (b) 198.5 ms⁻² - (c) 49.29 ms⁻² - (d) 985.9 ms⁻² - 5. How many NAND gates are used in an OR gate? - (a) Four - (b) Two - (c) Three - (d) Five - 6. A 5000 kg rocket is set for vertical firing. The exhaust speed is 800 ms⁻¹. To give an initial upward acceleration of 20 ms⁻², the amount - of gas ejected per second to supply the needed thrust will be $(g = 10 \text{ ms}^{-2})$ - (a) 127.5 kg s^{-1} (b) 187.5 kg s^{-1} - (c) 185.5 kg s^{-1} (d) 137.5 kg s^{-1} - 7. Induction furnace is based on the heating effect of - (a) electric field - (b) eddy current - (c) magnetic field - (d) gravitational field - 8. A 5.0 µF capacitor is charged to a potential difference of 800 V and discharged through a conductor. The energy given to the conductor during the discharge is - (a) 1.6×10^{-2} J - (b) 3.2 J - (c) 1.6 J - (d) 4.2 J - 9. If the electric field is given by $(5\hat{i} + 4\hat{j} + 9\hat{k})$, the electric flux through a surface of area 20 unit lying in the Y-Z plane will be - (a) 100 unit - (b) 80 unit - (c) 180 unit - (d) 20 unit - 10. An aluminium (Al) rod with area of cross-section 4×10^{-6} m² has a current of 5 A flowing through it. Find the drift velocity of electron in the rod. Density of Al = $2.7 \times 10^3 \text{ kgm}^{-3}$ and atomic wt. = 27 u. Assume that each Al atom provides one electron. - (a) $8.6 \times 10^{-4} \text{ ms}^{-1}$ (b) $1.3 \times 10^{-4} \text{ ms}^{-1}$ - (c) $2.8 \times 10^{-2} \text{ ms}^{-1}$ (d) $3.8 \times 10^{-3} \text{ ms}^{-1}$ - 11. Taking the internal resistance of the battery as negligible, the steady state current in the 2Ω resistor shown in the figure will be - (a) 1.8 A - (b) 2.9 A - (c) 0.9 A - (d) 2.8 A #### 12. Which statement is true? - (i) Kirchhoff's law is equally applicable to both AC and DC. - (ii) Semiconductors have a positive temperature coefficient of resistance. - (iii) Meter bridge is greater sensitive when the resistance of all the four arms of the bridge are of the same order. - (iv) The emf of a cell depends upon the size and area of electordes. - (a) (i) and (iv) - (b) (ii) and (iv) - (c) (iii) and (iv) - (d) None of these Six resistors, each of value 3Ω are connected as shown in the figure. A cell of emf 3 V is connected across AB. The effective resistance across AB and the current through the arm AB will be - (a) $0.6 \Omega, 1 A$ - (b) 1.5 Ω, 2 A - (c) 0.6Ω , 2 A - (d) 1.5 Ω, 1 A 4. If t_1 and t_2 are the times taken by two different coils for producing same heat with same supply, then the time taken by them to produce the same heat when connected in parallel will be (c) t₁t₂ In a p-n junction diode, a square input signal of 10 V is applied as shown in figure. The output signal across R_L will be - 16. Neutrino emission in β-decay was predicted theoretically by - (a) Planck - (b) Heisenberg - (c) Laue - (d) Pauli - 17. A telescope consists of two thin lenses of focal lengths 0.3 m and 3 cm respectively. It is focused on moon which subtends on angle of 0.5° at the objective. Then, the angle subtended at the eye by the final image will be - (a) 5° - (b) 0.25° - (c) 0.5° - (d) 0.35° - 18. A ray of light passes through an equilateral prism such that the angle of incidence is equal to the angle of emergence and the latter is equal to the angle of prism. The angle of deviation is - (a) 25° - (b) 30° (c) 45° - (d) 35° 24. 25. - 19. A parallel monochromatic beam of light is incident normally on a narrow slit. A diffraction pattern is formed on a screen placed perpendicular to the direction of the incident beam. At the first minimum of the diffraction pattern, the phase difference between the rays coming from the two edges - (a) zero - (b) n (c) (d) 2π | i | wire of length 2 m carrying a current of 1 A bent to form a circle, the magnetic moment f the coil is | |---|-------------------------------------------------------------------------------------------------------| |---|-------------------------------------------------------------------------------------------------------| (a) 2π Am² (b) $\frac{1}{\pi}$ Am² (c) π Am² (d) $$\frac{2}{\pi}$$ Am² - 21. Which of the following particles will describe the smallest circle when projected with the same velocity perpendicular to the magnetic field? - (a) Electron (b) Proton (c) \alpha-particle (d) Deuteron - 22. Nickel shows ferromagnetic property at room temperature. If the temperature is increased beyond curie temperature, then it will show - (a) paramagnetism - (b) diamagnetism - (c) anti-ferromagnetism - (d) no magnetic property - 23. A metal disc of radius 100 cm is rotated at a constant angular speed of 60 rads⁻¹ in a plane at right angles to an external field of magnetic induction 0.05 Wbm⁻². The emf induced between the centre and a point on the rim will - (a) 3 V (b) 1.5 V (c) 6 V (d) 9 V - 24. Which of the following is NOT an illustration of Newton's third law? - (a) Flight of a jet plane - (b) A cricket player lowering his hands while catching a cricket ball - (c) Walking on floor - (d) Rebounding of a rubber ball - 25. Four blocks of same mass connected by cords are pulled by a force F on a smooth horizontal surface, as shown in figure. The tensions T_1, T_2 and T_3 will be $$F \longleftarrow M \xrightarrow{T_1} M \xrightarrow{T_2} M \xrightarrow{T_3} M$$ (a) $$T_1 = \frac{1}{4}F$$, $T_2 = \frac{3}{2}F$, $T_3 = \frac{1}{4}F$ (b) $$T_1 = \frac{1}{4}F$$, $T_2 = \frac{1}{2}F$, $T_3 = \frac{1}{2}F$ (c) $$T_1 = \frac{3}{4}F$$, $T_2 = \frac{1}{2}F$, $T_3 = \frac{1}{4}F$ (d) $$T_1 = \frac{3}{4}F$$, $T_2 = \frac{1}{2}F$, $T_3 = \frac{1}{2}F$ 26. An artillary piece which consistently shoots its shells with the same muzzle speed has a maximum range R. To hit a target which is $\frac{R}{2}$ from the gun and on the same level, the elevation angle of the gun should be (a) 15° (b) 45° (c) 30° (d) 60° 27. Which of the following statements is wrong? (a) KE of a body is independent of the direction of motion - (b) In an elastic collision of two bodies, the momentum and energy of each body is conserved - (c) If two protons are brought towards each other, the PE of the system decreases - (d) A body can not have energy without momentum - 28. A car is moving along a circular path of radius 500 m with a speed of 30 ms⁻¹. If at some instant, its speed increases at the rate of 2 ms⁻², then at that instant the magnitude of resultant acceleration will be (a) 4.7 ms^{-2} (b) 3.8 ms^{-2} (c) 3 ms^{-2} (d) 2.7 ms^{-2} 29. A constant power P is applied to a car starting from rest. If ν is the velocity of the car at time t, then (a) v ∞ t (b) $v \propto \frac{1}{r}$ (c) v ∞ √t (d) $v \propto \frac{1}{\sqrt{t}}$ - 30. The effect of rotation of the earth on the value of acceleration due to gravity is - (a) g is maximum at the equator and minimum at the poles - (b) g is minimum at the equator and maximum at the poles - (c) g is maximum at both places - (d) g is minimum at both places - 31. A heat engine is a device - (a) which converts mechanical energy into heat energy - (b) which converts heat energy mechanical energy - (c) absorbs heat from a sink at a lower temperature and rejects to the source at high temperature - (d) None of the above - 32. The ratio of the radii of gyration of a circular disc about a tangential axis in the plane of the disc and of a circular ring of the same radius about a tangential axis in the plane of the ring - (a) $\sqrt{3}:\sqrt{5}$ - (b) $\sqrt{12}:\sqrt{3}$ - (c) $1:\sqrt{3}$ (d) $\sqrt{5}:\sqrt{6}$ - 33. Two blocks of masses 6 kg and 4 kg are placed on a frictionless surface and connected by a spring. If the heavier mass is given a velocity of 14 ms⁻¹ in the direction of lighter one, then the velocity gained by the centre of mass will be - (a) 7.4 ms^{-1} - (b) 14 ms⁻¹ - (c) 8.4 ms^{-1} (d) 10 ms^{-1} - 34. Two identical pendulums are oscillating with amplitudes 4 cm and 8 cm. The ratio of their energies of oscillation will be - (a) 1/3 - (b) 1/4 - (c) 1/9 - (d) 1/2 - 35. Fundamental frequency of a sonometer wire is n. If the length and diameter of the wire are doubled keeping the tension same, then the new fundamental frequency is - 36. Which of the following p-V diagrams best represents an isothermal process? - 37. A body floats in a liquid contained in a beaker If the whole system falls under gravity, then the upthrust on the body due to liquid is - (a) equal to the weight of the body in air - (b) equal to the weight of the body in liquid - (d) equal to the weight of the immersed part of the body - 38. A car sounding its horn at 480 Hz moves towards a high wall at a speed of 20 ms-1 If the speed of sound is 340 ms⁻¹, the frequency of the reflected sound heard by the girl sitting in the car will be closest to - (a) 540 Hz - (b) 524 Hz 43. Th 44. If c 45. Two 46. A bod and to Surrou havir - (c) 568 Hz - (d) 480 Hz - 39. A block A of mass 100 kg rests on another block B of mass 200 kg and is tied to a wall as shown in the figure. The coefficient of friction between A and B is 0.2 and that between B and the ground is 0.3. The minimum force F required to move the block B is $(g = 10 \text{ ms}^{-2})$ - (a) 900 N - (b) 200 N - (c) 1100 N - (d) 700 N - 40. A body takes n times as much time to slide down a 45° rough incline as it takes to slide down a smooth 45° incline. The coefficient of friction is - (a) $1 \frac{1}{n^2}$ | 41. | A force of $(5 + 3x)$ N acting on a body of mass | | | | | | |-----|-----------------------------------------------------------------|--|--|--|--|--| | | 20 kg along the x-axis displaces it from | | | | | | | | $x = 2 \mathrm{m}$ to $x = 6 \mathrm{m}$. The work done by the | | | | | | | | force is | | | | | | (a) 20 J (b) 48 J (c) 68 J (d) 86 J - 42. A rock of mass m is dropped to the ground from a height h. A second rock with mass 2 m is dropped from the same height. When second rock strikes the ground, what is its kinetic energy? - (a) Twice that of the first rock - (b) Four times that of the first rock - (c) The same as that of the first rock - (d) Half that of the first rock - 43. The escape velocity from the earth is 11 kms⁻¹. The escape velocity from a planet having twice the radius and same mean density as that of earth is - (a) 5.5 kms⁻¹ (b) 11 kms⁻¹ (c) 22 kms⁻¹ (d) None of these 44. If one mole of a monoatomic gas $$\left(\gamma = \frac{5}{3}\right)$$ is mixed with one mole of a diatomic gas $\left(\gamma = \frac{7}{5}\right)$, the value of γ for the mixture is (a) 1.40 (b) 1.50 (c) 1.53 (d) 3.07 - 45. Two rods of the same length and diameter having thermal conductivities K_1 and K_2 are joined in parallel. The equivalent thermal conductivity of the combination is - (a) $\frac{K_1K_2}{K_1 + K_2}$ (b) $K_1 + K_2$ (c) $\frac{K_1 + K_2}{2}$ (d) $\sqrt{K_1K_2}$ 46. A body initially at 80°C cools to 64°C in 5 min and to 52°C in 10 min. The temperature of the surrounding is (a) 26°C (b) 16°C (c) 36°C (d) 40°C 47. A cylindrical tube open at both ends, has a fundamental frequency f in air. The tube is dipped vertically in water so that half of it is in water. The fundamental frequency of air column is now (a) f/2 (b) f (c) 3f/4 (d) 2f 48. Two plane mirrors are inclined at an angle θ . It is found that a ray incident on one mirror at any angle is rendered parallel to itself after reflection from both the mirrors. The value of θ is (a) 30° (b) 60° (c) 90° (d) 120° 49. When a ray of light enters a glass slab from air (a) its wavelength decreases (b) its wavelength increases (c) its frequency increases - (d) neither its wavelength nor its frequency changes - 50. Critical angle of light passing from glass to water is minimum for (a) red colour (b) green colour (c) yellow colour (d) violet colour 51. A ray of light falls on a transparent glass slab of refractive index 1.62. If the reflected ray and the refracted ray are mutually perpendicular, the angle of incidence is (a) $\tan^{-1}(1.62)$ (b) $\tan^{-1}\left(\frac{1}{1.62}\right)$ (c) $\tan^{-1}(1.33)$ (d) $\tan^{-1}\left(\frac{1}{1.33}\right)$ 52. An object A has a charge of $+2\mu C$ and the object B has a charge of $+6\mu$ C. Which statements is true? (a) $F_{AB} = -3F_{BA}$ (b) $F_{AB} = -F_{BA}$ (c) $3F_{AB} = -F_{BA}$ (d) $F_{AB} = 4F_{BA}$ 53. The equivalent capacitance between A and Bfor the combination of capacitors shown in figure, where all capacitances are microfarad is - (a) $6.0 \, \mu F$ - (b) 4.0 uF - (c) 2.0 µF - (d) 3.0 µF - 54. Two charged particles are projected into a region in which a magnetic field is perpendicular to their velocities. After they enter the magnetic field, you can conclude - (a) the charges are deflected in opposite directions - (b) the charges continue to move in a straight - (c) the charges move in circular paths - (d) the charges move in circular paths but in opposite directions - 55. A solenoid consists of 100 turns of wire and has a length of 10.0 cm. The magnetic field inside the solenoid when it carries a current of 0.500 A will be - (a) 6.28×10^{-4} T - (b) 6.28×10^{-5} T - (c) 3.14×10^{-4} T - (d) None of these - 56. An AC voltage source has an output of $\Delta V = (200 V) \sin 2\pi ft.$ This connected to a 100 Ω resistor. RMS current in the resistance is - (a) 1.41 A - (b) 2.41 A - (c) 3.41 A - (d) 0.71 A - 57. A generator at a utility company produces 100 A of current at 4000 V. The voltage is stepped up to 240000 V by a transformer before it is sent on a high voltage transmission line. The current in transmission line is - (a) 3.67 A - (b) 2.67 A - (c) 1.67 A - (d) 2.40 A - 58. The energy of a photon of wavelength λ is - (a) hch (c) $\frac{\lambda}{hc}$ - (d) $\frac{h\lambda}{a}$ - 59. In the Bohr model of the hydrogen atom, lowest orbit corresponds to - (a) infinite energy (b) maximum energy - (c) minimum energy (d) zero energy - 60. Consider α-particles, β-particles and γ-ra each having an energy of 0.5 MeV increasing order of penetrating powers, radiations are - (a) α , β , γ - (b) α, γ, β - (c) β, γ, α - (d) γ , β , α - 61. The figure shows the symbol of a - (a) AND gate - (b) OR gate - (c) NOT gate - (d) NAND gate - 62. In β^+ decay process, the following change take place inside the nucleus (a) $$_{Z}^{A}X \longrightarrow _{Z-1}^{A}Y + e^{+} + \gamma$$ - (b) $_{Z}^{A}X \longrightarrow _{Z+1}^{A}Y + e^{-} + \bar{\gamma}$ - (c) ${}_{Z}^{A}X \longrightarrow {}_{Z}^{A}Y + e^{-} + \gamma$ - (d) ${}_{Z}^{A}X \longrightarrow {}_{Z}^{A}Y + e^{-} + \bar{\gamma}$ - 63. In a transistor the base is - (a) an insulator - (b) a conductor of low resistance - (c) a conductor of high resistance - (d) an extrinsic semiconductor - 64. A particle moves along a straight line s that its position x at any time t is $x = 6t^2$ Where x is in metre and t is in second, the - (a) at t = 0 acceleration is 12 ms⁻² - (b) x-t curve has maximum at 4 s - (c) Both (a) and (b) are wrong - (d) Both (a) and (b) are correct - 65. A particle is subjected simultaneously to two SHM's, one along the x-axis and the other along the y-axis. The two vibrations are in phase and have unequal amplitudes. The particle will execute - (a) straight line motion - (b) circular motion - (c) elliptic motion - (d) parabolic motion - 66. X-rays are diffracted from a crystal of lattice plane spacing 2Å. The maximum wavelength that can be diffracted is - (a) 1 Å - (b) 2 Å - (c) 2.5 Å - (d) 4 Å - 67. If α and β are the collector emitter short circuit current amplification factor and collector base short circuit current amplification factor respectively transistor, then a is equal to - (a) $\frac{(1+\beta)}{\beta}$ (b) $\frac{\beta}{(1-\beta)}$ (c) $\frac{(1-\beta)}{\beta}$ (d) $\frac{\beta}{(1+\beta)}$ - 68. The resistance of a straight conductor does not depend on its - (a) length - (b) temperature - (c) material - (d) shape of cross-section - 69. In a given network, each resistance has value of 6 Ω . The point X is connected to point A by a copper wire of negligible resistance and point Y is connected to point B by the same wire. The effective resistance between X and Y will - (a) 18 Ω - (b) 6 Q - (c) 3 \O - (d) 2Ω - 70. A length of wire carries a steady current. It is bent first to form a circular coil of one turn. The same length is now bent more sharply to give a double loop of smaller radius. The magnetic field at the centre caused by the same current is - (a) double of its first value - (b) quarter of its first value - (c) four times of its first value - (d) same as the first value - 71. The work done in carrying a charge q once around a circle of radius r with a charge Q placed at the centre will be - (a) $\frac{Qq}{(4\pi \, \epsilon_0 r^2)}$ (b) $\frac{Qq}{(4\pi \, \epsilon_0 r)}$ (c) zero (d) $\frac{Qq^2}{(4\pi \, \epsilon_0 r)}$ - 72. Two wires of same material and radius have their lengths in ratio 1:2. If these wires are stretched by the same force, the strain produced in the two wires will be in the ratio - (a) 2:1 - (b) 1:1 - (c) 1:2 - (d) 1:4 - 73. A student has measured the length of a wire equal to 0.04580 m. This value of length has the number of significant figures equal to - (a) five - (b) four - (c) six - (d) None of these - 74. The volume of an ideal diatomic gas is doubled isothermally. The internal energy - (a) is doubled - (b) is halved - (c) is increases four times - (d) is remains unchanged - 75. A small power station supplies electricity to 5000 lamps connected in parallel. Each lamp has a resistance of 220 Ω and is operated at 220 V. The total current supplied by the station is - (a) 2500 A - (b) 3500 A - (c) 5000 A - (d) 10000 A ## **CHEMISTRY** - 76. Which of the following sets of quantum numbers is correct? - (a) $n = 5, l = 4, m = 0, s = +\frac{1}{2}$ - (b) n = 3, l = 3, m = +3, $s = +\frac{1}{2}$ - (c) $n = 6, l = 0, m + 1, s = -\frac{1}{2}$ - (d) n = 4, l = 2, m = +2, s = 0 - 77. Which of the following is not a colligative property? - (a) Optical activity - (b) Osmotic pressure - (c) Depression of freezing point - (d) Elevation of boiling point - 78. Which of the following when dissolved in water forms a solution, ie, non-conducting? - (a) Chile salt petre (b) Potash alum - (c) Green vitriol (d) Ethyl alcohol - 79. The best way to prevent rusting of iron is - (a) making it cathode - (b) putting in saline water - (c) Both (a) and (b) - (d) None of the above - 80. In NaCl crystal each Cl ion is surrounded by - (a) 4 Na⁺ ions - (b) 6 Na+ ions - (c) 1 Na⁺ ion - (d) 2 Na+ ions - 81. Stainless steel has iron and - (a) Cr - (b) Cu - (c) Co - (d) Zn - 82. Naphthalene can be easily purified by - (a) sublimation - (b) crystallisation - (c) distillation - (d) vaporisation - 83. When acetylene is passed through dil H2SO4 in presence of HgSO4, the compound formed is - (a) ether - (b) acetaldehyde - (c) acetic acid - (d) ketone - 84. Cross aldol condensation occurs between - (a) two same aldehydes - (b) two same ketones - (c) two different aldehydes and ketones - (d) None of the above - 85. Which is more powerful to coagulate the negative colloid? - (a) ZnSO₄ - (b) Na₃PO₄ - (c) AlCl₃ - (d) $K_4[Fe(CN)_6]$ - 86. Cannizaro reaction is performed by - (a) formaldehyde - (b) formaldehyde and acetaldehyde - (c) benzaldehyde - (d) formaldehyde and benzaldehyde - having 87. The monosaccharides carbon atom are - (a) geometrical isomers - (b) α-and β-optical isomers - (c) having symmetrical carbon atoms - (d) None of the above - 88. Diacidic base is - (a) CH₂(OH)₂ - (b) Ca(OH)₂ - (c) CH₃CH(OH)₂ - (d) All of these - 89. Which of the following behaves as Lewis acid and not as Bronsted acid? - (a) HCl - (b) H₂SO₄ - (c) HSO₂ - (d) SO2 - 90. Thermite process is used in reduction of - (a) Cr₂O₃ - (b) Al₂O₃ - (c) PbO, - (d) CuO - 91. Example of geometrical isomerism is - (a) 2-butanol - (b) 2-butene - (c) butanal - (d) 2-butyne - 92. Mustard gas is a - (a) oil gas - (b) poisonous gas - (c) fuel gas - (d) life gas - 93. The pair of elements having approximately equal ionisation potential is - (a) Al, Ga - (b) Al, Si - (c) Al, Mg - (d) Al, B - 94. Bakelite is a - (a) natural polymer - (b) addition polymer - (c) condensation polymer - (d) homopolymer | 95. | Name of method use | to separate primary, | | (a) to increase the co | oncentration of NH ⁺ ions | | | | |------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|--| | | econdary and tertiary amines is (a) Hofmann method (b) Lucas method (c) Victor Meyer method | | | (b) to increase the concentration of Cl ions (c) to reduce the concentration of OH ions (d) to increase the concentration of OH ions | | | | | | | (d) Kolbe method | | 105. | Solution of sod | in the in | | | | | 96. | Main product obtained ammonia and formalde (a) formic acid (c) methanol | (b) methylamine
(d) urotropine | | photography works a (a) to shine film (b) to develop film (c) to dissolve silver (d) to shanga paget | bromide | | | | | | TEL is a compound used as (a) antibiotic (b) antiseptic (c) antiknocking (d) antioxidant | | | (d) to change negative into positive 106. Phenol on treatment with diethyl sulphate in presence of NaOH gives | | | | | | 98. | Water is well known a | imphoprotic solvent. In on water is behaving as | 107 | (a) phenetole (c) diphenyl ether | | | | | | | a base ?
(a) $H_2SO_4 + H_2O$ — | | 107. | solute. What is the m | | | | | | | (b) $H_2O + H_2O \longrightarrow$
(c) $H_2O + NH_2^- \longrightarrow$ | | 100 | (c) 2.5 M | (d) 12.5 M
Element in the universe is | | | | | | (d) $H_2O + NH_3 \longrightarrow$ | | 100. | thought to be | | | | | | 99. | 9. Which of the following is not a physical equilibrium? | | | (a) carbon
(c) hydrogen | (b) oxygen
(d) nitrogen | | | | | | (a) Ice \rightleftharpoons Water
(c) $S(l) \rightleftharpoons S(g)$ | | 109. | (a) permanent effect is (b) temporary effect | t | | | | | 100. | kitchenware is | is used in non-sticky | | (c) resonance effect
(d) inductive effect | | | | | | | (a) PVC
(c) rayon | (b) teflon
(d) isoprene | 110 | . The calculated bond | | | | | | 101 | The chemical which is broken bones is | s used for plastering the | | (a) 1
(c) 2 | (b) 1.5
(d) 2.5 | | | | | | (a) (CaSO ₄) ₂ H ₂ O
(c) FeSO ₄ · 7H ₂ O | (b) MgSO ₄ ·7H ₂ O
(d) CuSO ₄ ·5H ₂ O | 111 | is zero at 0°C. This is
(a) first law of ther | | | | | | 102 | Dry ice is (a) solid H ₂ O (c) solid N ₂ O ₄ | (b) solid CO ₂
(d) solid NH ₃ | | (b) second law of the
(c) third law of the
(d) law of conserva | nermodynamics
modynamics | | | | | 103 | 103. Precipitate of AgCl is soluble in liquid NH ₃ , the compound forms | | | 112. In acidic medium, the equivalent weight of $K_2Cr_2O_7$ (Mol. wt. = M) is | | | | | | | (a) Ag(NH ₄) ₂ OH
(c) Ag(NH ₃) ₂ OH | (b) Ag(NH ₄) ₂ Cl
(d) Ag(NH ₃) ₂ Cl | | (a) M | (b) $\frac{M}{2}$ | | | | | 104 | In qualitative analysi
added before NH ₄ OH | s, in III group NH ₄ Cl is because | | (c) $\frac{M}{3}$ | (d) $\frac{M}{6}$ | | | | | | | | | | | | | | - non-metal atom, the non-metal atom will - (a) lose electrons and decrease in size - (b) lose electrons and increase in size - (c) gain electrons and decrease in size - (d) gain electrons and increase in size - 114. What is the total number of moles of H2SO4 needed to prepare 5.0 L of a 2.0 M solution of H2SO4? - (a) 2.5 - (b) 5.0 - (c) 10 - (d) 20 - 115. Which combination of atoms can form a polar covalent bond? - (a) H and H - (b) H and Br - (c) N and N - (d) Na and Br - 116. How many joules of heat are absorbed when 70.0 g of water is completely vaporised at its boiling point? - (a) 23,352 - (b) 7,000 - (c) 15,813 - (d) 158,130 - 117. Which quantities are conserved in all oxidation- reduction reactions? - (a) Charge only - (b) Mass only - (c) Both charge and mass - (d) Neither charge nor mass - 118. Which of the following compounds would have the highest boiling point? - (a) CH₃CH₂CH₂CH₃ (b) CH₃NH₂ - (c) CH₃OH - (d) CHoFo - 119. In any chemical reaction, a quantity that decrease to a minimum is - (a) free energy - (b) entropy - (c) temperature - (d) enthalpy - 120. Which of the following is the weakest acid? - (a) HCl - (b) HF - (c) H₂SO₄ - (d) HNO. - 121. Which of the following contains greatest number of oxygen atoms? - (a) 1 g of O - (b) 1 g of O2 - (c) 1 g of O2 - (d) All have the same number of atoms 10 - 113. When a metal atom combines with a 122. The pH of 10-8 M NaOH aqueous solution at 25°C, is - (a) 7.02 - (b) 7.0 - (c) 6.89 - (d) 6.0 - 123. Decrease in atomic number is not observed during - (a) α-emission - (b) \(\beta\)-emission - (c) positron emission (d) electron capture - 124. The buffering action of an acidic buffer is maximum when its pH is equal to - (a) 5 (b) 7 (c) 1 - (d) pK_a - 125. Which of the following will increase with the increase in temperature? - (a) Surface tension - (b) Viscosity - (c) Molality - (d) Vapour pressure - 126. Which of the following will have larger dipole moment? 127. Which of the following would react most readily with nucleophiles? 136 13 13 13 135 n transfer takes place in 137. The following compound differ in (a) Frankland method Cl (b) Wurtz reaction (c) Cannizaro's reaction (d) Wolff-Kishner reduction (b) conformation (a) configuration 129. An organic compound C3H6O neither gives (d) chirality (c) structure precipitate with semicarbazide nor reacts with following the sodium. It could be for 138. The correct name (a) CH₂CH₂CHO hydrocarbon is (b) CH₃COCH₃ (c) CH2=CHCH2OH (d) CH2=CHOCH2 130. Which of the following is an organometallic compound? (a) Lithium methoxide (a) tricyclo [4.1.0] heptane (b) Lithium acetate (b) bicyclo [5.2.1] heptane (c) Lithium dimethylamine (c) bicyclo [4.1.0] heptane (d) Methyl lithium (d) bicyclo [4.1.0] hexane 131. The quality of diesel is expressed by 139. Which of the following compounds would be (a) octane number the main product of an aldol condensation of (b) cetane number acetaldehyde and acetone? (c) antiknock compound (a) CH₃CH = CH·CHO (d) presence of additives (b) CH₃CH = CHCOCH₃ 132. Ketone upon treatment with Grignard reagent (c) $(CH_3)_2C = CH \cdot CHO$ (d) $(CH_3)_2C = CHCOCH_3$ (a) primary alcohol (b) secondary alcohol 140. Which one of the following compounds will (c) tertiary alcohol (d) aldehyde not react with CH3MgBr? 133. Racemic compound has (a) Ethyl acetate (b) Acetone (a) equimolar mixture of enantiomers (c) Dimethyl ether (d) Ethanol (b) 1:1 mixture of enantiomer and 141. The number of isomeric alkanes having the diastereomer molecular formula C5H12 is (c) 1:1 mixture of diastereomers (a) three (b) five (d) 1:2 mixture of enantiomers (c) nine (d) thirty two 134. Geometry of methyl free radical is 142. Which organic compound is an electrolyte? (a) pyramidal (b) planar (a) CH₃Cl (c) tetrahedral (d) linear (b) НСООН (c) CH₃OH 135. The reaction of sodium ethoxide with (d) C₆H₁₂O₆ 143. The electron configuration of the oxide ion is iodoethane to form diethyl ether is termed as (a) electrophilic substitution much most similar to the electron configuration of the (b) nucleophilic substitution (a) sulphide ion (b) nitride ion (c) electrophilic addition (d) radical substitution (c) oxygen atom (d) nitrogen atom 136. In which of the following ways does the 144. Which substance has the greatest ionic hydride ion tend to function? character? (a) An electrophile (a) Cl₂O (b) NCl₃ (b) A nucleophile (c) PbCl₂ (c) A free radical (d) BaCl₂ (d) An acid red is the e ole 02 nost H3 I_3 - 145. The lattice points of a crystal of hydrogen iodide are occupied by - (a) HI molecules - (b) H atoms and I atoms - (c) H+ cations and I- anions - (d) H2 molecules and I2 molecules - 146. Dehydration of alcohol usually goes by - (a) E1 mechanism - (b) E2 mechanism - (c) E1 cb mechanism (d) S_N 2 mechanism - 147. Which one of the following is a copolymer? - (a) Saran - (b) Orlon - (c) PVC - (d) Teflon - 148. Formation of coloured ions by transition metals signifies; - 1. The length of the normal to the curve $x = a(\theta + \sin \theta), y = a(1 - \cos \theta)$ at $\theta = \frac{\pi}{2}$ is - (a) 2a - 2. The maximum value of $\frac{\log x}{x}$ is - (a) e - (d) $\frac{2}{e}$ - 3. In the interval $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$, the number of real the equations solutions $\sin x \cos x$ cos x sin x cos x $\cos x = 0$ is cos x - (a) 0 - (b) 2 - (c) 1 - (d) 3 - 4. If $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \text{ is continuous at} \\ k, & x = 0 \end{cases}$ - x = 0, then the value of k will be - (a) 1 (b) -1 (c) 0 (d) None of these - (a) absorption of light from UV range - (b) emission of light - (c) presence of unpaired electrons in s and p orbitals - (d) complimentary colours to the absorbed light - 149. Transition metal ions show colour because - (a) they absorb light - (b) they emit light - (c) they are paramagnetic - (d) they exhibit d-d transition - 150. Which one of the following compounds will not undergo aldol condensation? - (a) Acetaldehyde - (b) Formaldehyde 10 11. 12. 13. 14. 1 - (c) Propionaldehyde (d) Acetone ## **MATHEMATICS** - 5. The sum of all odd numbers between 1 and 1000 which are divisible by 3 is - (a) 83667 - (b) 90000 - (c) 83660 (d) None of these - 6. In a college 25% boys and 10% girls offer Mathematics. There are 60% girls in the college. If a Mathematics student is chosen at random, then the probability that the student is a girl, will be - (a) $\frac{1}{6}$ (c) $\frac{5}{8}$ - 7. Differential equation of those circles which passes through origin and their centres lie on y-axis will be - (a) $(x^2 y^2) \frac{dy}{dx} + 2xy = 0$ - (b) $(x^2 y^2) \frac{dy}{dx} = 2xy$ - (c) $(x^2 y^2) \frac{dy}{dx} = xy$ - (d) $(x^2 y^2) \frac{dy}{dx} + xy = 0$ 8. If $\tan \alpha - \lambda \cot \beta$, then $\frac{\cos (\alpha - \beta)}{\cos (\alpha + \beta)}$ is equal to (a) $$\frac{1+k}{1-k}$$ $$\text{(b) } \frac{1-k}{1+k}$$ (c) $$\frac{k+1}{k-1}$$ (c) $$\frac{k+1}{k-1}$$ (d) $\frac{k-1}{k+1}$ 9. If $\cot(\cos^{-1} x) = \sec\left(\tan^{-1} \frac{a}{\sqrt{b^2 - a^2}}\right)$, then x (a) $$\frac{b}{\sqrt{2b^2 - a^2}}$$ is equal to (a) $$\frac{b}{\sqrt{2b^2 - a^2}}$$ (b) $\frac{a}{\sqrt{2b^2 - a^2}}$ (c) $$\frac{\sqrt{2b^2 - a^2}}{a}$$ (c) $$\frac{\sqrt{2b^2 - a^2}}{a}$$ (d) $\frac{\sqrt{2b^2 - a^2}}{b}$ 10. If distance between directrices of a rectangular hyperbola is 10, then distance between its foci will be - (a) 10√2 - (b) 5 - (c) 5\square - (d) 20 11. Number of solutions of the equation $$\tan^{-1}\left(\frac{1}{2x+1}\right) + \tan^{-1}\left(\frac{1}{4x+1}\right) = \tan^{-1}\left(\frac{2}{x^2}\right)$$ is - (a) 1 (b) 2 (c) 3 12. $\int_0^{\pi} x \sin^4 x \, dx$ is equal to - (a) $\frac{3\pi}{16}$ (b) $\frac{3\pi^2}{16}$ (c) $\frac{16\pi}{3}$ (d) $\frac{16\pi^2}{3}$ 13. $\int 5^{5^x} 5^{5^x} 5^{5^x} dx$ is equal to (a) $$5^{5^{5^x}} (\log 5)^3 + c$$ (b) $\frac{5^{5^{5^x}}}{(\log 5)^3} + c$ (c) $$\frac{5^{5^x}}{(\log 5)^3} + c$$ (c) $$\frac{5^{5^x}}{(\log 5)^3} + c$$ (d) $5^{5^x} (\log 5)^3 + c$ 14. If $f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3} \right)$ $+\cos x \cos \left(x + \frac{\pi}{3}\right)$ and $g\left(\frac{5}{4}\right) = 1$, then gof(x) is equal to (a) 1 (b) -1 (c) 2 (d) -2 15. A, B, C are three non-zero vectors; no two of them are parallel. If $\vec{A} + \vec{B}$ is collinear to \vec{C} and $\vec{B} + \vec{C}$ is collinear to \vec{A} , then $\vec{A} + \vec{B} + \vec{C}$ is equal to - (a) A - (b) B - (c) C - (d) $\vec{0}$ 16. In tossing of a coin (m+n)(m>n) times, the probability of coming consecutive heads at least m times is - (a) $\frac{n+2}{2^{m+1}}$ (b) $\frac{m-n}{2^{m+n}}$ (c) $\frac{m+n}{2^{m+n}}$ (d) $\frac{mn}{2^{m+n}}$ 17. If $f(x) = \frac{4^x}{4^x + 2}$, then $f\left(\frac{1}{97}\right) + f\left(\frac{2}{97}\right) + \dots + f\left(\frac{96}{97}\right)$ is equal to - (c) 48 18. Let $\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. If \vec{c} is a vector such that $\overrightarrow{a} \cdot \overrightarrow{c} = |\overrightarrow{c}|, |\overrightarrow{c} - \overrightarrow{a}| = 2\sqrt{2}$ and the angle between $\vec{a} \times \vec{b}$ and \vec{c} is 30°, then $|(\vec{a} \times \vec{b}) \times \vec{c}|$ is equal to - (a) $\frac{2}{3}$ - (c) 2 - (d) 3 19. The value of $\int_{2}^{4} \{|x-2|+|x-3|\} dx$ is - (a) 1 sq unit - (b) 2 sq unit - (c) 3 sq unit - (d) 5 sq unit 20. The differential equation of all touching the axis of y at origin and centre on the x-axis is given by (a) $$xy \frac{dy}{dx} - x^2 + y^2 = 0$$ (b) $$2xy \frac{dy}{dx} - x^2 - y^2 = 0$$ (c) $$(x^2 + y^2) \frac{dy}{dx} - 2xy = 0$$ (d) None of the above - 21. The solution of the differential equation $\left(e^{-2\sqrt{x}} - \frac{y}{\sqrt{x}}\right) \frac{dx}{dy} = 1$ is given by - (a) $ye^{2\sqrt{x}} = 2\sqrt{x} + c$ (b) $ye^{-2\sqrt{x}} = \sqrt{x} + c$ - (c) $y = \sqrt{x}$ (d) $y = 3\sqrt{x}$ - 22. The solution of the equation $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-y^2}}$ is - (a) $\sin^{-1} y \sin^{-1} x = c$ - (b) $\sin^{-1} y + \sin^{-1} x = c$ - (c) $\sin^{-1}(xy) = 2$ - (d) None of the above - **23.** If $f(x) = \begin{cases} x^p \cos(\frac{1}{x}), & x \neq 0 \\ 0, & x = 0 \end{cases}$ is differentiable at x = 0, then - (a) p < 0 (b) 0 - (c) p = 1 - (d) p > 1 - **24.** If a real valued function f of a real variable x is such that - $\frac{1}{(1+x)(1+x^2)} = \frac{A}{1+x} + \frac{f(x)}{1+x^2}, \text{ then } f(x) \text{ is}$ equal to - (a) $\frac{1-x}{2}$ (b) $\frac{x^2+1}{2}$ - (c) 1 x - (d) None of these - 25. If the vectors $\hat{i} 2\hat{j} + 3\hat{k}$, $-2\hat{i} + 3\hat{j} 4\hat{k}$, $\lambda \hat{i} - \hat{j} + 2\hat{k}$ are linearly dependent, then the value of λ is equal to - (a) 0 - (b) 1 (c) 2 - (d) 3 - 26. If a and b are two non-zero non-collinear vectors, then $2[\vec{a} \ \vec{b} \ \hat{i}] \ \hat{i} + 2[\vec{a} \ \vec{b} \ \hat{j}] \ \hat{j} + 2[\vec{a} \ \vec{b} \ \hat{k}] \ \hat{k} + [\vec{a} \ \vec{b} \ \vec{a}]$ is equal to - (a) $2(\vec{a} \times \vec{b})$ - (b) $\vec{a} \times \vec{b}$ - $(c) \vec{a} + \vec{b}$ - (d) None of these - 27. If $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = 676$ and $|\vec{b}| = 2$, then | a | is equal to - (a) 13 (b) 26 (c) 39 - (d) None of these - 28. If a, b, c are in GP, then the equation $ax^2 + 2bx + c = 0$ and $dx^2 + 2ex + f = 0$ have a common root, if $\frac{d}{a}$, $\frac{e}{b}$, $\frac{f}{c}$ are in - (a) AP - (c) GP - (d) None of these - **29.** If $x = \sqrt{7} \sqrt{5}$ and $y = \sqrt{13} \sqrt{11}$, then - (a) x > y - (b) x < y - (c) x = y - (d) None of these - 30. If one root of equation $x^2 + ax + 12 = 0$ is 4 while the equation $x^2 + ax + b = 0$ has equal roots, then the value of b is - 31. One of the square roots of $6 + 4\sqrt{3}$ is - (a) $\sqrt{3}(\sqrt{3}+1)$ (b) $-\sqrt{3}(\sqrt{3}-1)$ - (c) $\sqrt{3}(-\sqrt{3}+1)$ (d) None of these - 32. If $\cos 20^\circ \sin 20^\circ = p$, then $\cos 40^\circ$ is equal - (a) $p^2\sqrt{2-p^2}$ (b) $p\sqrt{2-p^2}$ (c) $p+\sqrt{2-p^2}$ (d) $p-\sqrt{2-p^2}$ - 33. If $\tan x = \frac{b}{a}$, then the value of $a\cos 2x + b\sin 2x$ is - (a) 1 - (b) ab (c) b - (d) a - 34. If $S_n = \cos^n \theta + \sin^n \theta$, then the value of $3S_4 - 2S_6$ is given by - (a) 4 (b) 0 (c) 1 - (d) 7 - 35. The distance between the parallel lines $9x^2 - 6xy + y^2 + 18x - 6y + 8 = 0$ is | (0) | | | |-----|-----|--| | (a) | √10 | | (b) $\frac{1}{\sqrt{10}}$ (c) $$\frac{4}{\sqrt{10}}$$ (d) None of these 36. The lines 2x - 3y = 5 and 3x - 4y = 7 are diameters of a circle of area 154 sq unit. Then, the equation of the circle is (a) $x^2 + y^2 + 2x - 2y = 51$ (b) $$x^2 + y^2 - 2x - 2y = 49$$ (c) $$x^2 + y^2 + 2x + 2y = 47$$ (d) $$x^2 + y^2 - 2x + 2y = 47$$ - 37. Two dice are thrown *n* times in succession. The probability of obtaining a double six at least once is - (a) $\left(\frac{1}{36}\right)^n$ (b) $1 - \left(\frac{35}{36}\right)^n$ (c) $$\left(\frac{1}{12}\right)^n$$ (d) None of these **38.** A and B toss a coin alternately on the understanding that the first to obtain heads wins the toss. The probability that A wins the toss (a) $\frac{1}{3}$ (b) $\frac{2}{3}$ (c) $\frac{1}{4}$ (d) $\frac{3}{4}$ 39. In an assembly of 4 persons the probability that at least 2 of them have the same birthday, is (a) 0.293 (b) 0.24 (c) 0.0001 (d) 0.016 40. A particle is thrown with the velocity ν with the angle α from the horizontal plane and its range on the horizontal plane is twice to the maximum height gained. Then, tan α is equal to (a) 9 (b) 5 (c) 2 (d) 1 41. If $$\begin{vmatrix} x & x^2 & 1+x^3 \\ y & y^2 & 1+y^3 \\ z & z^2 & 1+z^3 \end{vmatrix} = 0$$ and x , y , z are all distinct, then xyz is equal to (a) -1 (b) 1 c) 0 (d) 3 **42.** If $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, then A^{100} is equal to (a) 100 A (b) 2⁹⁹ A (c) $2^{100} A$ (d) 99 A 43. If sum of n terms of two AP's are in the ratio 2n + 3:6n + 5, then the ratio of their 13th term is (a) $\frac{29}{83}$ (b) $\frac{27}{77}$ (c) $\frac{31}{89}$ (d) $\frac{53}{155}$ - 44. Let a relation R be defined on set of all real numbers by a R b if and only if 1 + ab > 0. Then, R is - (a) reflexive, transitive but not symmetric - (b) reflexive, symmetric but not transitive - (c) symmetric, transitive but not reflexive - (d) an equivalence relation - **45.** If $\frac{xy}{x+y} = \frac{2}{3}$, $\frac{yz}{y+z} = \frac{6}{5}$, $\frac{xz}{x+z} = \frac{3}{4}$, then (x, y, z) is equal to (a) (1, 2, 3) (b) (2, 1, 3) (c) (3, 1, 2) (d) (3, 2, 1) 46. If positive numbers a, b, c are in HP and c > a, then $\log (a + c) + \log (a - 2b + c)$ is equal to (a) $2 \log (c - b)$ (b) $2 \log (a + c)$ (c) $2 \log (c - a)$ (d) $2 \log (a - c)$ 47. Two dice are thrown together. Then the probability that the sum of numbers appearing on them is a prime number, is (a) $\frac{5}{12}$ (b) $\frac{7}{18}$ (c) $\frac{13}{36}$ (d) $\frac{11}{36}$ 48. In a triangle ABC, AB = 1, AC = 2 and $\angle A = 60^{\circ}$, its largest angle is equal to (a) 75° (b) 90° (c) 120° (d) 135° - 49. From the top of a cliff 50 m high, the angles of depression of the top and bottom of a tower are observed to be 30° and 45°. The height of tower is - (a) 50 m - (b) $50\sqrt{3}$ m - (c) $50(\sqrt{3}-1)$ m (d) $50\left(1-\frac{\sqrt{3}}{3}\right)$ m - **50.** The points 0, 2 + 3i, i, -2 2i in the argand plane are the vertices of a - (a) rectangle - (b) rhombus - (c) trapezium - (d) parallelogram - **51.** One of the values of $\left(\frac{1+i}{\sqrt{2}}\right)^{2/3}$ is - (a) $\sqrt{3} + i$ (b) -i (c) i (d) $-\sqrt{3} + i$ - **52.** The value of $\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{7}{8}$ is - (a) $\tan^{-1} \frac{7}{8}$ (b) $\cot^{-1} 15$ - (c) $\tan^{-1} 15$ (d) $\tan^{-1} \frac{25}{24}$ - 53. The locus of points of intersection of perpendicular tangents to a parabola is a - (a) straight line - (b) circle - (c) parabola - (d) hyperbola - **54.** The middle point of the chord x + 3y = 2 of the conic $x^2 + xy - y^2 = 1$ is - (a) (5, -1) (b) (1, 1) - (c) (2,0) - (d) (-1, 1) - 55. If tangents at extremities of a focal chord AB of the parabola $y^2 = 4ax$ intersect at a point C, then \(ACB \) is equal to - 56. The smallest circle with centre on y-axis and passing through the point (7, 3) has radius - (a) √58 - (b) 7 - (c) 3 (d) 4 57. The pair of lines joining origin to the points of intersection of the two curves $$ax^2 + 2hxy + by^2 + 2gx = 0$$ and $$a'x^2 + 2h'xy + b'y^2 + 2g'x = 0$$ will be at right angles, if - (a) (a' + b')g' = (a + b)g - (b) (a+b)g' = (a'+b')g - (c) $h^2 ab = h'^2 a'b'$ - (d) $a+b+h^2=a'+b'+h'^2$ - 58. If sum of two numbers is 6, the minimum value of the sum of their reciprocals is - (c) $\frac{2}{3}$ (d) $\frac{1}{2}$ - **59.** If b > a, then $\int_a^b \frac{dx}{\sqrt{(x-a)(b-x)}}$ is equal to - (c) $\frac{\pi}{2}(b-a)$ (d) $\frac{\pi}{4}(b-a)$ - 60. The solution of differential equation (1+x)y dx + (1-y)x dy = 0 is - (a) $\log_e(xy) + x y = c$ - (b) $\log_e \left(\frac{x}{y}\right) + x + y = c$ - (d) $\log_e(xy) x + y = c$ - 61. The value of $\lim_{x \to 0} (\cos x)^{\cot^2 x}$ is (a) e^{-1} (b) $e^{-1/2}$ (c) 1 (d) not existing 60 - **62.** The normal to the curve $x = a(\cos \theta + \theta \sin \theta)$, $y = a(\sin \theta - \theta \cos \theta)$ at any point θ is such that - (a) it makes a constant angle with x-axis - (b) it passes through origin - (c) it is at a constant distance from origin - (d) None of the above | 53. | If $\sin y = x \sin (a + a)$ | $+y$), then $\frac{dy}{dx}$ is equal to | |-----|------------------------------|------------------------------------------| | | | | (a) $$\frac{\sin(a+y)}{\sin a}$$ (b) $$\frac{\sin^2(a+y)}{\sin a}$$ (c) $$\frac{2\sin(a+y)}{\sin a}$$ (d) $$\frac{\sin^2(a+y)}{\sin y}$$ (d) $$\frac{\sin^2(a+y)}{\sin y}$$ 64. $$\int e^x \frac{x^2 + 1}{(x+1)^2} dx$$ is equal to (a) $$\frac{-e^x}{x+1} + c$$ (a) $$\frac{-e^x}{x+1} + c$$ (b) $\frac{e^x}{x+1} + c$ (c) $$e^x \frac{x-1}{x+1} + c$$ (d) $\frac{xe^x}{x+1} + c$ (d) $$\frac{xe^x}{x+1} + c$$ 65. The function $$f(x) = \log(1+x) - \frac{2x}{2+x}$$ is increasing on - (a) $(-1, \infty)$ - (b) (-∞, 0) - (c) (-∞, ∞) - (d) None of these 66. If $$\vec{a}$$ is any vector, then $\hat{i} \times (\vec{a} \times \hat{i}) + \hat{j} \times (\vec{a} \times \hat{j}) + \hat{k} \times (\vec{a} \times \hat{k})$ is equal to (a) a - (b) 2a - (c) 3a - $(d) \vec{0}$ - (a) $\frac{PQ}{g}$ - (b) $\frac{2PQ}{g}$ (d) $\frac{3PQ}{g}$ - (c) $\frac{PQ}{2\sigma}$ 68. A stone of mass $$m$$ is thrown vertically upwards with a velocity of 9.8 ms⁻¹. The height of the point where $KE = PE$ is $(g = 9.8 \text{ ms}^{-2})$ - (a) 9.8 m - (b) 4.9 m - (c) 2.45 m - (d) 2 m - (a) 12 cm - (b) 6√2 cm - (c) $8\sqrt{2}$ cm (d) 10 cm 70. If the resultant of two forces of magnitude $$P$$ and $P\sqrt{3}$ acting on a particle is of magnitude P , then the angle between them is - (a) 60° - (b) 120° - (c) 90° - (d) 150° - (a) 4s - (b) 2 s - (c) $\frac{1}{2}$ s - (d) 1 s 72. A uniform ladder rests in limiting equilibrium with its lower end on a rough horizontal plane with coefficient of friction $$\mu$$ and its upper end against a smooth vertical wall. If θ is the inclination of the ladder with the wall, then θ is equal to - (a) $\tan^{-1} \mu$ (b) $\cot^{-1} \mu$ - (c) $\cot^{-1}(2\mu)$ (d) $\tan^{-1}(2\mu)$ 73. If $\frac{2z_1}{3z_2}$ is a purely imaginary number, then $$\left| \frac{z_1 - z_2}{z_1 + z_2} \right|$$ is equal to - (a) $\frac{3}{2}$ - (b) 1 74. An orthogonal matrix is - $\begin{bmatrix} \cos \alpha & 2 \sin \alpha \\ -2 \sin \alpha & \cos \alpha \end{bmatrix}$ - (b) $\begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$ - (c) $\begin{bmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ 75. If $$y = 3x + 6x^2 + 10x^3 + ...$$, then the value of x in terms of y is - (a) $1 (1 y)^{-1/3}$ (b) $1 (1 + y)^{1/3}$ - (c) $1 + (1+y)^{-1/3}$ (d) $1 (1+y)^{-1/3}$ #### » Answers PHYSICS (d) 2. 3. (b) (c) 1. 4. (a) 5. (c) 12. (a) 6. 13. (c) (d) (b) 14. 7. (b) (a) 11. 8. (c) (b) 15. 9. (a) 10. (b) 16. 22. (a) 23. (a) (b) 24. (d) 17. (a) 21. (b) 18. (b) 20. (b) 19. (d) 25. (c) 26. 32. (d) 33. (c) (a) (b) 27. 34. (d) 28. 31. (a) (b) (d) 29. (c) 30. 35. (d) 36. (a) 42. 43. 37. (c) (c) (c) 44. (a) 38. (a) (a) 39. (c) 40. 41. (b) 45. (c) 46. (b) (b) 52. 53. 47. (a) (a) (b) 54. 48. (d) (c) 49. 50. 51. (c) (a) 55. (a) 56. (a) (a) 62. 63. 57. (b) (c) (d) 58. (a) 64. (b) 59. (c) 60. 61. (d) 65. (a) 66. (d) 67. 72. (c) 73. (d) (c) (a) 74. 68. (d) 69. (d) 70. (a) 71. (d) 75. (c) O CHEMISTRY 77. (a) 78. (a) (d) 76. 79. (a) 80. (b) 81. (a) 82. (a) 83. (b) 84. (c) (d) 87. (b) 88. (c) 85. (b) 89. 86. (d) 90. (a) 91. (b) 92. (b) 93. (a) 94. (c) 95. (a) (d) 97. (c) 98. 96. (a) 99. (d) 100. (b) 101. (a) 102. (b) 103. (d) 104. (c) 105. (c) (a) 107. (b) 108. (c) 109. 106. (b) 110. (b) 111. (c) 112. (d) 113. (d) 114. (c) 115. (b) (d) 117. (c) 118. (c) 119. 116. (a) 120. (b) 121. (d) 122. (a) 123. (b) 124. (d) 125. (d) (d) 127. (c) 128. (c) 129. 126. (d) 130. (d) 131. (c) 133. (b) 132. (a) 134. (b) 135. (b) (c) 138. (b) 137. 136. (c) 139. (b) 140. (c) 141. (a) 142. (b) 143. (b) 144. (d) 145. (a) 146. (a) 147. (a) 148. (d) 149. (d) 150. (b) **MATHEMATICS** 1. (d) 2. (c) 3. (c) 4. (c) (a) 5. 6. (b) 7. (b) (a) 8. 9. (a) 10. (d) 11. (b) 12. (b) 13. (b) 14. (a) 15. (d) 16. (a) 17. (b) 18. (b) 19. (c) 20. (d) 21. (*) 22. (a) 23. (d) 24. (a) 25. (a) 26. (a) 27. (a) 28. (a) 29. (a) 30. (b) 31. (d) 32. (b) 33. (d) 34. (c) 35. (a) 36. (d) 37. (b) 38. (b) 39. (d) 40. (c) 41. (a) 42. 45. 46. (c) 47. (a) 48. (b) 43. (d) 44. (b) (a) (b) 49. (d) 50. (d) 51. (c) 52. (d) 55. (c) 56. (b) 57. (b) 58. (c) 59. (b) (c) (a) 54. 60. 53. (a) 61. 67. (b) (b) 66. (b) 68. (c) 69. 62. (c) (b) (c) 65. (a) (d) 63. 64. (c) 72. 75. (d) 74. (b) (d) 73. (b) Note: * None of the given options is correct.