KCET 2023 Solved Paper

Mathematics

Question 1
If A and B are two matrices such that $AB = B$ and $BA = A$ then $A^2 + B^2 = A$
Options:
A. AB
B. 2 BA
C. A + B
D. 2 AB
Answer: C
Solution:
Solution:
Question 2
If $A = \begin{bmatrix} 2-k & 2 \\ 1 & 3-k \end{bmatrix}$ is singular matrix, then the value of $5k - k^2$ is equal
to
Options:
A4
B. 6
C. 4
D6
Answer: C
Solution:
Solution:

Question 3

The area of a triangle with vertices $(-3,0)$, $(3,0)$ and $(0,k)$ is 9 sq. units, the value of k is
Options:
A. 6
B. 3
C. 9
D9
Answer: B
Solution:
Solution:
Question 4
If $\Delta = \begin{bmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{bmatrix}$ and $\Delta_1 = \begin{bmatrix} 1 & 1 & 1 \\ bc & ca & ab \\ a & b & c \end{bmatrix}$ then
Options:
A. $\Delta_1 \neq \Delta$
B. $\Delta_1 = -\Delta$
C. $\Delta_1 = \Delta$
D. $\Delta_1 = 3\Delta$
Answer: B
Solution:
Solution:
Question 5
If $\sin^{-1}\left(\frac{2a}{1+a^2}\right) + \cos^{-1}\left(\frac{1-a^2}{1+a^2}\right) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$ where a, $x \in (0, 1)$ then

the value of x is

Options:

A.
$$\frac{2a}{1+a^2}$$

B.
$$\frac{2a}{1-a^2}$$

C. 0

D.
$$\frac{a}{2}$$

Answer: B

Solution:

Solution:

Question 6

The value of $\cot^{-1}\left[\begin{array}{c} \frac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1+\sin x}} \end{array}\right]$ where $x \in \left(0, \frac{\pi}{4}\right)$ is

Options:

A.
$$\pi - \frac{x}{3}$$

B.
$$\pi - \frac{x}{2}$$

C.
$$\frac{x}{2}$$

D.
$$\frac{x}{2} - \pi$$

Answer: B

Solution:

Solution:

.....

Question 7

If
$$x \begin{bmatrix} 3 \\ 2 \end{bmatrix} + y \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 15 \\ 5 \end{bmatrix}$$
 then the value of x and y are

Options:

A.
$$x = -4$$
, $y = -3$

B.
$$x = -4$$
, $y = 3$

C.
$$x = 4$$
, $y = 3$

D. $x = 4$, $y = -3$
Answer: C
Solution:
Solution:
Question 8
If the function is $f(x) = \frac{1}{x+2}$, then the point of discontinuity of the composite function $y = f(f(x))$ is
Options:
A. $\frac{2}{5}$
B. $\frac{1}{2}$
C. $\frac{-5}{2}$
D. $\frac{5}{2}$
Answer: C

Solution:

Question 9

A. function of x and y

If $y = a\sin x + b\cos x$, then $y^2 + \left(\frac{dy}{dx}\right)^2$ is a

Solution:

Options:

B. constant

Answer: B

Solution:

Solution:

C. function of x

D. function of y

Question 10

If $f(x) = 1 + nx + \frac{n(n-1)}{2}x^2 + \frac{n(n-1)(n-2)}{6}x^3 + \dots + x^n$ then f''(1) =

Options:

A.
$$n(n-1)2^n$$

B.
$$2^{n-1}$$

C.
$$(n-1)2^{n-1}$$

D.
$$n(n-1)2^{n-2}$$

Answer: D

Solution:

Solution:

Question 11

If
$$A = \begin{bmatrix} 1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1 \end{bmatrix}$$
 and $AB = I$ then $B = I$

Options:

A.
$$\cos^2 \frac{\alpha}{2}$$
.I

B.
$$\sin^{2}\frac{\alpha}{2}$$
. A

C.
$$\cos^2 \frac{\alpha}{2} \cdot A^T$$

D.
$$\cos^2 \frac{\alpha}{2}$$
. A

Answer: C

Solution:

Solution:

If $u = \sin^{-1} \left(\frac{2x}{1+x^2} \right)$ and $v = \tan^{-1} \left(\frac{2x}{1-x^2} \right)$ then $\frac{du}{dv}$ is
Options:
A. $\frac{1-x^2}{1+x^2}$
B. 1
C. $\frac{1}{2}$
D. 2
Answer: B
Solution:
Solution:
Question 13
Q 11 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
The function $f(x) = \cot x$ is discontinuous on every point of the set
The function $f(x) = \cot x$ is discontinuous on every point of the set
The function $f(x) = \cot x$ is discontinuous on every point of the set Options:
The function $f(x) = \cot x$ is discontinuous on every point of the set Options: A. $\left\{x = (2n+1)\frac{\pi}{2}; n \in Z\right\}$
The function $f(x) = \cot x$ is discontinuous on every point of the set Options: A. $\left\{ x = (2n+1) \frac{\pi}{2}; n \in Z \right\}$ B. $\left\{ x = \frac{n\pi}{2}; n \in Z \right\}$
The function $f(x) = \cot x$ is discontinuous on every point of the set Options: A. $\left\{x = (2n+1)\frac{\pi}{2}; n \in Z\right\}$ B. $\left\{x = \frac{n\pi}{2}; n \in Z\right\}$ C. $\left\{x = n\pi; n \in Z\right\}$
The function $f(x) = \cot x$ is discontinuous on every point of the set Options: A. $\left\{x = (2n+1)\frac{\pi}{2}; n \in Z\right\}$ B. $\left\{x = \frac{n\pi}{2}; n \in Z\right\}$ C. $\left\{x = n\pi; n \in Z\right\}$ D. $\left\{x = 2n\pi; n \in Z\right\}$

Question 14

A particle moves along the curve $\frac{x^2}{16} + \frac{y^2}{4} = 1$. When the rate of change of abscissa is 4 times that of its ordinate, then the quadrant in which the particle lies in

Options:

A. III or IV

II or III
. I or III
. II or IV
nswer: D
olution:
olution:
Question 15
n enemy fighter jet is flying along the curve given by $y = x^2 + 2$. A clider is placed at (3, 2) wants to shoot down the jet when it is nearest behim. Then the nearest distance is
ptions:
2 units
$\sqrt{5}$ units
$\sqrt{3}$ units
. $\sqrt{6}$ units
nswer: B
olution:
plution:
Question 16
$\frac{5^{\sqrt{10-x}}}{5^{\sqrt{x}} + 5^{\sqrt{10-x}}} \mathbf{dx} =$
ptions:
4

B. 3

C. 5

D. 6

Answer: B

Solution:

Question 17

 $\int \sqrt{\csc x - \sin x} \, dx =$

Options:

- A. $2\sqrt{\sin x} + C$
- B. $\frac{2}{\sqrt{\sin x}} + C$
- $C. \sqrt{\sin x} + C$
- D. $\frac{\sqrt{\sin x}}{2} + C$

Answer: A

Solution:

Solution:

Question 18

If f (x) and g(x) are two functions with g(x) = x - $\frac{1}{x}$ and fog(x) = $x^3 - \frac{1}{x^3}$ then f (x) =

Options:

- A. $x^2 \frac{1}{x^2}$
- B. $1 \frac{1}{x^2}$
- C. $3x^2 + 3$
- D. $3x^2 + \frac{3}{x^4}$

Answer: C

Solution:

Solution:

Question 19

A circular plate of radius 5 cm is heated. Due to expansion, its radius

increases at the rate of 0.05 cm / sec. The rate at which its area is increasing when the radius is 5.2 cm is
Options:
A. $5.05\pi\text{cm}^2$ / sec
B. $0.52\pi\text{cm}^2$ / sec
C. 5.2πcm ² / sec
D. $27.4\pi \text{cm}^2$ / sec
Answer: B
Solution:
Solution:
Question 20
The distance 's 'in meters travelled by a particle in 't 'seconds is given by $s=\frac{2t^3}{3}-18t+\frac{5}{3}$. The acceleration when the particle comes to rest is
Options:
A. 12m ² / sec
B. 18m^2 / sec
$C. 3m^2$ / sec
D. 10m^2 / sec
Answer: A
Solution:
Solution:
Question 21
$\int_{0}^{\pi} \frac{x \tan x}{\sec x \cdot \csc x} \mathbf{dx} =$
Options:
Α. π / 2

B. $\pi^2 / 2$

С. п / 4

Solution:

Solution:

Question 22

$$\int \sqrt{5 - 2x + x^2} \, \mathrm{d}x =$$

Options:

A.
$$\frac{x-1}{2}\sqrt{5+2x+x^2}+2\log|(x-1)+\sqrt{5+2x+x^2}|+C$$

B.
$$\frac{x-1}{2}\sqrt{5-2x+x^2}+2\log|(x-1)+\sqrt{5-2x+x^2}|+C$$

C.
$$\frac{x-1}{2}\sqrt{5-2x+x^2}+2\log|(x+1)+\sqrt{x^2+2x+5}|+C$$

D.
$$\frac{x}{2}\sqrt{5-2x+x^2}+4\log|(x+1)+\sqrt{x^2-2x+5}|+C$$

Answer: B

Solution:

Solution:

Question 23

$$\int \frac{1}{1+3\sin^2 x + 8\cos^2 x} \, \mathbf{dx} =$$

Options:

A.
$$\frac{1}{6} \tan^{-1} \left(\frac{2 \tan x}{3} \right) + C$$

B.
$$6\tan^{-1}\left(\frac{2\tan x}{3}\right) + C$$

C.
$$\frac{1}{6} \tan^{-1}(2 \tan x) + C$$

D.
$$\tan^{-1}\left(\frac{2\tan x}{3}\right) + C$$

Answer: A

Solution:

Question 24

$$\int_{-2}^{0} (x^3 + 3x^2 + 3x + 3 + (x + 1)\cos(x + 1)) dx =$$

Options:

- A. 4
- B. 1
- C. 0
- D. 3

Answer: A

Solution:

Solution:

Question 25

The degree of the differential equation

$$1 + \left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^2 = \sqrt[3]{\frac{d^2y}{dx^2} + 1} \text{ is}$$

Options:

- A. 1
- B. 2
- C. 6
- D. 3

Answer: C

Solution:

Solution:

Question 26

If $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$ then

Options:
A. \vec{a} and \vec{b} are coincident
B. Inclined to each other at 60°
C. \vec{a} and \vec{b} are perpendicular
D. \vec{a} and \vec{b} are parallel
Answer: C
Solution:
Solution:
Question 27
The component of \hat{i} in the direction of the vector \hat{i} + \hat{j} + $2\hat{k}$ is
Options:
A. $6\sqrt{6}$
B. $\frac{\sqrt{6}}{6}$
$C. \sqrt{6}$
D. 6
Answer: B
Solution:
Solution:
Question 28
In the interval (0, π / 2), area lying between the curves y = tanx and y = cotx and the X-axis is
Options:
A. 4 log 2 sq. units
B. log 2 sq. units
C. 3 log 2 sq. units
D. 2 log 2 sq. units

Answer: B

Solution:
Solution:
Question 29
The area of the region bounded by the line $y = x + 1$, and the lines $x = 3$ and $x = 5$ is
Options:
A. $\frac{11}{2}$ sq. units
B. 7 sq. units
C. 10 sq. units
D. $\frac{7}{2}$ sq. units
Answer: C
Solution:
Solution:
Question 30
If the curve passes through the point (1, 1) and at any point (x, y) on th curve, the product of the slope of its tangent and x co-ordinate of the point is equal to the y co-ordinate of the point, then the curve also passes through the point
Options:
A. (-1, 2)
B. $(\sqrt{3}, 0)$
C. (2, 2)
D. (3, 0)
Answer: C
Solution:
Solution:

Question 31

The length of perpendicular drawn from the point (3, -1, 11) to the line $\frac{x}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ is

Options:

- A. $\sqrt{33}$
- B. $\sqrt{53}$
- C. √<u>66</u>
- D. √29

Answer: B

Solution:

Solution:

Question 32

The equation of the plane through the points (2, 1, 0), (3, 2, -2) and (3, 1, 7) is

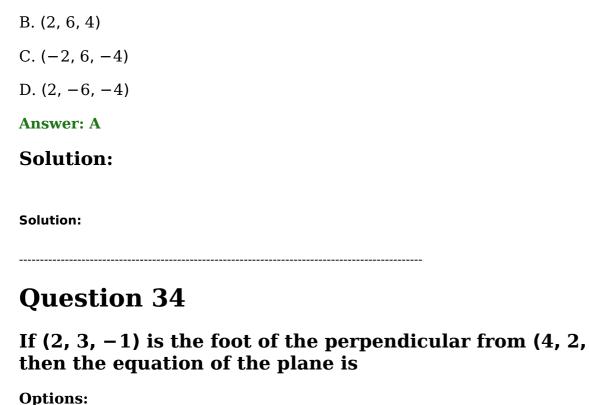
Options:

- A. 6x 3y + 2z 7 = 0
- B. 7x 9y z 5 = 0
- C. 3x 2y + 6z 27 = 0
- D. 2x 3y + 4z 27 = 0

Answer: B

Solution:

Solution:



Question 33

The point of intersection of the line $x + 1 = \frac{y+3}{3} = \frac{-z+2}{2}$ with the plane 3x + 4y + 5z = 10 is

Options:

A. (2, 6, -4)

If (2, 3, -1) is the foot of the perpendicular from (4, 2, 1) to a plane,

Options:

A.
$$2x - y + 2z = 0$$

B.
$$2x + y + 2z - 5 = 0$$

C.
$$2x - y + 2z + 1 = 0$$

D.
$$2x + y + 2z - 1 = 0$$

Answer: C

Solution:

Solution:

Question 35

 $\left| \vec{a} \times \vec{b} \right|^2 + \left| \vec{a} \cdot \vec{b} \right|^2 = 144 \text{ and } \left| \vec{a} \right| = 4 \text{ then } \left| \vec{b} \right| \text{ is equal to}$

Options:

Answer: D

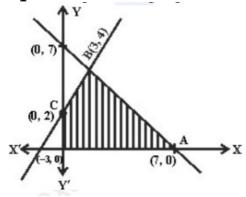
Solution:

Solution:

Question 36
If $\vec{a} + 2\vec{b} + 3\vec{c} = 0$ and $(\vec{a} \times \vec{b}) + (\vec{b} \times \vec{c}) + (\vec{c} \times \vec{a}) = \lambda(\vec{b} \times \vec{c})$ then the value of λ is equal to
Options:
A. 4
B. 6
C. 2
D. 3
Answer: B
Solution:
Solution:
Question 37
If a line makes an angle of $\frac{\pi}{3}$ with each X and Y axis then the acute angle made by Z-axis is
Options:
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{3}$
Answer: B
Solution:
Solution:
Question 38
Let $A = \{x, y, z, u\}$ and $B = \{a, b\}$. A function $f : A \rightarrow B$ is selected randomly. The probability that the function is an onto function is

Opti	ons
~ P -	0110

- A. $\frac{5}{8}$
- B. $\frac{1}{35}$
- C. $\frac{7}{8}$
- D. $\frac{1}{8}$


Answer: B

Solution:

Solution:

Question 39

The shaded region in the figure given in the solution of which of the in equations?

Options:

A.
$$x + y \ge 7$$
, $2x - 3y + 6 \ge 0$, $x \ge 0$, $y \ge 0$

B.
$$x + y \le 7$$
, $2x - 3y + 6 \le 0$, $x \ge 0$, $y \ge 0$

C.
$$x + y \le 7$$
, $2x - 3y + 6 \ge 0$, $x \ge 0$, $y \ge 0$

D.
$$x + y \ge 7$$
, $2x - 3y + 6 \le 0$, $x \ge 0$, $y \ge 0$

Answer: C

Solution:

Solution:

Question 40

If A and B are events such that $P(A) = \frac{1}{4}$, $P(A / B) = \frac{1}{2}$ and $P(B / A) = \frac{2}{3}$ then $P(B)$ is
Options:
A. $\frac{2}{3}$
B. $\frac{1}{2}$
C. $\frac{1}{6}$
D. $\frac{1}{3}$
Answer: D
Solution:
Solution:
Question 41
A bag contains $2n + 1$ coins. It is known that n of these coins have head on both sides whereas the other $n + 1$ coins are fair. One coin is selected
at random and tossed. If the probability that toss results in heads is $\frac{31}{42}$, then the value of n is

then the value of n is
then the value of n is Options:
then the value of n is Options: A. 8
then the value of n is Options: A. 8 B. 10
then the value of n is Options: A. 8 B. 10 C. 5
then the value of n is Options: A. 8 B. 10 C. 5 D. 6
then the value of n is Options: A. 8 B. 10 C. 5 D. 6 Answer: B

The value of
$$\sin^2 14^\circ \sin^2 66^\circ \tan 135^\circ \sin^2 66^\circ \tan 135^\circ \sin^2 14^\circ \tan 135^\circ \sin^2 14^\circ \sin^2 66^\circ$$
 is

Options:

- A. 1
- B. 2
- C. -1
- D. 0

Answer: D

Solution:

Solution:

Question 43

The modulus of the complex number $\frac{(1+i)^2(1+3i)}{(2-6i)(2-2i)}$ is

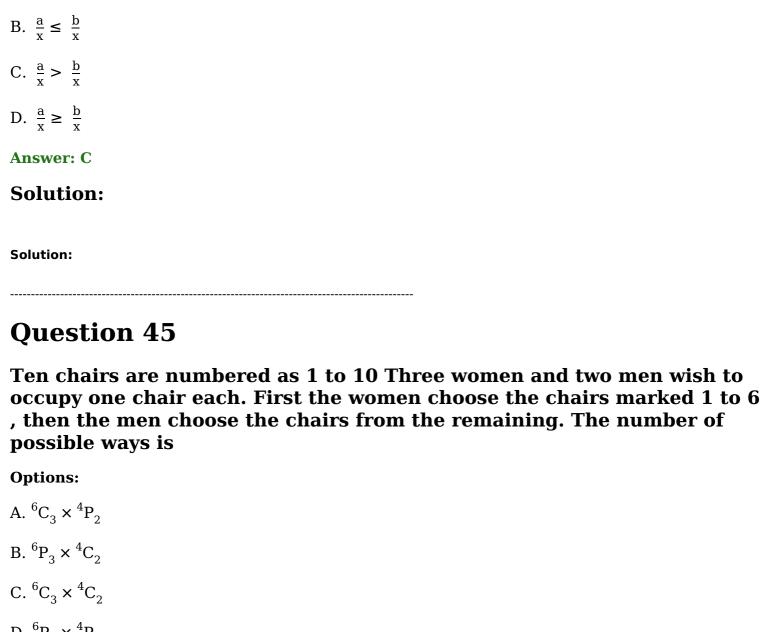
Options:

- A. $\frac{1}{\sqrt{2}}$

- D. $\frac{2}{\sqrt{2}}$

Answer: B

Solution:


Solution:

Question 44

Given that a, b and x are real numbers and a < b, x < 0 then

Options:

A. $\frac{a}{x} < \frac{b}{x}$

D.
$${}^{6}P_{3} \times {}^{4}P_{2}$$

Answer: D

Solution:

Solution:

Question 46

Which of the following is an empty set?

Options:

A.
$$\{x : x^2 - 9 = 0, x \in R\}$$

B.
$$\{x : x^2 = x + 2, x \in R\}$$

C.
$$\{x : x^2 - 1 = 0, x \in R\}$$

D.
$$\{x : x^2 + 1 = 0, x \in R\}$$

Answer: D

Solution:
Solution:
Question 47
If $f(x) = ax + b$, where a and b are integers, $f(-1) = -5$ and $f(3) = 3$ then a and b are respectively
Options:
A. 0, 2
3. 2, 3
C3, -1
D. 2, -3
Answer: D
Solution:
Solution:
Question 48
The value of $e^{\log_{10} \tan 10^{\circ} + \log_{80} \tan 22^{2} + \log_{10} \tan 3^{9} + + \log_{10} \tan 89^{\circ}}$ is
Options:
A. $\frac{1}{e}$
3. 1
C. 0
D. 3
Answer: B
Solution:
Solution:
Question 49

A line passes through (2, 2) and is perpendicular to the line 3x + y = 3.

Its y-intercept is **Options:** A. 1 B. $\frac{4}{3}$ C. $\frac{1}{3}$ D. $\frac{2}{3}$ **Answer: B Solution: Solution: Question 50** The distance between the foci of a hyperbola is 16 and its eccentricity is $\sqrt{2}$. Its equation is **Options:** A. $2x^2 - 3y^2 = 7$ B. $y^2 - x^2 = 32$ C. $x^2 - y^2 = 32$ D. $\frac{x^2}{4} - \frac{y^2}{9} = 1$ **Answer: B Solution: Solution:**

Question 51

If $\lim_{x\to 0} \frac{\sin{(2+x)} - \sin{(2-x)}}{x} = A\cos{B}$, then the values of A and B respectively are

Options:

- A. 2, 1
- B. 1, 1
- C. 2, 2

D.	1.	2

Answer: C

Solution:

Solution:

Question 52

If n is even and the middle term in the expansion of $\left(x^2 + \frac{1}{x}\right)^n$ is $924x^6$, then n is equal to

Options:

- A. 12
- B. 8
- C. 10
- D. 14

Answer: A

Solution:

Solution:

Question 53

n th term of the series 1 + $\frac{3}{7}$ + $\frac{5}{7^2}$ + $\frac{1}{7^2}$ + ... is

Options:

A.
$$\frac{2n-1}{7^n}$$

B.
$$\frac{2n+1}{7^{n-1}}$$

C.
$$\frac{2n-1}{7^{n-1}}$$

D.
$$\frac{2n+1}{7^n}$$

Answer: C

Solution:

Question 54

If $p\left(\frac{1}{q}+\frac{1}{r}\right)$, $q\left(\frac{1}{r}+\frac{1}{p}\right)$, $r\left(\frac{1}{p}+\frac{1}{q}\right)$ are in A.P., then p, q, r

Options:

- A. are in A.P.
- B. are not in G.P.
- C. are not in A.P.
- D. are in G.P.

Answer: A

Solution:

Solution:

Question 55

Let $f: R \to R$ be defined by $f(x) = 3x^2 - 5$ and $g: R \to R$ by $g(x) = \frac{x}{x^2 + 1}$ then gof is

Options:

A.
$$\frac{3x^2}{x^4 + 2x^2 - 4}$$

B.
$$\frac{3x^2}{9x^4 + 30x^2 - 2}$$

$$C. \ \frac{3x^2 - 5}{9x^4 - 30x^2 + 26}$$

D.
$$\frac{3x^2 - 5}{9x^4 - 6x^2 + 26}$$

Answer: C

Solution:

Solution:

Let the relation R be defined in N by aRb if $3a + 2b = 27$ then R is
Options:
A. {(1, 12), (3, 9), (5, 6), (7, 3), (9, 0)}
B. {(2, 1), (9, 3), (6, 5), (3, 7)}
C. {(1, 12), (3, 9), (5, 6), (7, 3)}
D. $\left\{ \left(0, \frac{27}{2}\right), (1, 12), (3, 9), (5, 6), (7, 3) \right\}$
Answer: C
Solution:
Solution:
Question 57
Let $f(x) = \sin 2x + \cos 2x$ and $g(x) = x^2 - 1$, then $g(f(x))$ is invertible in the domain
Options:
$A. x \in \left[\frac{-\pi}{2}, \frac{\pi}{2} \right]$
B. $x \in \left[0, \frac{\pi}{4}\right]$
$C. x \in \left[\begin{array}{cc} -\pi \\ \frac{\pi}{4}, & \frac{\pi}{4} \end{array} \right]$
$D. x \in \left[\frac{-\pi}{8}, \frac{\pi}{8} \right]$
Answer: D

Solution:

Solution:

Question 58

The contrapositive of the statement "If two lines do not intersect in the same plane then they are parallel." is

Options:

A. If two lines are not parallel then they do not intersect in the same plane

B. If two lines are parallel then they do not intersect in the same plane.
C. If two lines are not parallel then they intersect in the same plane
D. If two lines are parallel then they intersect in the same plane
Answer: C
Solution:
Solution:
Question 59
The mean of 100 observations is 50 and their standard deviation is $\bf 5$. Then the sum of squares of all observations is
Options:
A. 250000
B. 255000
C. 50000
D. 252500
Answer: D
Solution:
Solution:
Question 60
$f: R \to R$ and $g: [0, \infty) \to R$ are defined by $f(x) = x^2$ and $g(x) = \sqrt{x}$. Which one of the following is not true?
Options:
A. $(f \circ g)(2) = 2$
B. $(gof)(-2) = 2$
C. $(gof)(4) = 4$
D. $(fog)(-4) = 4$
Answer: D
Solution:

Solution:
Physics
Question 1
The torque acting on a magnetic dipole placed in uniform magnetic field is zero, when the angle between the dipole axis and the magnetic field is
Options:
A. 60°
B. 90°
C. Zero
D. 45°
Answer: C
Solution:
Solution:
Question 2
The horizontal component of Earth's magnetic field at a place is $3\times 10^{-5} T$. If the dip at that place is 45° , the resultant magnetic field at that place is
Options:
A. $\frac{3}{2}\sqrt{3} \times 10^{-5}$ T
B. $3\sqrt{2} \times 10^{-5}$ T
C. 3×10^{-5} T
$D. \ \frac{3}{\sqrt{2}} \times 10^{-5} T$
Answer: B
Solution:
Solution:

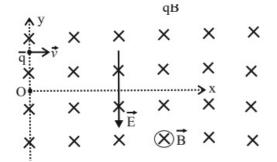
Question 3

Options:

A proton and an alpha-particle moving with the same velocity enter a uniform magnetic field with their velocities perpendicular to the magnetic field. The ratio of radii of their circular paths is

•
A. 4:1
B. 1:2
C. 2:1
D. 1:4
Answer: B
Solution:
Solution:
Question 4
A moving coil galvanometer is converted into an ammeter of range 0 to 5 mA. The galvanometer resistance is 90Ω and the shunt resistance has a value of 10Ω . If there are 50 divisions in the galvanometer-turnedammeter on either sides of zero, its current sensitivity is
Options:
A. $2 \times 10^4 \text{A} / \text{div}$
$B. 1 \times 10^5 \text{div / A}$
$C. 2 \times 10^4 \text{div / A}$
5
D. $1 \times 10^5 A / div$

Question 5


Answer: B

Solution:

Solution:

A positively charged particle of mass m is passed through a velocity selector. It moves horizontally rightward without deviation along the line $y = \frac{2 \text{ mv}}{qB}$ with a speed v. The electric field is vertically downwards

and magnetic field is into the plane of the paper. Now, the electric field is switched off at t=0. The angular momentum of the charged particle about origin O at $t=\frac{\pi m}{\sigma B}$ is

0-	+:-	
Op	u	1112

- A. Zero
- B. $\frac{mE^3}{qB^2}$
- C. $\frac{mE^2}{qB^3}$
- D. $\frac{2mE^2}{qB^3}$

Answer: A

\sim			- •			
•	$\mathbf{\Omega}$	111	ıti		n	•
J	v.	LU		.v	'11	

Solution:

Question 6

The Curie temperatures of Cobalt and iron are 1400K and 1000K respectively. At T = 1600K, the ratio of magnetic susceptibility of Cobalt to that of iron is

Options:

- A. $\frac{7}{5}$
- B. $\frac{5}{7}$
- C. $\frac{1}{3}$
- D. 3

Answer: D

Solution:

Solution:

Question 7
An ideal transfomer has a turns ratio of 10 . When the primary is connected to 220V, 50 Hz ac source, the power output is
Options:
a. Equal to power input
3. Zero
C. 10 times the power input
0. $\frac{1}{10^{\text{th}}}$ the power input
answer: A
Solution:
olution:
Question 8
The current in a coil changes from 2A to 5A in 0.3 s. The magnitude of emf induced in the coil is 1.0V. The value of self-inductance of the cois
Options:
a. 0.1 mH
3. 10 mH
2 1 0 II
C. 1.0 mH
D. 100 mH
D. 100 mH
D. 100 mH Answer: D

Question 9

A metallic rod of length 1m held along east-west direction is allowed to fall down freely. Given horizontal component of earth's magnetic field $B_H = 3 \times 10^{-5} T$. The emf induced in the rod at an instant t=2 s after it

is released is (Take $g = 10 \text{ms}^{-2}$)

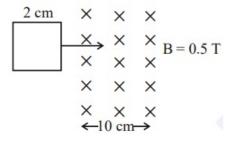
Options:

A. $3 \times 10^{-4} \text{V}$

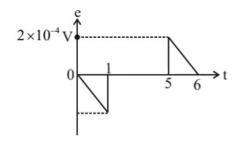
B. $6 \times 10^{-3} V$

C. $6 \times 10^{-4} \text{V}$

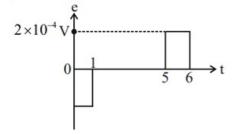
D. $3 \times 10^{-3} V$


Answer: C

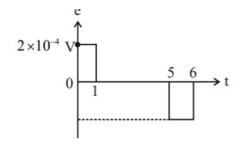
Solution:

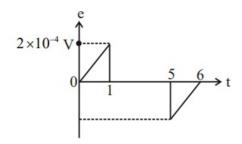

Question 10

A square loop of side 2 cm enters a magnetic field with a constant speed of 2 cm $\rm s^{-1}$ as shown. The front edge enters the field at t = 0 s. Which of the following graph correctly depicts the induced emf in the loop? (Take clockwise direction positive)



Options:


A.


В.

C.

D.

Answer: B

Solution:

Question 11

In series LCR circuit at resonance, the phase difference between voltage and current is

Options:

- A. $\frac{\pi}{4}$
- B. $\frac{\pi}{2}$
- C. Zero
- D. π

Answer: C

Solution:

Solution:

Question 12

An equiconvex lens made of glass of refractive index $\frac{3}{2}$ has focal length f in air. It is completely immersed in water of refractive index $\frac{4}{3}$. The

percentage change in the focal length is
Options:
A. 400% decrease
3. 300% increase
C. 400% increase
D. 300% decrease
Answer: B
Solution:
olution:
Question 13
A point object is moving at a constant speed of 1ms ⁻¹ along the principal axis of a convex lens of focal length 10 cm. The speed of the mage is also 1ms ⁻¹ , when the object is at cm from the optic centre of the lens.
Options:
A. 20
3. 5
C. 10
D. 15
Answer: A
Solution:
folution:
Question 14
When light propagates through a given homogeneous medium, the velocities of

Options:

- A. Primary wavefronts are greater than or equal to those of secondary wavelets.
- B. Primary wavefronts and wavelets are equal
- $C.\ Primary\ wavefronts\ are\ larger\ than\ those\ of\ secondary\ wavelets$

Answer: B Solution: Question 15 Total impedance of a series LCR circuit varies with angular frequency of the AC source connected to it as shown in the graph. The quality factor Q of the series LCR circuit is \[\tilde{\text{ZZ}_{min}} \tilde{\text{Z}_{constrainty}} \] Options: A. 5 B. 1 C. 0.4 D. 2.5 Answer: D Solution: Question 16	D. Primary wavefronts are lesser than those of secondary wavelets
Question 15 Total impedance of a series LCR circuit varies with angular frequency of the AC source connected to it as shown in the graph. The quality factor Q of the series LCR circuit is \[\sqrt{ZZ_{min}}\] \[\sqrt	Answer: B
Question 15 Total impedance of a series LCR circuit varies with angular frequency of the AC source connected to it as shown in the graph. The quality factor Q of the series LCR circuit is \[\sum_{Z_{min}} \sum_{J_{2}} \tag{\text{(n)}} \\ \sum_{J_{2}} \text	Solution:
Total impedance of a series LCR circuit varies with angular frequency of the AC source connected to it as shown in the graph. The quality factor Q of the series LCR circuit is \[\sum_{\sum_{\text{inin}}}^{\infty} \frac{\gamma(\text{circ})}{\sum_{\text{circuit}}} \] Options: A. 5 B. 1 C. 0.4 D. 2.5 Answer: D Solution: \[\text{Solution:} \] Question 16	Solution:
the AC source connected to it as shown in the graph. The quality factor Q of the series LCR circuit is $\sqrt{2}Z_{\min}$ Z_{\min} Z	Question 15
A. 5 B. 1 C. 0.4 D. 2.5 Answer: D Solution: Ouestion 16	the AC source connected to it as shown in the graph. The quality factor Q of the series LCR circuit is $Z^{(\Omega)}_{\text{min}}$
B. 1 C. 0.4 D. 2.5 Answer: D Solution:	Options:
C. 0.4 D. 2.5 Answer: D Solution: Solution: Question 16	A. 5
D. 2.5 Answer: D Solution: Solution: Question 16	B. 1
Answer: D Solution: Solution: Question 16	C. 0.4
Solution: Solution: Question 16	D. 2.5
Solution:	Answer: D
Question 16	Solution:
	Solution:
	Question 16 The ratio of the magnitudes of electric field to the magnetic field of an

The ratio of the magnitudes of electric field to the magnetic field of an electromagnetic wave is of the order of

Options:

A.
$$10^{-5} \text{ms}^{-1}$$

C.
$$10^{-8} \text{ms}^{-1}$$

D. 10^5ms^{-1}	
Answer: B	
Solution:	
Solution:	
Question 17	
For a point object, which of the in air?	following always produces virtual image
Options:	
A. Convex mirror	
B. Biconvex lens	
C. Concave mirror	
D. Plano-Convex lens	
Answer: A	
Solution:	
Solution:	
Question 18	
For a given pair of transparent colour is maximum?	media, the critical angle for which
Options:	
A. Blue	
B. Violet	
C. Green	
D. Red	
Answer: D	
Solution:	
Solution:	
	·

Question 19

In the Rutherford's alpha scattering experiment, as the impact parameter increases, the scattering angle of the alpha particle

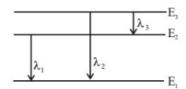
Options:

A. Decreases

B. Increases

C. Remains the same

D. Is always 90°


Answer: A

Solution:

Solution:

Question 20

Three energy levels of hydrogen atom and the corresponding wavelength of the emitted radiation due to different electron transition are as shown. Then,

Options:

A.
$$\lambda_2 = \lambda_1 + \lambda_3$$

B.
$$\lambda_2 = \frac{\lambda_1 \lambda_3}{\lambda_1 + \lambda_3}$$

C.
$$\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$

D.
$$\lambda_1 = \frac{\lambda_2 \lambda_3}{\lambda_2 + \lambda_3}$$

Answer: B

Solution:

Solution:

An unpolarised light of intensity I is passed through two polaroids kept one after the other with their planes parallel to each other. The intensity of light emerging from second polaroid is $\frac{I}{4}$. The angle
between the pass axes of the polaroids is
Options:
A. 60°
B. 30°
C. 45°
D. 0°
Answer: C
Solution:
Solution:
Question 22
In the Young's double slit experiment, the intensity of light passing through each of the two double slits is $2 \times 10^{-2} \text{Wm}^{-2}$. The screen-slit distance is very large in comparison with slit-slit distance. The fringe width is β . The distance between the central maximum and a point P on the screen is $x = \frac{\beta}{3}$. Then the total light intensity at that point is
Options:
A. $2 \times 10^{-2} \text{Wm}^{-2}$
B. $16 \times 10^{-2} \text{Wm}^{-2}$
$C. 8 \times 10^{-2} Wm^{-2}$
D. $4 \times 10^{-2} \text{Wm}^{-2}$
Answer: A
Solution:
Solution:
Ougstion 22

A 60W source emits monochromatic light of wavelength 662.5 nm. The number of photons emitted per second is

Ω	nti	on	c
U	րա	OII	5

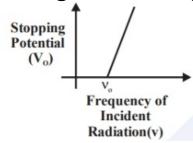
A. 5×10^{26}

B. 2×10^{29}

C. 5×10^{17}

D. 2×10^{20}

Answer: D


Solution:

Solution:

Question 24

In an experiment to study photo-electric effect the observed variation of stopping potential with frequency of incident radiation is as shown in the figure. The slope and y-intercept are respectively

Options:

A. $\frac{hv}{e}$, $-\frac{h}{e}$

B. hv, $-hv_0$

C. $\frac{h}{e}$, $-\frac{hv v_0}{e}$

D. $\frac{hv}{e}$, v_0

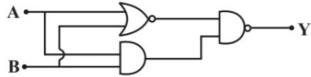
Answer: C

Solution:

Solution:

Question 25

A full-wave rectifier with diodes D_1 and D_2 is used to rectify 50 Hz alternating voltage. The diode D_1 conducts times in one


second. Options: A. 75 B. 50 C. 100 D. 25 Answer: B Solution:

Solution:

Question 26

The truth table for the given circuit is

Options:

A.

Α	В	Υ
1	1	1
1	0	1
0	1	1
0	0	1

В.

Α	В	Υ
1	1	1
1	0	1
0	1	1
0	0	0

C.

Α	В	Υ
1	1	1
1	0	1
0	1	0
0	0	1

D.

Α	В	Υ
1	1	1
1	0	0
0	1	1
0	0	1

Answer: A

Solution:

_	_ 1	I	-:	_		_
3	ol	ıu	τι	О	n	:

Question 27

The energy gap of an LED is 2.4 eV. When the LED is switched ' ON ', the momentum of the emitted photons is

Options:

A.
$$1.28 \times 10^{-11} \text{kg} \cdot \text{m} \cdot \text{s}^{-1}$$

B.
$$0.64 \times 10^{-27} \,\mathrm{kg \cdot m^{-1}}$$

C.
$$1.28 \times 10^{-27} \,\mathrm{kg} \cdot \mathrm{m} \cdot \mathrm{s}^{-1}$$

D.
$$2.56 \times 10^{-27} \,\mathrm{kg \cdot m \cdot s^{-1}}$$

Answer: C

Solution:

Solution:

Question 28

In the following equation representing $\beta^-decay,$ the number of neutrons in the nucleus X is $_{83}^{~~210}Bi\to X+e^{-1}+\overline{v}$

Options:
A. 125
B. 84
C. 126
D. 127
Answer: C
Solution:
Solution:
Question 29
A nucleus with mass number 220 initially at rest emits an alpha particle. If the Q value of reaction is 5.5 MeV, calculate the value of kinetic energy of alpha particle.
Options:
A. 7.4 MeV
B. 4.5 MeV
C. 6.5 MeV
D. 5.4 MeV
Answer: D
Solution:
Solution:
Question 30
A radioactive sample has half-life of 3 years. The time required for the activity of the sample to reduce to $\frac{1}{5}$ th of its initial value is about
Options:
A. 15 years
B. 5 years

C. 10 years

D. 7 years

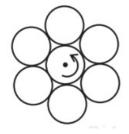
Solution:	
Solution:	
Question 31	
When a p-n junction diode is in for carriers flows in the connective wi	
Options:	
A. Protons	
B. Holes	
C. Free electrons	
D. Ions	
Answer: C	
Solution:	
Solution:	
Question 32	
	tically down from a height of 10m. It 0% of its energy and then rises back to nitial velocity is
Options:	
A. 196ms ⁻¹	
B. 20ms ⁻¹	
C. Zero	
D. 14ms ⁻¹	
Answer: D	
Solution:	

The moment of inertia of a rigid body about an axis

Options:

- A. Depends on the positions of axis of rotation
- B. Does not depend on its size
- C. Does not depend on its mass
- D. Does not depend on its shape

Answer: A


Solution:

-			
Sol		nn	
30	uu	vII	

Question 34

Seven identical discs are arranged in a planar pattern, so as to touch each other as shown in the figure. Each disc has mass 'm' radius R. What is the moment of inertia of system of six discs about an axis passing through the center of central disc and normal to plane of all discs?

Options:

A.
$$55 \frac{mR^2}{2}$$

B.
$$85 \frac{\text{mR}^2}{2}$$

$$C. 27mR^2$$

Answer: A

Solution:

Solution:

The true length of a wire is 3.678 cm. When the length of this wire is measured using instrument A, the length of the wire is 3.5 cm. When the length of the wire is measured using instrument B, it is found to have length 3.38 cm. Then the

Options:

- A. Measurement with B is more accurate and precise
- B. Measurement with A is more precise while measurement with B is more accurate
- C. Measurement with A is more accurate and precise
- D. Measurement with A is more accurate while measurement with B is more precise

Answer: D

Solution:

Solution:

Question 36

A body is moving along a straight line with initial velocity \mathbf{v}_0 . Its acceleration a is constant. After t seconds, its velocity becomes v. The average velocity of the body over the given time interval is

Options:

A.
$$\bar{v} = \frac{v^2 + v_0^2}{a^t}$$

B.
$$\overline{v} = \frac{v^2 - v_0^2}{2 \text{ at}}$$

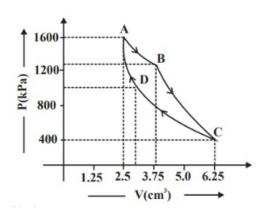
$$C. \overline{v} = \frac{v^2 - v_0^2}{at}$$

D.
$$\overline{v} = \frac{v^2 + v_0^2}{2at}$$

Answer: B

Solution:

Solution:



Question 37

A particle is in uniform circular motion. Related to one complete

Options:	
A. Average speed of the particle is zero	
B. Average velocity of the particle is zero	
C. Average acceleration of the particle is zero	
D. Displacement of the particle is zero	
Answer: A	
Solution:	
Solution:	
Question 38 A body of mass 10 kg is kept on a horizontal surface. The coefficient of the kinetic friction between the body and the surface is 0.5. A horizontal force of 60N is applied on the body. The resulting acceleration of the body is about	of
Options:	
A. 6ms^{-2}	
A. 6ms ⁻² B. Zero	
A. 6ms ⁻² B. Zero C. 1ms ⁻²	
A. 6ms ⁻² B. Zero C. 1ms ⁻² D. 5ms ⁻²	
Options: A. 6ms ⁻² B. Zero C. 1ms ⁻² D. 5ms ⁻² Answer: C Solution:	
A. 6ms ⁻² B. Zero C. 1ms ⁻² D. 5ms ⁻² Answer: C	

The P-V diagram of a Carnot's engine is shown in the graph below. The engine uses 1 mole of an ideal gas as working substance. From the graph, the area enclosed by the P-V diagram is [The heat supplied to the gas is 8000J]

Options:

- A. 3000J
- B. 1000J
- C. 1200J
- D. 2000J

Answer: A

Solution:

Solution:

Question 40

When a planet revolves around the Sun, in general, for the planet

Options:

- A. Kinetic and potential energy of the planet are constant.
- B. Angular momentum about the Sun and aerial velocity of the planet are constant.
- C. Linear momentum and linear velocity are constant.
- D. Linear momentum and aerial velocity are constant.

Answer: B

Solution:

Solution:

Question 41

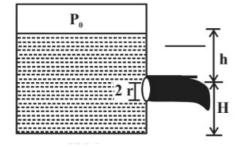
A stretched wire of a material whose Young's modulus $Y=2\times 10^{11} Nm^{-2}$ has Poisson's ratio 0.25 . Its lateral strain $\epsilon_\ell=10^{-3}$. The elastic energy density of the wire is

Options:

Δ	4	×	10 ⁵	[m ⁻³
А.	4	Х	IU.	1111

B.
$$8 \times 10^{5} \text{Jm}^{-3}$$

C.
$$16 \times 10^5 \text{Jm}^{-3}$$


D.
$$1 \times 10^5 \text{Jm}^{-3}$$

Answer: C

Solution:

Question 42

A closed water tank has cross-sectional area A. It has a small hole at a depth of h from the free surface of water. The radius of the hole is r so that $r < \sqrt{\frac{A}{\pi}}$. If P_o is the pressure inside the tank above water level, and P_a is the atmospheric pressure, the rate of flow of the water coming out of the hole is [ρ is the density of water]

Options:

A.
$$\pi r^2 \sqrt{2 gH}$$

B.
$$\pi r^2 \sqrt{gh + \frac{2(P_o - P_a)}{\rho}}$$

C.
$$\pi r^2 \sqrt{2 gh}$$

D.
$$\pi r^2 \sqrt{\frac{2 gh + \frac{2(P_o - P_a)}{\rho}}{}}$$

Answer: D

Solution:

Solution:

100g of ice at 0°C is mixed with 100g of water at 100°C . The final temperature of the mixture is

[Take $L_f = 3.36 \times 10^5 \text{Jkg}^{-1}$ and $S_w = 4.2 \times 10^3 \text{Jkg}^{-1} \text{k}^{-1}$]

Options:

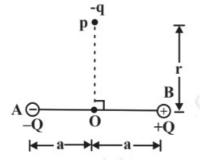
A. 50°C

B. 1°C

C. 40°C

D. 10°C

Answer: D


Solution:

Solution:

Question 44

In the situation shown in the diagram, magnitude of q << |Q| and $r \gg a$. The net force on the free charge -q and net torque on it about O at the instant shown are respectively [p = 2 aQ is the dipole moment]

Options:

$$A. - \frac{1}{4\pi\epsilon_0} \frac{pq}{r^2} \hat{k}, - \frac{1}{4\pi\epsilon_0} \frac{pq}{r^3} \hat{i}$$

B.
$$\frac{1}{4\pi\epsilon_0} \frac{pq}{r^3} \hat{i}$$
, $+ \frac{1}{4\pi\epsilon_0} \frac{pq}{r^2} \hat{k}$

C.
$$\frac{1}{4\pi\epsilon_0} \frac{pq}{r^3} \hat{i}$$
, $-\frac{1}{4\pi\epsilon_0} \frac{pq}{r^2} \hat{k}$

$$D.~\frac{1}{4\pi\epsilon_0}\,\frac{pq\,\hat{k}}{r^2}\hat{k},~\frac{1}{4\pi\epsilon_0}\,\frac{pq\,\hat{i}}{r^3}\hat{i}$$

Answer: C

Question 45

Pressure of ideal gas at constant volume is proportional to

Options:

- A. Total energy of the gas
- B. Average kinetic energy of the molecules
- C. Force between the molecules
- D. Average potential energy of the molecules

Answer: A

Solution:

Solution:

Question 46

A block of mass m is connected to a light spring of force constant k. The system is placed inside a damping medium of damping constant b. The instantaneous values of displacement, acceleration and energy of the block are x, a and E respectively. The initial amplitude of oscillation is A and ω ' is the angular frequency of oscillations. The incorrect expression related to the damped oscillation is

Options:

A. E =
$$\frac{1}{2}kA^2e^{-\frac{bt}{m}}$$

B.
$$m \frac{d^2x}{dt^2} + b \frac{dx}{dt} + kx = 0$$

C.
$$x = Ae^{-\frac{b}{m}}\cos(\omega t + \varphi)$$

D.
$$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$$

Answer: C

Solution:

Solution:

The speed of sound in an ideal gas at a given temperature T is v. The rms speed of gas molecules at that temperature is v_{rms} . The ratio of the velocities v and v_{ms} for helium and oxygen gases are X and X, respectively. Then $\frac{X}{Y}$ is equal to

Or	tio	ns
Οþ	LLIO	1112:

- A. $\sqrt{\frac{5}{21}}$
- B. $\frac{21}{5}$
- C. $\frac{21}{\sqrt{5}}$
- D. $\frac{5}{\sqrt{21}}$

Answer: D

Solution:

Solution:

Question 48

A positively charged glass rod is brought near uncharged metal sphere, which is mounted on an insulated stand. If the glass rod is removed, the net charge on the metal sphere is

Options:

- A. 1.6×10^{-19} C
- B. Positive charge
- C. Negative charge
- D. Zero

Answer: D

Solution:

Solution:

Question 49

A parallel plate capacitor of capacitance C_1 with a dielectric slab in between its plates is connected to a battery. It has a potential difference V_1 across its plates. When the dielectric slab is removed, keeping the capacitor connected to the battery, the new capacitance and potential difference are C_2 and V_2 respectively. Then,

Options:

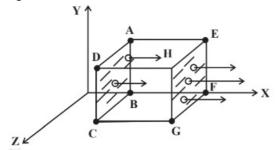
A.
$$V_1 < V_2$$
, $C_1 > C_2$

B.
$$V_1 = V_2$$
, $C_1 > C_2$

$$C. V_1 = V_2, C_1 < C_2$$

D.
$$V_1 > V_2$$
, $C_1 > C_2$

Answer: B


Solution:

Solution:

Question 50

A cubical Gaussian surface has side of length a = 10 cm. Electric field lines are parallel to x-axis as shown. The magnitudes of electric fields through surfaces ABCD and EFGH are $6kNC^{-1}$ and $9kNC^{-1}$ respectively. Then the total charge enclosed by the cube is [. Take

$$\varepsilon_0 = 9 \times 10^{-12} \text{Fm}^{-1}$$

Options:

A.
$$-1.35 \, \text{nC}$$

$$C. -0.27 \, nC$$

Answer: B

Question 51

Electric field at a distance ' r ' from an infinitely long uniformly charged straight conductor, having linear charge density λ is E $_1$. Another uniformly charged conductor having same linear charge density λ is bent into a semicircle of radius ' r '. The electric field at its centre is E $_2$. Then

Options:

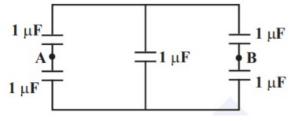
A.
$$E_1 = E_2$$

B.
$$E_1 = \pi r E_2$$

C.
$$E_2 = \pi r E_1$$

D. E₂ =
$$\frac{E_1}{r}$$

Answer: A

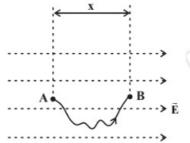

Solution:

Solution:

.....

Question 52

Five capacitors each of value $1\mu F$ are connected as shown in the figure. The equivalent capacitance between A and B is


Options:

Answer: D

Question 53

A uniform electric field vector \vec{E} exists along horizontal direction as shown. The electric potential at A is V_A . A small point charge q is slowly taken from A to B along the curved path as shown. The potential energy of the charge when it is at point B is

Options:

A. $q[Ex - V_A]$

B. qEx

C. $q[V_A - Ex]$

D. $q[V_A + Ex]$

Answer: C

Solution:

Solution:

Question 54

Ten identical cells each emf 2V and internal resistance 1Ω are connected in series with two cells wrongly connected. A resistor of 10Ω is connected to the combination. What is the current through the resistor?

Options:

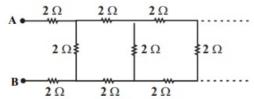
A. 0.6A

B. 1.2A

C. 1.8A

D. 2.4A

Answer: A


Solution:

S	ol	u	ti	O	n	
•	•	ч	٠.	•		

Question 55

The equivalent resistance between the points A and B in the following circuit is

Options:

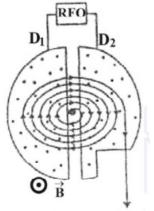
A. 0.05Ω

Β. 5Ω

 $C.~0.5\Omega$

D. 5.5Ω

Answer: D


Solution:

C	ol		+i	_	n	
3	vi	u	u	u		

Question 56

A charged particle is subjected to acceleration in a cyclotron as shown. The charged particle undergoes increase in its speed

Options:

A. Inside \boldsymbol{D}_1 , \boldsymbol{D}_2 and the gaps

B. Only inside D₁

C. Only in the gap between D_1 and D_2
D. Only inside \mathbf{D}_2
Answer: C
Solution:
Solution:
Question 57
The resistance of a carbon resistor is 4.7k Ω ± 5%. The colour of the third band is
Options:
A. Violet
B. Orange
C. Gold
D. Red
Answer: D
Solution:
Solution:
Question 58
The four bands of a colour coded resistor are of the colours gray, red gold and gold. The value of the resistance of the resistor is
Options:
A. $8.2\Omega \pm 5\%$
B. $82\Omega \pm 5\%$
C. $5.2\Omega \pm 5\%$
D. $82\Omega \pm 10\%$
Answer: A
Solution:

Question 59
A wire of resistance R is connected across a cell of emf ϵ and internal resistance r. The current through the circuit is I. In time t, the work done by the battery to establish the current I is
Options:
A. IRt
B. I ² Rt
C. ε It
D. $\frac{\epsilon^2 t}{R}$
Answer: C
Solution:
Solution:
Question 60
For a given electric current the drift velocity of conduction electrons in a copper wire is ν and their mobility is μ . When the current is increased at constant temperature
Options:
A. $v_d^{}$ decreases, μ remains the same
B. \boldsymbol{v}_{d} remains the same, $\boldsymbol{\mu}$ decreases
$C.\ \boldsymbol{v}_{d}$ increases, μ remains the same
D. \boldsymbol{v}_{d} remains the same, $\boldsymbol{\mu}$ increases
Answer: C
Solution:
Solution:
Chemistry

Compound	s P and R	in the fol	llowing rea	ction are	
CH ³ CH O	$ \stackrel{\text{OCH }_{3}M \text{ gBr}}{\longrightarrow} \mathbf{P} \stackrel{\text{conc.}}{\stackrel{\text{-}}{\longrightarrow}} h $	$\stackrel{\cdot H_{2}SU_{4}}{\longrightarrow} \mathbf{Q}$ teat (i)B ₂ H ₆ (i)	\rightarrow R		
Options:		2 0.			
A. Metamers					
B. Identical					
C. Position iso	mers				
D. Functional	isomers				
Answer: C					
Solution:					
Solution:					
Questio	n 2				
Aniline doe	es not und	dergo			
Options:					
A. Friedel-Cra	ft reaction				
B. Bromination	n				
C. Nitration					
D. Sulphonation	on				
Answer: A					
Solution:					
Solution:					
Questio	n 3				
Zuczuoi				1	_

The heating of phenyl methyl ether with HI produces an aromatic compound A which on treatment with con. ${\rm HNO_3}$ gives B. A and B respectively are,

Options:

- A. Iodobenzene, 1-Iodo-4-nitrobenzene
- B. Phenol, Picric acid
- C. Methanol, Ethanoic acid

Answer: B				
Solution:				
Solution:				
Question 4				
$ \begin{array}{c} OH \\ \hline NaOH \\ \hline A \end{array} $ (i) CO (ii) H	$^{02}_{+}\rightarrow B$	i) (CH ₃ CO) ₂ O (ii) H ⁺	→ Y (Major	product
Y in the above reaction is				
Options:				
A. Cumene				
B. Picric acid				
C. Salicylaldehyde				
D. Aspirin				
Answer: D				
Solution:				
Solution:				
Question 5				
A better reagent to oxidize pri	imary alo	cohols into a	ldehyde is:	
Options:				
A. Acidified K ₂ Cr ₂ O ₇				
B. CrO ₃				
C. PCC				

D. Picric acid, Phenol

D. Alkaline ${\rm KMnO}_4$

Answer: C

Solution:

Solution:

Question 6

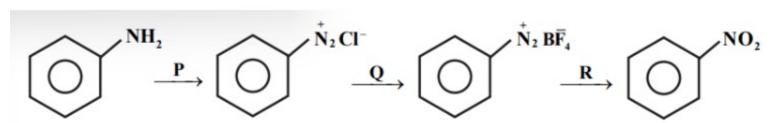
In the reaction:

$$C_6H_5CN \stackrel{(i)SnCl_2+HCl}{\longrightarrow} X \stackrel{con.KOH}{\longrightarrow} Y + Z$$

Formation of X , formation of Y and Z are known by

Options:

- A. Wolff-Kishner reduction, Wurtz reaction.
- B. Stephen reaction, Cannizaro reaction
- C. Rosenmund reduction, Cannizaro reaction
- D. Clemmensen reduction, Sandmeyer reaction.


Answer: B

Solution:

Solution:

Question 7

P, Q and R respectively are:

Options:

A.
$$\text{NaNO}_2 + \text{dil} \cdot \text{HCl}, \, \text{BF}_3, \, \text{Cu} + \text{NaNO}_2$$

B.
$$NaNO_3$$
 + dil. HCl, F_2 , $Cu + NaNO_3$

C.
$$\text{NaNO}_2$$
+ dil. HCl, HBF $_4$, Cu + NaNO_2

D.
$$NaNO_2$$
 + con. HCl, F_2 , $Cu + NaNO_3$

Answer: C

Solution:
Question 8
Thyroxine produced in the thyroid gland is an iodinated derivative of
Options:
A. Tyrosine
3. Tryptophan
C. Threonine
D. Lysine
Answer: A
Solution:
Solution:
Question 9
Sucrose is dextrorotatory but after hydrolysis the mixture show aevorotation, this is because of
Options:
A. Recemic mixture is formed.
3. Laevorotation of fructose is more than dextrorotation of glucose.
C. Laevorotation of glucose is more than dextrorotation of fructose.
). Sucrose is a non-reducing sugar
Answer: B
Solution:
iolution:

The correct order of match between column X and column Y is:

Х	Υ
I. Vitamin A	i. Muscular weakness
II. Vitamin D	ii. Increased blood clotting time
III. Vitamin E	iii. Night-blindness
IV. Vitamin K	iv. Osteomalacia

Options:

A. I - iii, II - ii, III - iv, IV - i

B. I - iii, II - iv, III - i, IV - ii

C. I - iv, II - iii, III - ii, IV - i

D. I - ii, II - i, III - iii, IV - iv

Answer: B

Solution:

Solution:

Question 11

Which of the following monomers form biodegradable polymers?

Options:

- A. Phenol and formaldehyde
- B. 3-hydroxybutanoic acid and 3-hydroxypentanoic acid
- C. Ethylene glycol and pthalic acid
- D. Caprolactum and 1,3-Butadiene

Answer: B

Solution:

Solution:

Question 12

Match the List-I with List-II in the following

List-I	List-II
1.Caprolactum	(a)
2. Vinyl chloride	(b)
3. Styrene	(c)
4.Propene	(d)

Options:

A.
$$1 - d$$
, $2 - c$, $3 - a$, $4 - b$

B.
$$1 - d$$
, $2 - c$, $3 - b$, $4 - a$

C.
$$1 - c$$
, $2 - d$, $3 - a$, $4 - b$

D.
$$1 - a$$
, $2 - d$, $3 - c$, $4 - b$

Answer: B

Solution:

Solution:

Question 13

Which one of the following is a non-narcotic analgesic?

Options:

- A. Aspirin
- B. Morphine
- C. Heroin
- D. Codeine

Answer: A

Solution:

Solution:

Question 14

Receptors are proteins and crucial to body communication process. These receptors are embedded in

Options:

A. Endocrine gland	
B. Chromosomes	
C. Cell membrane	
D. Protein	
Answer: C	
Solution:	
Solution:	
Question 15	·
	heated from 25°C to 323°C and $\frac{2^{rd}}{3}$ of its original value. Then the final
Options:	
A. 2 atm	
B. 4 atm	
C. 1.33 atm	
D. 6 atm	
Answer: D	
Solution:	
Solution:	
Question 16	
Lattice enthalpy for NaCl is +7	$788 \text{kJ} \text{mol}^{-1} \text{and} \Delta_{\text{Hvd}} = -784 \text{kJ} \text{mol}^{-1}.$
Enthalpy of solution of NaCl is	,
Options:	
A. $-572 \mathrm{kJ} \mathrm{mol}^{-1}$	
$B4 kJ mol^{-1}$	
C. $+572 \text{ kJ mol}^{-1}$	

 $D. +4 \, kJ \, mol^{-1}$

Answer: D

Solution:	
Question 17	
container, $K_C = 2$ attaining 10 time	versible reaction $A_{2(g)} + B_{2(g)} \rightleftharpoons 2AB_{(g)}$ in a closed $\times 10^{-5}$. In the presence of catalyst, the equilibrium is a faster. The equilibrium constant K_C in the presence same temperature is
Options:	
A. 2×10^{-10}	
B. 2×10^{-5}	
C. 2×10^{-4}	
D. 2×10^{-6}	
Answer: B	
Solution:	
Solution:	
Question 18	
	pK _a 5.9 and weak base with pK _b 5.8 are mixed in equal f the resulting solution is
Options:	
A. 7	
B. 7.05	
B. 7.05 C. 7.005	
C. 7.005	
C. 7.005 D. 7.5	

Temperature of 25°C in	Fahrenheit and	Kelvin scale	respectively a	:e
Options:				

A. 45°F and 260.15K

B. 47°F and 312.15K

C. 77°F and 298.15K

D. 17°F and 298.15K

Answer: C

Solution:

c	_	١.	ıŧ	8.	_	_	

Question 20

The number of protons, neutrons and electrons in the ion $_{16}^{\ \ 32} {\rm S}^{2-}$ respectively are

Options:

A. 18, 16, 16

B. 16, 16, 16

C. 16, 18, 16

D. 16, 16, 18

Answer: D

Solution:

Solution:

Question 21

The correct order of first ionisation enthalpy of given elements is

Options:

A. C < B < Be < Li

B. Li < Be < B < C

C. Li < B < Be < C

D. Be < Li < B < C
Answer: C
Solution:
Solution:
Question 22
Which of the following statement is INCORRECT?
Options:
A. Bond length of ${\rm O_2}$ < Bond length of ${\rm O_2}^{2-}$
B. Bond order of O_2 > Bond order of O_2^{2-}
C. Bond length of O_2 > Bond length of O_2^{2+}
D. Bond order of O_2^+ <bond <math="" of="" order="">O_2^{2-}</bond>
Answer: D
Solution:
Solution:
Question 23
IUPAC name of the compound is
Options:

A. 1, 1, 2, 2- tetra methylethene

B. 2, 3 – dimethyl butene

C. 2, 3 – dimethylbut-2-ene

D. 2, 3 – dimethyl butyne

Answer: C

Solution:

Question 24
Among the following:
The set which represents aromatic species is
Options:
A. II and III
B. I, II and IV
C. I, II and III
D. III, IV and V
Answer: B
Solution:
Solution:
Question 25
Which one of the following gases converts haemoglobin into carboxy haemoglobin?
Options:
A. NO
$\mathrm{B.\ CO}_2$
C. CO
D. O ₂
Answer: C
Solution:
Solution:
Question 26 What is the oxidation number of S in $H_2S_2O_8$?
villation of different statements of the statement of the

Options:
A. +7
B. +6
C. +5
D. +4
Answer: B
Solution:
Solution:
Question 27
A 30% solution of hydrogen peroxide is
Options:
A. '50 volume' hydrogen peroxide
B. '100 volume' hydrogen peroxide
C. '30 volume' hydrogen peroxide
D. '10 volume' hydrogen peroxide
Answer: B
Solution:
Solution:
Question 28
A pair of amphoteric oxides is
Options:
A. BeO, MgO
B. BeO, ZnO
C. Al ₂ O ₃ , Li ₂ O
D. BeO, BO ₃

Solution:

Answer: B

olution:	
Question 29	
The composition of water gas is	
Options:	
$L \cdot CO_{(g)} + H_2O_{(g)}$	
B. $CO_{(g)} + H_{2(g)}$	
$C. CO_{(g)} + N_{2(g)}$	
O. $CH_{4(k)}$	
answer: B	
Solution:	
olution:	
Question 30	
The swelling in feet and ankles of an aged person due to sitting continuously for long hours during travel, is reduced by soaking to warm salt water. This is because of:	he feet
Options:	
a. Edema	
3. Diffusion	
C. Reverse Osmosis	
O. Osmosis	
answer: D	
Solution:	
olution:	
Question 31	

A sample of water is found to contain 5.85% ($\frac{w}{w}$) of AB (molecular mass

58.5) and $9.50\%\left(\frac{w}{w}\right)$ XY (molecular mass 95). Assuming 80% ionisation of AB and 60% ionisation of XY $_2$, the freezing point of water sample is

[Given: K_f for water 1.86K kg mol⁻¹, Freezing point of pure water is 273K and A, B and Yare monovalent ions]

Options:

A. 280.44K

B. 281.75K

C. 264.25K

D. 265.56K

Answer: C

Solution:

S	٦l	u	ti	o	n	•
•	•	•	٠.	•	••	•

Question 32

Match the column A (type of crystalline solid) with the column B (example for each type):

	Α		В
P.	Molecular Solid	i.	SiC
Q.	Ionic Solid	ii.	Mg
R.	Metallic Solid	iii.	H ₂ O
S.	Network Solid	iv.	MgO

Options:

Answer: B

Solution:

Question 33 A metal crystallises in a body centered cubic lattice with the metallic radius $\sqrt{3}$ Å. The volume of the unit cell in m³ is **Options:** A. 6.4×10^{-29} B. 4×10^{-10} C. 64×10^{-29} D. 4×10^{-29} **Answer: A Solution: Solution: Question 34** If 'a' stands for the edge length of the cubic systems - The ratio of radii in simple cubic, body centered cubic and face centered cubic unit cells is **Options:** A. $\frac{1}{2}a : \frac{\sqrt{3}}{2}a : \frac{\sqrt{2}}{2}a$ B. $\frac{1}{2}a : \sqrt{3}a : \frac{1}{\sqrt{2}}a$ C. 1a: $\sqrt{3}a$: $\sqrt{2}a$ D. $\frac{1}{2}a : \frac{\sqrt{3}}{4}a : \frac{1}{2\sqrt{2}}a$ **Answer: D Solution:** Solution:

.....

Question 35

Dimerisation of solute molecules in low dielectric constant solvent is due to:

Options:
A. Co-ordinate bond
B. Ionic bond
C. Hydrogen bond
D. Covalent bond
Answer: C
Solution:
Solution:
Question 36
For a reaction, the value of rate constant at 300K is $6.0 \times 10^5 \text{ s}^{-1}$. The value of Arrhenius factor A at infinitely high temperature is :
Options:
A. $\frac{6 \times 10^{-5}}{300}$
B. 6×10^5
C. $6 \times 10^5 \times e^{-Ea/300R}$
D. $e^{-Ea/300R}$
Answer: B
Solution:
Solution:
Question 37
The rate constants k_1 and k_2 for two different reactions are $10^{16} \times e^{-2000/T}$ and $10^{15} \times e^{-1000/T}$ respectively. The temperature at which $k_1 = k_2$ is :
Options:
A. $\frac{1000}{2.303}$ K
B 1000K

C. $\frac{2000}{2.303}$ K

D. 2000K
Answer: A
Solution:
Solution:
Question 38
During the electrolysis of brine, by using inert electrodes,
Options:
A. Na deposits on cathode
B. Cl ₂ liberates at anode
C. O ₂ liberates at anode
D. H ₂ liberates at anode
Answer: B
Solution:
Solution:
Question 39
Consider the following 4 electrodes A: $Ag^{+}(0.0001M) / Ag_{(s)}$; B: $Ag^{+}(0.1M) / Ag_{(s)}$ C: $Ag^{+}(0.01M) / Ag_{(s)}$; D: $Ag^{+}(0.001M) / Ag_{(s)}$; $E_{Ag^{+}/Ag}^{\circ} = +0.80V$.
Then reduction potential in volts of the electrodes in the order
Options:
A. A > D > C > B
B. A > B > C > D
C. B > C > D > A
D. C > D > A > B
Answer: C
Solution:

Solution:

Question 40 The resistance of 0.1M weak acid HA in a conductivity cell is 2×10^3 Ohm. The cell constant of the cell is 0.78 Cm⁻¹ and λ_m ° of acid HA is $390 \text{Scm}^2 \text{mol}^{-1}$. The pH of the solution is **Options:** A. 5 B. 3 C. 3.3 D. 4.2 **Answer: B Solution: Solution:** Question 41 In which one of the following reactions, rate constant has the unit $mol L^{-1} s^{-1}$. **Options:** A. $2NO_{(g)} + O_{2_{(8)}} \rightarrow 2NO_{2_{(8)}}$ B. Decomposition of HI on the surface of Gold C. Acid catalysed hydrolysis of $\mathrm{CH_3COOCH_3}$ D. $CHCl_3 + Cl_2 \rightarrow CCl_4 + HCl$ **Answer: B Solution: Solution:**

Question 42

For the formation of which compound in Ellingham diagram ΔG° becomes more and more negative with increase in temperature?

Options:
A. ZnO
B. Cu_2O
C. CO
D. FeO
Answer: C
Solution:
Solution:
Question 43
Which of the following compound does not give dinitrogen on heating?
Options:
A. NH_4NO_3
B. $(NH_4)_2Cr_2O_7$
C. $Ba(N_3)_2$
D. NH_4NO_2
Answer: A
Solution:
Solution:
Question 44
Aqueous solution of raw sugar when passed over beds of animal charcoal, it becomes colourless. Pick the correct set of terminologies that can be used for the above example.
Options:

A.

	Adsorbent	Adsorbate	Process
(A)	Animal Charcoal	Colouring Substance	Adsorption

В.

	Adsorbent	Adsorbate	Process
(B)	Colouring Substance	Animal Charcoal	Adsorption

C.

	Adsorbent	Adsorbate	Process
(C)	Solution of Sugar	Animal Charcoal	Sorption

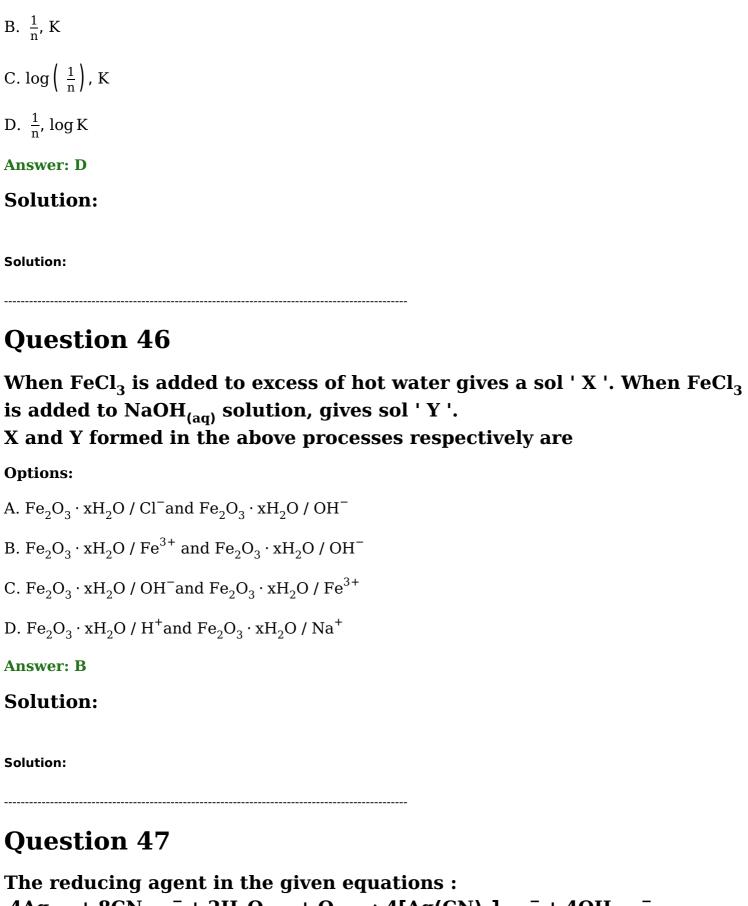
D.

	Adsorbent	Adsorbate	Process
(D)	Animal Charcoal	Solution of Sugar	Absorption

Answer: A

Solution:

Solution:



Question 45

For Freundlich adsorption isotherm, a graph of $\log(x / m)$ Vs. $\log(P)$ gives a straight line. The slope of line and its Y-axis intercept respectively are

Options:

A. $\log\left(\frac{1}{n}\right)$, $\log K$

$$4Ag_{(s)} + 8CN_{(aq)}^{-} + 2H_{2}O_{(aq)} + O_{2_{(g)}} \rightarrow 4[Ag(CN)_{2}]_{(aq)}^{-} + 4OH_{(aq)}^{-}$$

$$2[Ag(CN)_{2}]_{(aq)}^{-} + Zn_{(s)}^{-} \rightarrow [Zn(CN)_{4}]_{(aq)}^{-2} + 2Ag_{(s)}^{-}$$

- A. H₂O
- B. CN
- C. Zn

D. O ₂
Answer: C
Solution:
Solution:
Question 48
Which of the following is CORRECT with respect to melting point of a transition element?
Options:
A. $Mn > Fe$
B. Ti >V
C. V > Cr
D. $Cr > Mn$
Answer: D
Solution:
Solution:
Question 49
$\mathbf{aMnO_4}^- + \mathbf{bS_2O_3}^{-2} + \mathbf{H_2O} \to \mathbf{xMnO_2} + \mathbf{ySO_4}^{-2} + \mathbf{zOH}^- \mathbf{a} \text{ and y respectively}$ are
Options:
A. 3; 6
B. 8; 8
C. 8; 3
D. 8; 6
Answer: D
Solution:
Solution:

Question 50

Which formula and name combination is INCORRECT?

Options:

A. [CoCl₂(en)₂] Cl-Dichloridodiethylenediammine cobalt (II) chloride

B. $[Co(NH_3)_4(H_2O) Cl]Cl_2$ - Tetraammineaquachloridocobalt (III) chloride

C. $K_3[Al(C_2O_4)_3]$ - Potassium trioxalatoaluminate (III)

D. $[Pt(NH_3)_2 Cl(NO_2)]$ - Diamminechloridonitrito - N - platinum (II)

Answer: A

Solution:

Solution:

Question 51

Which of the following system in an octahedral complex has maximum unpaired electrons?

Options:

A. d⁴ (low spin)

B. d⁷ (high spin)

C. d⁹ (high spin)

D. d⁶ (low spin)

Answer: B

Solution:

Solution:

Question 52

The correct decreasing order of basicity of hydrides of Group - 15 elements is

Options:

 $A.~\mathrm{AsH_3} > \mathrm{SbH_3} > \mathrm{NH_3} > \mathrm{PH_3}$

 $\mathrm{B.\ NH}_3 > \mathrm{PH}_3 > \mathrm{AsH}_3 > \mathrm{SbH}_3$

C. $SbH_3 > AsH_3 > PH_3 > NH_3$
D. $PH_3 > AsH_3 > SbH_3 > NH_3$
Answer: B
Solution:
Solution:
Question 53
Which one of the following oxoacids of phosphorus can reduce ${\bf AgNO_3}$ t metallic silver?
Options:
A. $H_4P_2O_6$
B. H_3PO_4
C. H_3PO_2
D. $H_4P_2O_7$
Answer: C
Solution:
Solution:
Question 54
In solid state, PCl ₅ is a/an
Options:
A. Ionic solid with $[PCl_4]^+$ and $[PCl_6]^-$
B. Covalent solid present in the form of P_2Cl_{10}
C. Octahedral structure

Answer: A

D. Ionic solid with $[PCl_6]^+$ and $[PCl_4]^-$

Solution:

Solution:
Question 55
In which one of the following pairs, both the elements does not have $(n-1)d^{10}ns^2$ configuration in its elementary state?
Options:
A. Hg, Cn
B. Cu, Zn
C. Zn, Cd
D. Cd, Hg
E. None of above
Answer: E
Solution:
Solution:
Question 56
$CH_3 - CH = CH - CH_2OH^{PCC} \rightarrow CH_3 - CH = CH - CHO$ Hybridisation change involved at C – 1 in the above reaction
Options:
A. sp^2 to sp^3
B. sp to sp ²
C. sp ³ to sp
D. sp^3 to sp^2
Answer: D
Solution:
Solution:

Question 57

If a didentate ligand ethane -1, 2 - diamine is progressively added in

the molar ratio en : Ni: : 1 : 1, 2 : 1, 3 : 1 to $[Ni(H_2O)_6]^{2+}$ aq solution following co-ordination entities are formed. I. $[Ni(H_2O)_4 en]_{(aq)}^{2+}$ -pale blue
II. $[Ni(H_2O)_2(en)_2]_{(aq)}^{2+}$ -blue/purple
III. [Ni(en) ₃] _(aq) ²⁺ -violet
The wavelength in nm of light absorbed in case of I and III are respectively
Options:
A. 310 nm and 500 nm
B. 600 nm and 535 nm
C. 475 nm and 310 nm
D. 300 nm and 475 nm
Answer: B
Solution:
Solution:
Question 58
Which of the following is an organometallic compound?
Options:
A. $(CH_3COO)_2Ca$
B. CH ₃ ONa
C. CH ₃ COONa
D. $\mathrm{CH_{3}CH_{2}MgBr}$
Answer: D
Solution:
Solution:
Question 59
A pair of compounds having the same boiling points are

A. Benzene and naphthalene
B. (+) butan and -2 – ol and (–) butan -2 – ol
C. cis but-2-ene and trans but-2-ene
D. n-hexane and neo-hexane
Answer: B
Solution:
Solution:
Question 60
Identify A, B and C in the sequence: $_{\text{alc}} \text$
$\mathbf{CH_3CH_2} \mathbf{Br} \stackrel{\text{alc}}{\to} \mathbf{KCN} \stackrel{\text{lialH}_4}{\to} \mathbf{B} \stackrel{0^{\circ} \text{CNO}}{\to} \mathbf{C}$
Options:
A. CH_3CH_2CN , C_2H_5OH , $C_2H_5N_2Cl$
B. CH_3CH_2CN , $CH_3CH_2NH_2$, C_2H_5OH
C. $\mathrm{CH_3CH_2CN}$, $\mathrm{CH_3CH_2CH_2NH_2}$, $\mathrm{CH_3CH_2CH_2OH}$
D. $\mathrm{CH_3CH_2}$ NC, $\mathrm{CH_3CH_2OH}$, $\mathrm{CH_3CH_2CH_2NH_2}$
Answer: C
Solution:
Solution:
Biology
Question 1
Which of the following is abbreviated as ZIFT?
Options:

A. Zygote Intra Fallopian Tube

C. Zygote Inter Fallopian Tube

B. Zygote Intra Fallopian Transfer

D. Zygote Inter Fallopian Transfer

Answer: B
Solution:
Solution:
Question 2
An example for hormone releasing IUD is
Options:
A. Lippes loop
B. LNG - 20
C. Implant
D. Multiload 375
Answer: B
Solution:
Solution:
Question 3
MTPs are considered relatively safe during
Options:
A. 180 days of pregnancy
B. Second trimester
C. First trimester
D. 24 weeks of pregnancy
Answer: C
Solution:
Solution:

Question 4

Which of the following statements is corret?

Find the correct statement. (1) Generally a gene regulates a trait, but sometimes one gene has effect on multiple traits. (2) The trait AB-blood group of man is regulated by one dominant allele and another recessive allele. Hence it is co-dominant.
Question 6
Solution:
Solution:
Answer: A
D. Correns
C. Mendel
B. Tschermak
A. Sturtvent
Options:
'Gene-mapping' technology was developed by
Question 5
Solution:
Solution:
Answer: C
D. Change in whole set of chromosomes is called aneuploidy.
C. Female carrier for haemophilia may transmit the disease to sons.
B. Thalassemia is a qualitative problem.
A. Sickle cell anaemia is a quantitative problem.

Options:

- A. Both Statements (1) and (2) are correct.
- B. Statement (1) is correct.
- C. Both the Statements are wrong.
- D. Statement (2) is correct.

Qu	estion 7				
	n the following table, s ous phases of menstrua	-	hat co	rrectly	characterizes
Optio	ns:				
A.					
	Menstruation phase	Follicular phase	Lutea	al phas	е
Α	Menses	L.H. Surge	Rege	nration	of endometrium
В.					
	Menstruation phase	Follicular phase	е		Luteal phase
В	Matured follicle	Regression of co	egression of corpus luteum Ovulation		Ovulation
C.					
	Menstruation phase	Follicular phase	Luteal phase		phase
С	Regeneration of endometriun	n High level of proge	esterone Developing corpus lut		ping corpus luteum
Э.					
	Menstruation phase	Follicular phase		Lut	teal phase
D	Menses	Developing corpus	luteun	n Fol	licle maturation
Answ	er: A				
Solu	tion:				
Solutio	on:				

Answer: B

Solution:

Solution:

Question 8

In one of the hybridisation experiments, a homozygous dominant parent and a homozygous recessive parent are crossed for a trait. (Plant shows Medelian inheritance pattern)

Options:

- A. Dominant parent trait appears in \mathbf{F}_1 generation and recessive parent trait appears in \mathbf{F}_1 and \mathbf{F}_2 generations.
- B. Dominant parent trait appears in \boldsymbol{F}_1 generation and recessive parent trait appears in \boldsymbol{F}_2 generation.
- C. Dominant parent trait appears in \boldsymbol{F}_2 generation and recessive parent trait appears only in \boldsymbol{F}_1 generation
- D. Dominant parent trait appears in both $F_1\&F_2$ generations, recessive parent trait appears in only F_2 generation.

Answer: 1	O
-----------	---

Salutions

Jointion.			

Question 9

Histone proteins are positively charged because they are rich in basic amino acid residues

Options:

- A. Arginine and Phenylalanine
- B. Arginine and Alanine
- C. Arginine and Proline
- D. Arginine and Lysine

Answer: D

Solution:

_	_				
So	ı۱	ı tı	_	n	

Question 10

Eukaryotic genes are monocistronic but they are split genes because

A. Exons are interrupted by Introns.
B. They contain Exons only.
C. Introns are interrupted with Mutons.
D. They contain Introns only.
Answer: A
Solution:
Solution:
Question 11
The Lac-Operon model was elucidated by
Options:
A. Hershey and Chase
B. Watson and Crick
C. Jacob and Crick
D. Francois Jacob and Jaques Monad
Answer: D
Solution:
Solution:
Question 12
Which of these is NOT an example for Adaptive radiation?
Options:
A. Placental mammals
B. Darwin's finches
C. Long-necked Giraffe

Solution:

Answer: C

D. Australian marsupials

Solution:
Question 13
In a population of 800 rabbits showing Hardy-Weinberg equilibrium, the requency of recessive individuals was 0.16. what is the frequency of neterozygous individuals?
Options:
A. 0.84
3. 0.4
C. 0.36
0. 0.48
Answer: D
Solution:
Solution:
Question 14
in male heterogametic type of sex determination
Options:
A. Male parent produces dissimilar gametes.
3. Male parent produces similar gametes.
C. Males do not produce gametes.
D. Female parent produces dissimilar gametes.
Answer: A
Solution:
Solution:
Question 15

Identify the symptoms of pneumonia.

Options:

A. Constipation, Abdominal pain, cramps, blood clots

B. Difficulty in breathing, fever, chills, cough, headache
C. High fever, weakness, stomach pain, loss of appetite
D. Nasal congestion and discharge, cough, sore throat, headache
Answer: B
Solution:
Solution:
Question 16
THe variety of Okra, Pusa Sawani is resistant to which of the following insect pests?
Options:
A. Shoot & Fruit borer
B. Aphids
C. Cereal leaf beetle
D. Jassids
Answer: A
Solution:
Solution:
Question 17
With respect to Inbreeding, which among the following is not true?
Options:
A. It helps in elimination of less desirable genes.
B. Inbreeding decreases homozygosity.
C. It helps to evolve a pure line in an animal.
D. It helps in accumulation of superior genes.
Answer: B

Solution:

Solution:

Question 18	
Identify from the following a pair of better yielding semi dwarf varieties of rice developed in India.	
Options:	
A. Jaya and Kalyan Sona	
B. Jaya and Ratna	
C. Kalyan Sona and Sonalika	
D. Sonalika amd Ratna	
Answer: B	
Solution:	
Solution:	
Question 19	
In MoET technique fertilized eggs are transferred into surrogate mother in which of the following stage?	
Options:	
A. 8 – 32 celled stage	
B. 2 – 4 celled stage	
C. 16 – 32 celled stage	
D. 8 – 16 celled stage	
Answer: A	
Solution:	
Solution:	
Question 20	
Roquefort cheese is ripened by	
Options:	
Options:	

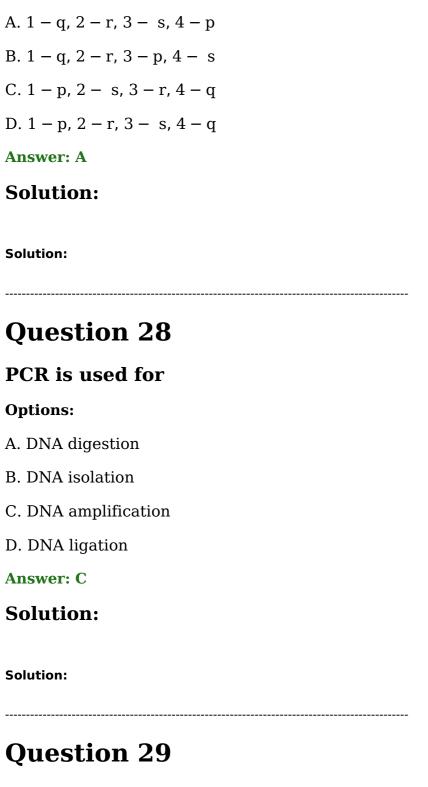
A. Virus

B. Bacterium

C. Yeast
D. Fungi
Answer: D
Solution:
Solution:
Question 21
Four students were assigned a science project to find out the pollution levels of lakes in their surrounding. AFter analysing the quality of water samples, the BOD values were found as follows: Which among the following water samples is highly polluted?
Options:
A. 6 mg / L
B. 0.6 mg / L
C. 0.16 mg / L
D. 0.06 mg / L
Answer: A
Solution:
Solution:
Question 22
The toxic substance 'haemozoin' responsible for high fever and chill, is released in which of the following diseases?
Options:
A. Malaria
B. Dengue
C. Typhoid
D. Pneumonia
Answer: A
Solution:

Solution:
Question 23
Which of these is NOT a method to make host cells 'component' to take up DNA?
Options:
A. Biolistics
B. Micro-injection
C. Use of disarmed pathogen vectors
D. Elution
Answer: D
Solution:
Solution:
Question 24
Select the correct statement from the following:
Options:
A. The first step in PCR is heating which is used to separate both the strands of gene of interest
B. Genetic engineering works only on animals and not yet successfully used on plants.
C. DNA from one organism will not band to DNA from other organism.
D. There are no risk factors associated with r-DNA technology.
Answer: A
Solution:
Solution:
Question 25

Choose the incorrect statement with reference to Kangaroo rat.


Options:

A. Uses minimal water to remove excretory products.

C. Eliminates dilute urine.	
D. Meets is water requirer	nents through internal fat oxidation.
Answer: C	
Solution:	
Solution:	
Question 26	
Generally, bears avo	oid winter by undergoing
Options:	
A. Aestivation	
B. Diapause	
C. Migration	
D. Hibernation	
Answer: D	
Solution:	
Solution:	
Question 27	
Match Column - I wo	ith Column - II. Select the option with correct
Column - I	Column - II
1. Standing state	p. quad Mass of living material at a given tim

B. Found in North American desert.

Column - I	Column - II
1. Standing state	p. quad Mass of living material at a given time.
2. Pioneer species	q. Amount of nutrients in the soil at a given time.
3. Detritivores	r. quad Species that invade a bare area.
4. Standing crop	s. quad Breakdown detritus into smaller particles.

The toxic heavy metals from various industries which cause water pollution, normally have a density

Options:

A. more than $7.5g / cm^3$

B. more than $5g / cm^3$

C. more than $12.5g / cm^3$

D. more than $15g / cm^3$

Answer: C

Solution:

olution:	
Question 30	
dentify the correct option showing the relative contribution of differe reen house gases to the total global warming.	nt
ptions:	
CFC -6% , $CO_2 - 60\%$, Methane -20% , $N_2O - 14\%$	
CFC $- 14\%$, $CO_2 - 60\%$, Methane $- 20\%$, $N_2O - 6\%$	
. CFC -14% , CO $_2$ -60% , Methane -6% , N $_2$ O -20%	
. CFC -20% , CO $_2$ -60% , Methane -14% , N $_2$ O -6%	
nswer: B	
olution:	
olution:	
Question 31	
flower has 10 stamens each having bilobed dithecous anther. If each icrosporangium has 5 pollen mother cells, how many pollen grains ould be produced by the flower?	
ptions:	
. 800	
. 200	
. 1600	
. 400	
nswer: A	
olution:	
olution:	
)uestion 32	

During transcription the DNA stand with $3^{'} \rightarrow 5^{'}$ polarity of the structural gene always acts as a template because

Options:
A. Enzyme DNA dependent RNA polymerase always catalyse polymerisation in bioth the directions.
B. Enzyme DNA dependent RNA polymerase always catalyse the polymerisation $5^{'} \rightarrow 3^{'}$ directions.
C. Nucleotides of DNA strand with $5 \rightarrow 3$ are transferred to mRNA.
D. Enzyme DNA dependent RNA polymerase always catalyse the polymerisation $\vec{3} \rightarrow \vec{5}$ directions.
Answer: B
Solution:
Solution:
Question 33
According to David Tilman's long term ecosystem experiments, the total biomass in plots with more species shows,
Options:

- A. Average variation from year-to-year.
- B. Less variation from year-to-year.
- C. No variation from year-to-year.
- D. High variation from year-to-year.

Answer: B

Solution:

Sol	utio	on:

Question 34

Identify the incorrect statement regarding the flow of energy between various components of the food chain.

- A. Green plants capture about 10% of the solar energy that falls on leaves.
- B. The amount of energy available at each trophic level is 10% of previous trophic level.
- C. Each trophic level loses some energy as heat to the environment.

	D. En avera flava is amidina sti anal			
1	D. Energy flow is unidirectional.			
A	Answer: A	A		
9	Solutio	n:		
S	Solution:			
	Quest	tion 35		
]	Find ou	it the correct	match.	
(Options:			
	A.			
F	1.			
	- 0	Diagona	Dathaway	Main annan
		Disease	Pathogen	Main organ
	(A)	Filariasis	Common round worm	Smallintestine

	Disease	Pathogen	Main organ affected
(A)	Filariasis	Common round worm	Smallintestine

B.

	Disease	Pathogen	Main organ affected
(B)	Ringworm	Fungus	Skin

C.

	Disease	Pathogen	Main organ affected
(C)	Dysentery	Protozoa	Liver

D.

	Disease	Pathogen	Main organ affected
(D)	Typhoid	Bacteria	Lungs

Solution:

_	
So	lution

Question 36

Match the following columns and choose the correct option:

Column - I	Column - II
1. Haemophilus influenzae	p. Malignant malaria
2. Entamoeba histolytica	q. Elephantiasis
3. Plasmodium falciparum	r. Pneumonia
4. Wuchereria bancrofti	s. Amoebiasis

Options:

A.
$$1 - s$$
, $2 - p$, $3 - q$, $4 - r$

B.
$$1 - q$$
, $2 - r$, $3 - s$, $4 - p$

C.
$$1 - r$$
, $2 - p$, $3 - q$, $4 - s$

D.
$$1 - r$$
, $2 - s$, $3 - p$, $4 - q$

Answer: D

Solution:

Sol		: - :	
50	шт	ıo	n:

Question 37

From the following tools / techniques of genetic engineering, identify those which are required for cloning a bacterial gene in animal cells and choose the correct option :

- I. Endonuclease
- II. Ligase
- III. A. tumefaciens
- IV. Microinjection
- V. Gene gun
- VI. Lysozyme
- VII. Cellulase
- VIII. Electrophoresis

A. I, III, IV, V, VII	
B. II, III, V, VII, VIII	
C. II, III, IV, VI, VII, VIII	
D. I, II, IV, VI, VIII	
Answer: D	
Solution:	
Solution:	
Question 38	
Question 50	
Match the column-	I with column_II
	·i with column-ii
the following:	-i with column-ii
	Column - II (Examples)
the following:	
the following: Column - I(Plant groups)	Column - II (Examples)
Column - I(Plant groups) 1. Bryophyta	Column - II (Examples) p. Pinus
the following: Column - I(Plant groups) 1. Bryophyta 2. Gymnosperm	p. Pinus q. Adiantum
the following: Column - I(Plant groups) 1. Bryophyta 2. Gymnosperm 3. Algae 4. Pteridophyta	p. Pinus q. Adiantum r. Sphagnum
the following: Column - I(Plant groups) 1. Bryophyta 2. Gymnosperm 3. Algae 4. Pteridophyta Options:	p. Pinus q. Adiantum r. Sphagnum s. Ectocarpus
the following: Column - I(Plant groups) 1. Bryophyta 2. Gymnosperm 3. Algae 4. Pteridophyta Options: A. 1 - q, 2 - p, 3 - s, 4 -	p. Pinus q. Adiantum r. Sphagnum s. Ectocarpus
the following: Column - I(Plant groups) 1. Bryophyta 2. Gymnosperm 3. Algae 4. Pteridophyta Options:	p. Pinus q. Adiantum r. Sphagnum s. Ectocarpus
the following: Column - I(Plant groups) 1. Bryophyta 2. Gymnosperm 3. Algae 4. Pteridophyta Options: A. 1 - q, 2 - p, 3 - s, 4 -	p. Pinus q. Adiantum r. Sphagnum s. Ectocarpus
the following: Column - I(Plant groups) 1. Bryophyta 2. Gymnosperm 3. Algae 4. Pteridophyta Options: A. 1 - q, 2 - p, 3 - s, 4 - B. 1 - s, 2 - r, 3 - q, 4 -	Column - II (Examples) p. Pinus q. Adiantum r. Sphagnum s. Ectocarpus r p

Solution:

Solution:

Question 39

Flame cells present in the members of platyhelminthes are specialized to perform,

Options:

A. Respiration and Excretion

B. Osmoregulation and Circulation
C. Respiration and Osmoregulation
D. Osmoregulation and Excretion
Answer: D
Solution:
Solution:
Question 40
Identify the floral formula of plant belonging to potato family.
Options:
A.
$Q_{+}^{\dagger}, P_{3+3}, A_{3+3}, G_{(3)}$
B.
$ \overrightarrow{Q}, \overrightarrow{K_{(5)}}, \overrightarrow{C_{(5)}} \overrightarrow{A_5}, \overrightarrow{G_{(2)}} $
C.
\bigcap_{+}^{7} , $K_{(5)}$, $C_{(5)}$, $A_{(9)+1}$, G_1
D.
$\vec{Q}_{10}, K_{10}, C_{10}, A_{10}, \vec{G}_{2}$
Answer: B
Solution:
Solution:
Question 41
When the vascular cambium is present between the xylem and phloem then the vascular bundle is called
Options:

A. Endarch

B. Exarch

C. Closed	
D. Open	
Answer: D	
Solution:	
Solution:	
Question 42	
The function of Typhlosole in earthworm is	
Options:	
A. Transportation	
B. Grinding of soil particles	
C. Increasing the effective area of absorption in the intestine	
D. Grinding of decaying leaves	
Answer: C	
Solution:	
Solution:	
Question 43	
Select the correctly matched pair of organisms with their or	der.
Options:	
A. Homo, sapiens : Poales	
B. Triticum, aestivum : Sapindales	
C. Mangifera, indica : Primata	
D. Musa, domestica : Diptera	
Answer: D	
Solution:	
Solution:	

Question 44

Match List-I and List-II with respect to proteins and their functions and select the correct option.

List - I	List - II
1. Collagen	p. Fights infectious agents
2. Trypsin	q. Hormone
3. Insulin	r. Enzyme
4. Antibody	s. Intercellular ground substance

Options:

A.
$$1 - s$$
, $2 - r$, $3 - q$, $4 - p$

B.
$$1 - q$$
, $2 - r$, $3 - q$, $4 - s$

C.
$$1 - s$$
, $2 - p$, $3 - r$, $4 - p$

D.
$$1 - s$$
, $2 - q$, $3 - r$, $4 - p$

Answer: A

Solution:

Solution:

Question 45

The complex formed by a pair of synapsed homologous chromosomes is called,

Options:

- A. Bivalent
- B. Pentavalent
- C. Univalent
- D. Triad

Answer: A

Solution:

Solution:

Match column-I with column-II. Select the option with correct combination.

Column - I	Column - II	
1. Hypertonic	p. Two molecules move in the same directiona across the membrane.	
2. Capillarity	q. External solution is more concentrated than cellsap.	
3. Symport	r. Water loss in the form of droplets.	
4. Guttation	s. Ability of water to rise in thin tubes.	

Options:

A.
$$1 - q$$
, $2 - p$, $3 - s$, $4 - r$

B.
$$1 - q$$
, $2 - s$, $3 - r$, $4 - p$

C.
$$1 - q$$
, $2 - s$, $3 - p$, $4 - r$

D.
$$1 - q$$
, $2 - r$, $3 - p$, $4 - s$

Answer: C

Solution:

Solution:

Question 47

Toxicity of which micronutrient induces deficiency of iron, magnesium and calcium?

Options:

Λ	Manganese
л.	Manganese

- B. Zinc
- C. Boron
- D. Molybdenum

Answer: A

Solution:

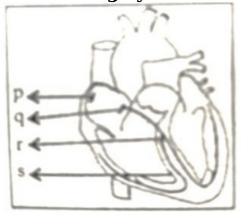
Solution:

Question 48

Considering the stroke volume of an adult healthy being is 70 mL, dentify the cardiac output in one hour from the following:
Options:
A. 302.4 Lit/ hour
3. 5.04 Lit/ hour
C. 50.40 Lit/ hour
D. 30.24 Lit/ hour
Answer: A
Solution:
Solution:
Question 49
Function of contractile vacuole in Amoeba is
Options:
A. Osmoregulation and movements
3. Excretion and osmoregulation
C. Digestion and excretion
D. Digestion and respiration
Answer: B
Solution:
Solution:
Question 50
Atrial Natriuretic Factor (ANF) acts as a
Options:
A. Vasoconstricter
3. Check on Renin-Angiotension mechanism

D. Promoter on Renin-Angiotensiion mechanism

Answer: B


C. Hypertension inducer

Solution:
Solution:
Question 51
The vibrations from the ear drum are tansmitted through ear ossicles t
Options:
A. Tectorial membrane
3. Cochlea
C. Auditory nerves
O. Oval window
Answer: D
Solution:
Solution:
Question 52
Bamboo species flowers
Options:
A. Once in lifetime
3. Every year
C. Twice in 50 – 100 years
O. Once in 12 years
Answer: A
Solution:
Solution:
Question 53

In Bryophyllum, the adventitious buds arise from

A. Shoot apex
B. Leaf axil
C. Leaf base
D. Notches in the leaf margin
Answer: D
Solution:
Solution:
Question 54
Primary endosperm nucleus is formed by fusion of
Options:
A. One polar nucleus and male gamete
B. Two polar nuclei and one male gamete
C. Two polar nuclei and two male gamete
D. Ovum and male gamete
Answer: B
Solution:
Solution:
Question 55
Identify the option showing the correct labelling for

Identify the option showing the correct labelling for mathrm p, mathrm q, mathrm r and mathrm s with reference to the conducting system of the human heart.

Consider the following statements with reference to female reproductive system: Statement 1. The presence or absence of hymon is not a reliable.		
Question 57		
Solution:		
Solution:		
Answer: A		
D. Mons pubis		
C. Vagina		
B. Hymen		
A. Clitoris		
Options:		
In the female reproductive system, a tiny finger like structure which lie at the upper junction of the two labia minora above the urethral opening is called		
Question 56		
Solution:		
Solution:		
Answer: B		
D. p-AVN, q-SAN, r-Interventicular septum, s-Bundle of His		
C. p-Interventicular septm, q-AVN, r-Bundle of His, s-SAN		
B. p-SAN, q-AV N, r-Bundle of His, s-Interventicular septum		
A. p-Bundle of His, q-SAN, r-Interventicular septum, s-AVN		

Statement 1: The presence or absence of hymen is not a reliable indicator of virginity or sexual experience

Statement 2: The sex of the foetus is determined by the father and not by the mother.

Choose the correct option from the following:

- A. Statement 1 is wrong and Statement 2 is corret
- B. Statement 1 is correct and Statement 2 is wrong

- C. Both Statement 1 and Statement 2 are wrong
- D. Both Statement 1 and Statement 2 are correct

Answer: D

Solution:

Solution:

Question 58

The male sex accessory ducts include,

Options:

- A. Rete testis, vasa efferentia, seminal vesicle and vas deferens
- B. Rete testis, vasa efferentia, epididymis and seminal vesicle
- C. Rete testis, vasa efferentia, epididymis and vas deferens
- D. Rete testis, urethra, epididymis and vas deferens

Answer: C

Solution:

Solution:

Question 59

With reference to human sperm, match the List - I with List - II.

List - I	List - II
1. Head	p. Filled with enzyme
2. Acrosome	q. Contains mitochondria
3. Middle piece	r. Sperm mobility
4. Tail	s. Contains haploid nucleus

Choose the correct option from the following:

A.
$$1 - q$$
, $2 - s$, $3 - r$, $4 - p$

B.
$$1 - s$$
, $2 - p$, $3 - q$, $4 - r$

C.
$$1 - r$$
, $2 - q$, $3 - s$, $4 - p$

D.
$$1 - s$$
, $2 - r$, $3 - p$, $4 - q$

Answer: B		
Solution:		
Solution:		
Question 6	6 0	
	the following cells in the embryo sac are destined to ploidy after fertilization?	
Options:		
A. Central cell and	antipodals	
B. Antipodals and	synergids	
C. Egg cell and cer	ntral cell	
D. Synergids and e	egg cell	
Answer: C		
Solution:		
Solution:		