General Instructions: As given in Practice Paper - 1.

Section-A

Choose the correct option:

1. If $A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ and $kA = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$, then the values of k, a, b are

$$(c) - 6, -4, -9$$

$$(d) - 6, 12, 18$$

2. The value of
$$\begin{vmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & \omega & 1 \end{vmatrix}$$
 is

3. If A is a square matrix of order (3×3) such that |A| = 2. Then adj (adj A) is

$$(a)$$
 $2A$

(d) None of these

4. If $f(x) = \log x$ then f'(x) is equal to

(a)
$$-\frac{1}{x^2}$$

(b)
$$\frac{1}{x^2}$$

(c)
$$\frac{1}{x}$$

 $(d) - \frac{1}{x}$

5. The two curves $x^3 - 3xy^2 + 2 = 0$ and $3x^2y - y^3 = 2$

(a) touch each other

(b) cut at right angle

(c) cut at an angle $\frac{\pi}{3}$

(d) cut at an angle $\frac{\pi}{4}$

6. $\int \frac{dx}{x^2 + 2x + 2}$ is equal to

(a)
$$x \tan^{-1}(x+1)+C$$

(b)
$$tan^{-1}(x+1) + C$$

(c)
$$(x + 1) \tan^{-1} x + C$$

(d)
$$\tan^{-1} x + C$$

7. $\int \frac{\cos 2x \, dx}{(\sin x + \cos x)^2}$ is equal to

(a)
$$\frac{-1}{\sin x + \cos x} + C$$

(b) $\log |\sin x + \cos x| + C$

	(c) $\log \sin x - \cos x +$	С	(d) $\frac{1}{(\sin x + 1)}$	$\frac{1}{(\cos x)^2} + C$	
8.	$\int_0^{\frac{2}{3}} \frac{dx}{4 + 9x^2}$ is equal to				
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{12}$	(c) $\frac{\pi}{24}$	(d) $\frac{\pi}{4}$	<u>t</u> 4
9.	The value of $\int_0^a \log(\cos t)$	t a + tan x) dx, where	$a \in (0, \pi/2)$ is		
	(a) a log (sin a)	(b) - a cos a	$(c) - a \log ($	(sin a) (d) lo	og (sin a)
10.	The area enclosed by t	the ellipse $\frac{x^2}{x^2} + \frac{y^2}{y^2} =$	1 is equal to		
10.	_	u o		ita (d) =	al ² an amita
	_	(b) π ab sq. units	(c) π a ² b sq	. units (a) π	ab ² sq. units
11.	The degree of the differential equation $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}} = \frac{d^2y}{dx^2}$ is				
	(a) 4	(b) $\frac{3}{2}$	(c) not defi	ned (d) 2	
12.	The solution of differen	ential equation x dy =	y dx = 0 represents		
	(a) a rectangular hyperbola (b) a parabola whose vertex is at origin				
	(c) straight line passing through origin (d) a circle whose centre is at origin				gin
13.	The maximum value o		to constraint $x + y \le$		
	(a) 36	(b) 40	(c) 20		one of these
14.	If X follows a BD (Binomial Distribution) with parameter $n = 6$ and $4P(X = 4) = P(X = 2)$, then p equals				
	(a) $\frac{1}{6}$	(b) $\frac{1}{4}$	(c) 1/2	(d)	3
15.	The probability distribution of a discrete random variable X is given below.				
	X	2	3	4	5
	P(X)	5/k	7/k	9/k	11/k
	The value of k is	(b) 12	(a) 22	(4) 4	0
	(a) 17	(b) 13	(c) 32	(d) 4	0
16	Let A and B be finite		ection–B (B1) d u alaments respect	ively. The number of	f relations that can be
10.	defined from A to B is	sets containing m an	a n ciements respect	ivery. The number of	relations that can be
	(a) 2 ^{mn}	(b) 2 ^{m+n}	(c) mn	(d) 0	
17.	The binary operation	defined on N by a *	$b = a^b \forall a, b \in \mathbb{N}$ is	,	
	(a) Associative (b) Commutative and associative				
	(c) Commutative	c) Commutative (d) None of these			
18.	If $f: R \to R$ be the functions defined by $f(x) = x^3 + 5$, then $f^{-1}(x)$ is				
	(a) $(x + 5)^{1/3}$	(b) $(x-5)^{1/3}$	(c) $(5-x)^{1}$	/3 (d) (5	5 – x)
19.	If $f: A \rightarrow B$ and $g: B$	C be the bijective for		is	
	(a) $f^{-1} og^{-1}$	(b) fog	(c) g ⁻¹ of ⁻¹	(d) g	of
20.	If $f: [0, 1] \to [0, 1]$ be defined by $f(x) = \begin{cases} x & \text{if } x \text{ is rational} \\ 1 - x \text{ if } x \text{ is irrational} \end{cases}$ then $(f \circ f)(x)$ is				
	(a) Constant	(b) $1 + x$	(c) x	(d) N	Vone of these

21.	Which of the following is the principal value branch of cosec ⁻¹ x?				
	(a) $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$	(b) $(0, \pi) - \left\{\frac{\pi}{2}\right\}$	(c) $\left\{-\frac{\pi}{2}, \frac{\pi}{2}\right\}$	(d) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] - \{0\}$	
22.	If $\cos\left(\sin^{-1}\frac{3}{5} + \cos^{-1}x\right)$	= 0, then x is equal to			
	(a) $\frac{1}{5}$	(b) $\frac{3}{5}$	(c) 0	(d) 1	
23.	The value of $\cos^{-1}\left(\cos\frac{3}{2}\right)$	$\left(\frac{\pi}{2}\right)$ is			
	(a) $\frac{\pi}{2}$	(b) $\frac{3\pi}{2}$	(c) $\frac{5\pi}{2}$	(d) $\frac{7\pi}{2}$	
24.	If $\sin^{-1}\left(\frac{2a}{1+a^2}\right) + \cos^{-1}\left(\frac{a}{1+a^2}\right)$	$\left(\frac{1-a^2}{1+a^2}\right) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$, who	ere $a, x \in (0, 1)$, then the value	e of x is	
	(a) 0	(b) $\frac{\pi}{2}$	(c) a	(d) $\frac{2a}{1-a^2}$	
25.	Assuming that the summatrices?	s and products given belo	w are defined, which of th	ne following is not true for	
	$(a)\ A+B=B+A$		(b) $AB = AC$ does not imply	y B = C	
	(c) $AB = 0$ implies $A = 0$ o		(d) (AB)' = B'A'		
26.	If A is a square matrix, the $(a) A + A'$	nen which of the following (b) AA'	matrices is not symmetric? (c) A'A	(d) A - A'	
27.	Using determinants, for collinear?	what value(s) of x are the t	hree points $A(x + 1, x)$, $B(x + 1, x)$	(x + 1) and $C(3x + 1, 2x - 3)$	
	(a) $\left(-1, \frac{1}{2}\right)$	(b) $(\frac{1}{2}, 1)$	(c) (0, 1)	(d) 1	
28.	If A is a square matrix su	ch that $A^2 = I$, then $(A - I)^3$	$+ (A + I)^3 - 7A$ is equal to		
	(a) A	(b) I - A	(c) I + A	(d) 3 A	
29.	The value of a if the fund	ction $f(x)$ defined by $f(x) = {$	$\begin{cases} 2x-1, & x<2\\ a, & x=2 \text{ is continuou}\\ x+1, & x>2 \end{cases}$	s at $x = 2$ is	
	(a) 3	(b) -3	(c) 0	(d) 4	
30.	If $x^y = e^{x-y}$ then $\frac{dy}{dx}$ is	equal to			
	$(a) \ \frac{\log x}{\left(1 + \log x\right)^2}$	(b) $\frac{x}{\log x}$	$(c) \frac{\log x}{\left(1 - \log x\right)^2}$	(d) None of these	
31.	If $x = \sqrt{a^{\sin^{-1}t}}$, $y = \sqrt{a^{\cos^{-1}t}}$	t, a > 0 and -1 < t < 1, then	$\frac{dy}{dx}$ is		
	(a) $\frac{y}{x}$	(b) $\frac{x}{y}$	(c) $\frac{-y}{x}$	(d) None of these	
32.	Derivative of $\tan^{-1}\left(\frac{1+t}{1-t}\right)$	$\left(\frac{2x}{2x}\right)$ w.r.t $\sqrt{1+4x^2}$ is			
	$(a) \ \frac{1}{2x\sqrt{1+4x^2}}$		$(b) \ \frac{1}{x\sqrt{1+x^2}}$		

	(c) $\frac{1}{4x\sqrt{1+2x^2}}$		(d) $\frac{1}{2x\sqrt{1-4x^2}}$			
33.	The slope of normal to the curve $y = 2x^2 + 3 \sin x$ at $x = 0$ is					
	(a) 3	(b) 1/2	(c) -3	$(d) -\frac{1}{3}$		
34.	$\frac{d}{dx}f(x) = 4x^3 - \frac{3}{x^4} \text{ such that } f(2) = 0. \text{ Then } f(x) \text{ is}$					
	(a) $x^4 + \frac{1}{x^3} - \frac{129}{8}$		(b) $x^3 + \frac{1}{x^4} + \frac{129}{8}$			
	(c) $x^4 + \frac{1}{x^3} + \frac{129}{8}$		(d) $x^3 + \frac{1}{x^4} - \frac{129}{8}$			
35.	Let $p(x)$ be a function defined on R such that $p'(x) = p'(1-x)$, for all $x \in [0, 1]$, $p(0) = 1$ and $p(1) = 41$. Then					
	$\int_0^1 p(x) dx \text{ is equal to}$					
	(a) 41	(b) 51	(c) 21	(d) 42		
36.	$\int_{-\pi}^{\pi} \frac{x \sin x dx}{e^x + 1}$ is equal to					
	(a) $\frac{3\pi}{2}$	(b) $\frac{\pi}{2}$	(c) π	(d) 0		
37.	The area of the region	bounded by the curve $y = x^2$	2 and the line $y = 16$ is			
	(a) $\frac{37}{3}$ sq. units	(b) $\frac{256}{3}$ sq. units	(c) $\frac{64}{3}$ sq. units	(d) $\frac{128}{3}$ sq. units		
38.	The integrating factor	The integrating factor of $x \frac{dy}{dx} - y = x^4 - 3x$ is				
	(a) x	(b) log x	(c) $\frac{1}{x}$	(d) - x		
39.	Solution of the equation	on $x^2y - x^3 \frac{dy}{dx} = y^4 \cos x$, wh	hen $y(0) = 1$ is			
	$(a) y^3 = 3x^3 \sin x$	$(b) x^3 = 3y^3 \sin x$	$(c) x^3 = y^3 \sin x$	(d) None of these		
40.	The vector \vec{r} of magnitude $3\sqrt{2}$ units which makes an angle of $\frac{\pi}{4}$ and $\frac{\pi}{2}$ with y and z-axis, respectively is					
			(c) $\vec{r} = \pm 5\hat{i} + 5\hat{j}$			
41.	The two vectors $\hat{j} + \hat{k}$ and $3\hat{i} - \hat{j} + 4\hat{k}$ represents the two sides AB and AC, respectively of \triangle ABC. The length of the median through A is					
	(a) $\frac{\sqrt{34}}{2}$	(b) $\frac{\sqrt{48}}{2}$	(c) √18	(d) None of these		
42.	If \vec{a} and \vec{b} are unit vec (a) 30°	tors, then the angle between	n \vec{a} and \vec{b} for $\sqrt{3} \vec{a} - \vec{b}$ to 1	be a unit vector is (d) 90°		
42	The value of λ for which the vectors $3\hat{i} - 6\hat{j} + \hat{k}$ and $2\hat{i} - 4\hat{j} + \lambda \hat{k}$ are parallel is					
43.	2		<u> </u>			
	(a) $\frac{2}{3}$	(b) $\frac{3}{2}$	(c) $\frac{5}{2}$	(d) $\frac{2}{5}$		
44.	If α , β , γ , are the angles that a line makes with a positive direction of x , y , z axes, respectively, then the direction cosines of the line are					
	(a) $\sin \alpha$, $\sin \beta$, $\sin \gamma$	(b) $\cos \alpha$, $\cos \beta$, $\cos \gamma$	(c) $\tan \alpha$, $\tan \beta$, $\tan \gamma$	(d) $\cos^2 \alpha$, $\cos^2 \beta$, $\cos^2 \gamma$		
45.	The equation of x-axis in space are					
	(a) $x = 0$, $y = 0$	(b) $x = 0, z = 0$	(c) $x = 0$	(d) $y = 0, z = 0$		

	(a) β	(b) B	(c) β + γ	(d) $\sqrt{\alpha^2 + \gamma^2}$
47.	The reflection of the poin	t (α , β , γ) in the XY-plane is		
	(a) $(\alpha, \beta, 0)$	(b) (0, 0, γ)	(c) $(-\alpha, -\beta, \gamma)$	(d) $(\alpha, \beta, -\gamma)$
48.	If $P(A) = 0.4$, $P(B) = 0.8$ an	$d P(B/A) = 0.6, then P(A \cup B)$) is	
	(a) 0.24	(b) 0.57	(c) 0.48	(d) 0.96
49.	Let A and B be two event	s such that $P(A) = 0.6$, $P(B) = 0.6$	= 0.2 and $P(A/B)$ = 0.5 then $P(A/B)$	P(A'/B') equals
	(a) $\frac{1}{10}$	(b) $\frac{3}{10}$	(c) 3/8	(d) $\frac{6}{7}$
50.	If $P(A/B) > P(A)$, then wh	ich of the following is corre	ect	
	(a) $P(B/A) < P(B)$		(b) $P(A \cap B) < P(A) \cdot P(B)$	
	(c) $P(B/A) > P(B)$		(d) P(B/A) = P(B)	

46. Distance of the point (α, β, γ) from *y*-axis is