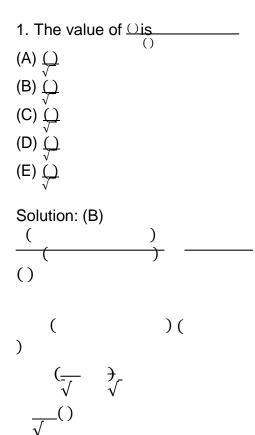
Mathematics

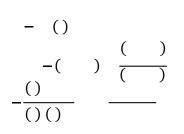
Single correct answer type:



2. If the conjugate of a complex number is , then is

- (A) —
- (B) ____
- (C) ____
- (D) ____
- (E) _

Solution: (D)



3. The value of (...../) is equal to

(A) — (B) (C) — (D)√√ — (E) Solution: (E) 8 (-) 9 8() (-) -9 [()] – [-] - -() -4. The modulus of is -----(A) (B) √ (Ċ) (D) (E) Solution: (A) ()()

Modulus of +-- $\sqrt{\sqrt{--}}$ – 5. If , then () is equal to (A) (B)

(C) (D)

(E)

Solution: (B)

(),()()-,()()-()

6. If and are real numbers and (), then () is equal to (A) (B) (C) (D) (E) Solution: (E) Given, () So, ()......(i) Then, () () 2 3 – () * + () From Equation (i), we get () 7. If , then the equation having and as its roots is

(A) (B) (C) (D) (E)

Solution: (E) Given, and

Similarly,√

 $\sqrt{}$ $\sqrt{}$

Now, addition of roots $- - \frac{\sqrt{-}}{\sqrt{\sqrt{\sqrt{-}}}} \sqrt{-}$

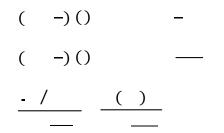
 $\sqrt[]{\sqrt{\sqrt{}}}$ Multiplication of roots _ _

8. The focus of the parabola is
(A) _- /
(B) _- /
(C) _- /
(D) _- /
(E) _ /
Solution: (D)

() () ()()

Let(i) Here, () () Vertices () () Equation (i) comparing on Focus _/_ _ / (), then() 9. If () is an increasing function and if ()is equal to (A) _ (B) _ (C) (D) (E) Solution: (E) Given () is an increasing function. () And So, () () () constant. () Therefore, () () is 10. If is differentiable at , then (A) () (B) () () (C) () () (D) () () (E) () () Solution: (C) ()() By Rule, ()() ()()11. Eccentricity of the ellipse is (A) <u>√</u>

(B) <u>√</u> (C) $\frac{\sqrt{-1}}{\sqrt{-1}}$ (D) $\frac{\sqrt{-1}}{\sqrt{-1}}$ (E) <u>√</u> Solution: (A) Equation is an ellipse.)) (() (() ()(), where Eccentricity () $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ 12. The focus of the parabola () () is (A) () (B) () (C) ()) (D) ((E) () Solution: (A) Given, ()() Here, () Vertices ()() Comparing Equation (i) from Focus () () 13. Which of the following is the equation of a hyperbola? (A) (B) (C) (D) (E) Solution: (D)



It is hyperbola equation.

14. Let (), where are constants and If ()() and (), then the other root of is (A) (B) (C) (D) (E) Solution: (A) () () (i) One root is and ()() ()(ii) Equation (ii) - Equation (i), we get Then, equation is Roots Sum of roots So, another root 15. Let satisfy ()()() for all real numbers and . If (), then _-/ (A) (B) – (C) _ (D) (E) Solution: (B) Given

() () () ...(i) On taking ()()()()()()()Now,-, then from equation (i) ()(-)() -.-/ () ,() -() - ()On putting the value of (), ()_ _ 16. Sum of last coefficents in the binomial expansion of () is

Solution: (C) We have, () Sum of last coefficient of the binomial expansion

We know that,

(A) (B) (C) (D) (E)

> ()()()(

)

,

Sum of last coefficient of the binomial expansion () is .

17.
$$(\sqrt[4]{\sqrt{7}})$$
 $(\sqrt[4]{\sqrt{7}})$
(A) $\sqrt[4]{\sqrt{7}}$
(B) $\sqrt[4]{\sqrt{7}}$
(C) $\sqrt[4]{\sqrt{7}}$
(D) $\sqrt[4]{\sqrt{7}}$
(E) $\sqrt{7}$
Solution: (D)
Take,
()

)

(

-

```
( ).....(i)

Similarly, ( ).....(ii)

On subtracting Equation (ii) from Equation (i), we get

() () ()

Now, putting \sqrt{and} \sqrt{-}

(\sqrt{\sqrt{3}}) (\sqrt{\sqrt{3}}) \sqrt{\sqrt{0}} (\sqrt{\sqrt{3}}) 1

\sqrt{(\sqrt{3})} \sqrt{\sqrt{3}} \sqrt{-}
```

18. Three players and play a game. The probability that and will finish the game are respectively and . The probability that the game is finished is.

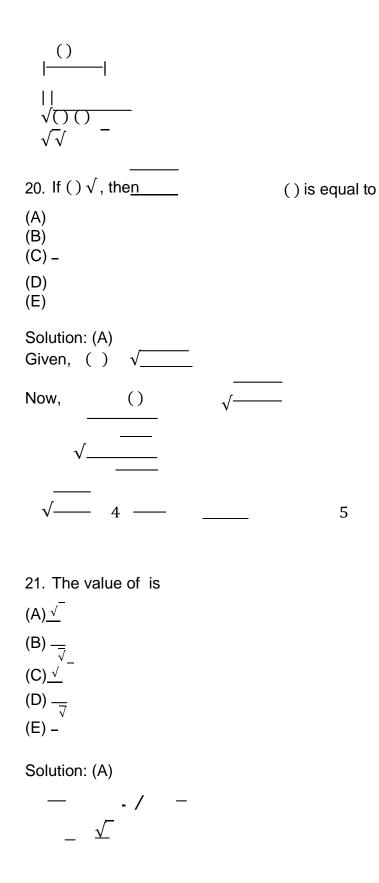
(A) _

(B) (C) _

(D) _

(E) _

```
Solution: (D)
We have, ()() an_d ()
  Required probability
         000
                                 , then |<del>| is</del>—
19. If
                 and
(A)
(B) √ <sup>−</sup>
(C)
(D) √
ÌΕ)
Solution: (B)
Given, and
Then, |++-+----
              ()
```



22. The sum of odd integers from to is

(A) ()

(B) (

(C) ((D) (

(D) () (E) ()

Solution: (C)

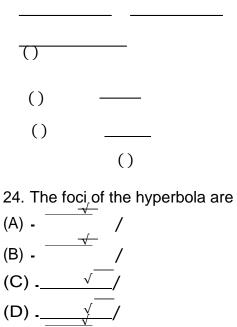
Sum of odd integers ()

)

)

23. If	, then () is equal to
(A)	
(B)	
(C)	
(D)	
(E)	

Solution: (C)

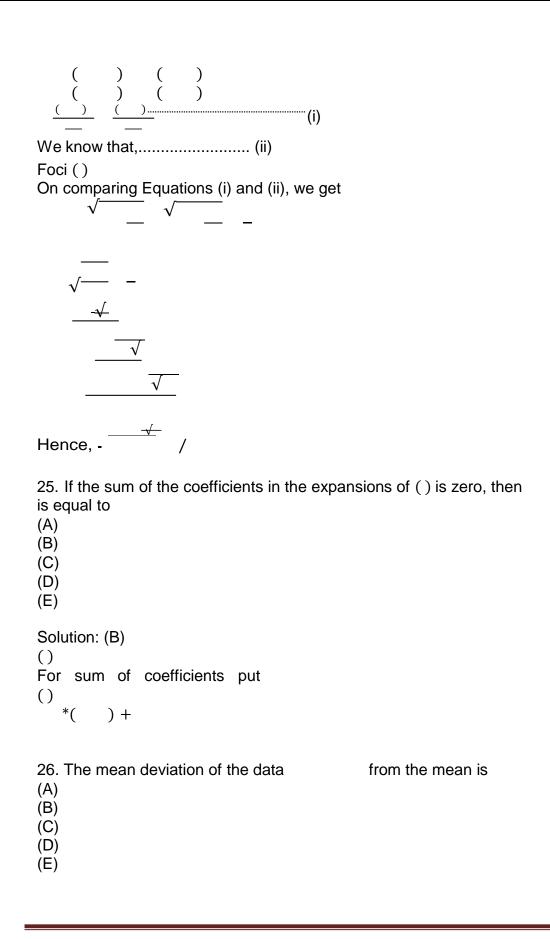


/

(E) -

Solution: (A)

()()



Solution: (C) Mean of the given data is

The deviations of the r	espective o	bservations	from the mean	⁻ . i.e.	[–] are
				,	••

The absolute values of the deviations, i.e. | are The required mean deviation about the mean is $\Sigma \left| { } \right|$

27. The mean and variance of a binomial distribution are and respectively. What is ()?

(A) _

(B)

(

(C) _

(D) _

(E) _

Solution: (B) Let and be the parameters of the binomial distribution. Mean and variance

and

- and

Required probability ()

()()- ()

28. The number of diagonals of a polygon with sides is

(A)

(B)

(C)

(D)

(E)

Solution: (A) The number of diagonals of a polygon with sides is

29. In a class, of students study Maths and Science and of students study Maths. What is the probability of a students studying Science given the student is already studying Maths? (A) _ (B) _ (C) _ (D) _ (E) _ Solution: (C) Probability of Maths and Science students _____ Probability of maths students _ P(Science/Maths) () _____ ___ 30. The eccentricity of the conic is (A) . (В) _√ (C) _ (D) √ (E) Solution: (B) (- - -) () () (-)) (-) -(() - /

Ellipse $$
$\sqrt[]{\sqrt{}}$
31. If the mean of a set of observations is , then the mean of is
(A) (B) (C) (D) (E)
Solution: (C) Mean of a set of observations
Then, according to question,
()

32. A letter is taken at random from the word "STATISTICS" and another letter is taken at random from the word "ASSISTANT". The probability that they are same letters is (A) =

- (B) ____
- (C) —
- (D) —
- (E) —

Solution: (C) Probability of take a random from the word STATISTICS

Probability of take a random from the word ASSISTANT

The probability is that they are same letters

33. lf and are the roots of the equation , then (A) ((B)) (C) (D) (E) Solution: (A) Roots are and – (i) and (ii) -() Using Equation (i), we get - / -____ 34. If the sides of triangle are and Then the area (in sq cm) of triangle is (A) _ (B)-√ [−] (C) ____ (D) √ -(E) √ -Solution: (E) Given, triangle of sides Then, area of triangle √()()()_____ $\sqrt{()}()$

35. In a group of boys and girls, a team consisting of four children is formed such that the team has atleast one boy. The number of ways of forming a team like this is (A) (B) (C)

(C) (D)

È)

Solution: (B)

10

6 Boys 4 Girls The team has atleast one boy = Total case – No anyone boy

36. A password is set with distinct letters from the word LOGARITHMS. How many such passwords can be formed?

(A)

(B)

(C) (D)

(E)

Solution: (B) LOGARITHMS letters are . A password is set with distinct letters

(by binomial

() On multiplying both sides by , we get

Hence, the required remainder is .

38. A quadratic equation , with distinct coefficients is formed. It are chosen from the numbers is
 (A) _

- (B) _
- (C) _
- (D) _
- (E) _

Solution: (A)

Total number of ways of assigning values to

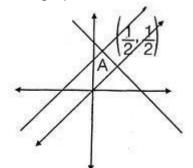
Now, for quadratic equation to have real roots This is possible only when or

Required probability - -

39. (A) – (B) – (C) – (D) – (E) –			[−] is equal to
Solutior	ו: (D)		
	0		<u> </u>
	0		-1
On putt , -	ing , w	ve get	_
,		-	
40. The (A) _	minin	num valu	ie of () * + is

(B) _ (C) (D) (E)

Solution: (B) we have, () * + The graph of () is



Clearly from graph minimum value of () at point _- _/.

Minimum value of () is. _

41. The equations of the asymptotes of the hyperbola

(A)

(B) (C)

(D)

(E)

Solution: (B) We have equation of hyperbola is

 () ()
 We know that asymptote of hyperbola is and .
 Asymptote of hyperbola
 () () is

42. If () then () is equal to (A) (B) (C) () (D) are

(E) Solution: (C) () ()()0()1 ____ [()_()] 43. The standard deviation of the data is (A) $\sqrt{}$ (B) ___ (C) $\sqrt{}$ (D) __ (E) Solution: (A)

Given data Mean of the given data (

The deviation of the respective data from the mean i.e. (are

(

-)

(

Σ(

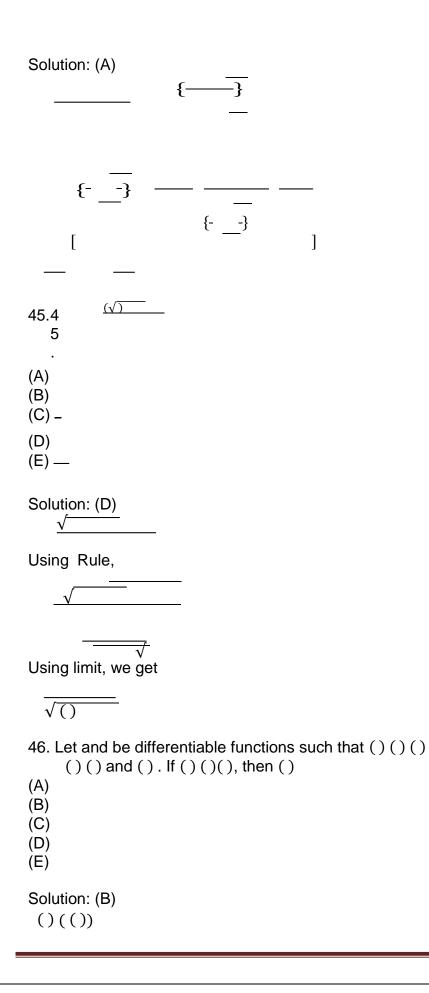
Standard deviation ()

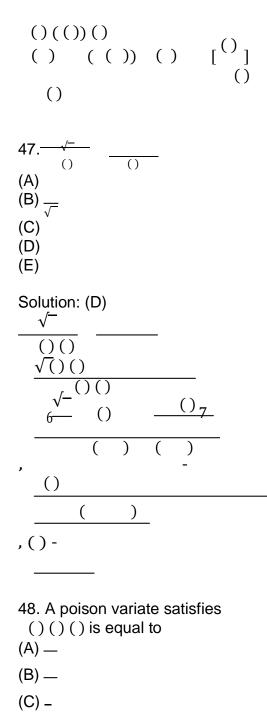
 $\sqrt{-\sum}(\sqrt{-1})$

- 44.44. _____ (A) ____
- (B) ____

(C)

(D) (E)





(D) _

(E) —

Solution: (A) Given that, ()()

()	()
()	

49. Let and be consecutive integers selected from the first natural numbers. The probability that $\sqrt{\, is \, an \, odd \, posi}$ tive integer is

(A) ____

(B) ____

(C) ____

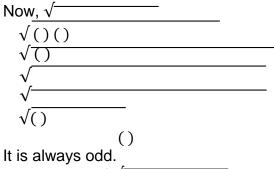
(D)

(E)

Solution: (D)

and are two consecutive number.

Let



50. An ellipse of eccentricity $\sqrt[]{}$ is inscribed in a circle. A point is chosen inside the circle at random. The probability that the point lies outside the ellipse is (A) –

(B) _

(C) _

(D) –

(E) ____

Solution: (B) Given,_√
()
– [using Equation (i)]
()-
 51. If the vectors ^ ^ ^ ^ ^ ^ and ^ ^ are coplanar, then is equal to (A) (B) (C) (D) (E)
Solution: (C) Given vectors ^ ^ ^ ^ ^ ^ ^ and ^ ^ ^ are coplanar.
Then,
()()()
52. Let $$ $$ $$ $$ $$ $$ $$ and $$ $$ $$. Then, the area of the parallelogram with diagonals $$ and $$ is (A) $\sqrt{-}$

(B) √ ---(C)<u>√</u> (D) √ (E) <u>√</u>

Solution: (A) Given,

- → ^ ^ ^
- ** ^ ^ ^ → ^ ^ ^

Diagonals: $\overrightarrow{}$ and $\overrightarrow{}$ Area of parallelogram_, - ... (i)

→ ^{**} ^ ^ ^

→ → ∧ ∧ ^

From Equation (i),

53. If $|\vec{\cdot}| = |\vec{\cdot}| = |\vec{\cdot}|$ and $\vec{\cdot} = \vec{\cdot} = \vec{\cdot}$, then the value of $\vec{\cdot} = \vec{\cdot} =$

(A) (B)

(C)

(D)

(E)

Solution: (D) $|\vec{a}| |\vec{a}| |\vec{a}|$

54. If $| \stackrel{\rightarrow}{\rightarrow} | | \stackrel{\rightarrow}{\rightarrow} | | \stackrel{\rightarrow}{\rightarrow} |$, then the angle between $\stackrel{\rightarrow}{\rightarrow}$ and $\stackrel{\rightarrow}{\rightarrow}$ is equal to

(A) _ (B)____ (C) _ (D) (E) Solution: (A) $|\xrightarrow{}\rightarrow]||\xrightarrow{}||\xrightarrow{}|$ | `|| ``| $\hat{}$ $\hat{}$ $\hat{}$ $\hat{}$ $\hat{}$ and $\hat{}$ $\hat{}$ $\hat{}$ $\hat{}$ are mutually 55. If the vectors $\vec{}$ ^ ^ orthogonal, then is equal to (A) (B) (C) (D) (E) Solution: (B) Given, → ^ ^ ` ^ `` ^ ^ ^ → ^ ^ ^ Vectors are mutually orthogonal, so $\rightarrow \xrightarrow{\rightarrow \rightarrow \rightarrow} \rightarrow \rightarrow \rightarrow$ $\rightarrow \rightarrow \rightarrow$(i)(ii) On solving Equations (i) and (ii), we get 56. The solution of _____ are (A) (B) (C) (D) (E)

Solution: (D) We have, Let -()()()()_ or () or or 57. If the equations have a real common root , then and the value of is equal to (A) (B) (C) (D) (E) Solution: (C) Given equations, is common root, so satisfied both equations. ()()58. If , then the value of is equal to (A) (B) (C) (D) (E) Solution: (A) Given, ()()()(i) On squaring both sides, ()()

()

..... (ii) From Equations (ii) and (i), we get

59. Two dice of different colours are thrown at a time. The probability that the sum is either or is

(A) ____

(B) _

(C) _

(D) _

(E) –

Solution: (B)

Probability of sum of
()()()()()() and probability of sum of
()()

- () —
- _ _

(A) ____

- (B) —
- (C) ____

(D) —

(E) ____

Solution: (A)

—[]

61. The order and degree of the differential equation ()()() is

- (A) and
- (B) and
- (C) and
- (D) and
- (E) and

Solution: (A)

The given differential equation is ()()() Clearly, its order is and degree is . Hence, option and is correct.

62. ∫ | | is equal to(A)(B)

(C)

(D)

(E) _

Solution: (D) Given that,

∫|| ∫∫ 6_7 6_7 ()()63. ∫ _____ is equal to (A) (B) _ (C) ____ (D) _ (E) ____ Solution: (B) Given that, ſ , ()-∫___() ,()()-

64. If \int () and \int (()), then ∫ () is (A) (B) (C) (D) (E) Solution: (E) We know, \int , ()-∫∫() $() \int ()$ ()∫() ∫() ∫ ().....(i) Now, \int () $\int () \int ()$ ∫ () [from Equation (i)] ∫() 65. ∫-↔ (A) _____ (B) _____ (C) _____ (D) _____ (E) _____ Solution: (A) Given that, $\int \frac{1}{()} \int \frac{1}{()$

66. The remainder when is divided by is (A) (B) (C) (D) (E) Solution: (A) () ()() When divided by , then remainder () Hence, remainder 67. The coefficient of in the expansion of () is (A) (B) (C) (D) (E) Solution: (B) For the coefficient of , Coefficient of 68. The maximum value of _ _/ is (A) (B) (C) (D) (E) Solution: (C) /-

```
6_____
                        7
Let and √
Then expression becomes,
Maximum value of this type of expression is equal to, ------ Maximum value
After putting values of and , we get , -- Max value
     Max value
69. The area of the triangle in the complex plane formed by and is
(A) | |
(B) | 1
(C) ↓|
(D) <u>|</u> |
(E) | |
Solution: (C)
                     ) () and . If is the area of triangle
Let
                (
formed by and , then
    - |
                      T
Applying
    - |
           _____I
  -()||
70. Let ()() be a differentiable function. If is even, then () is equal to
(A)
(B)
(C)
(D)
(E) _
Solution: (C)
  ()()
   ()()()()
      ()()
```

71. The coordinate of the point dividing internally the line joining the points () and () in the ratio is (A) () (B) () (C)/ (D)/ (E) ()
Solution: (C) Here, and
and () ()()
 72. The area of the triangle formed by the points ()()()is (A) (B) (C) (D) (E)()
Solution: (D)
Area of triangle _
-
,-
 73. If () is equidistant from () and (), then (A) (B) (C)

(D) (E)

Solution: (D) According to question, *()+*()+ () () () () () () () () () By solving, we get

74. The equation of the line passing through () and parallel to the line _ _ is (A) _ _ (B) _ _ _ (C) _ _ (D) _ _ (E) _ _ Solution: (B) Given equation of line is _ _(i) So, equation of line passing through () and parallel to Equation (i) is -() 75. If the points () () and () enclose a triangle of area units, then the centroid of the triangle is equal to (A) () (B) () (C) () (D) (√√) (E) ()

Solution: (B) Given, that Area of triangle

-| | | | ()()()

Now, centroid of the given triangle will be

76. The area of a triangle is units. Two of its vertices are () and (). The third vertex lies on The coordinates of the third vertex can be

- (A) _— —/
- (B) <u>_</u>≁ —
- (C) _ _/
- (D) __ _/
- (E) _- _/

Solution: (C) Let the coordinates of third vertex be (). Given that, area of a triangle

-| |

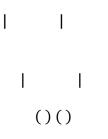
.....(i) Since, third vertex lies as......(ii) By solving Equations (i) and (ii), we get

77. lf	represents a pair of straight lines, then	is	equal
to			
(A)			
(B)			

(C) (D)

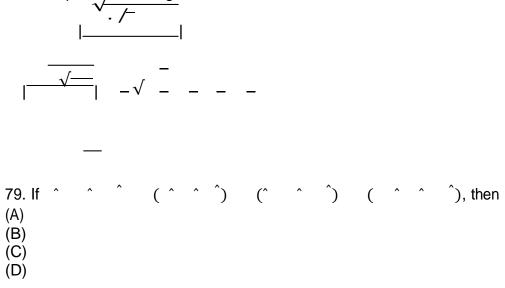
(E)

Solution: (B) Given equation of pair of straight lines is Since, the necessary and sufficient condition for pair of straight lines is



- 78. If is the angle between the pair of straight lines , then is equal to
- (A) ____
- (B) ____
- (C) ____
- (D) ____
- (E) —

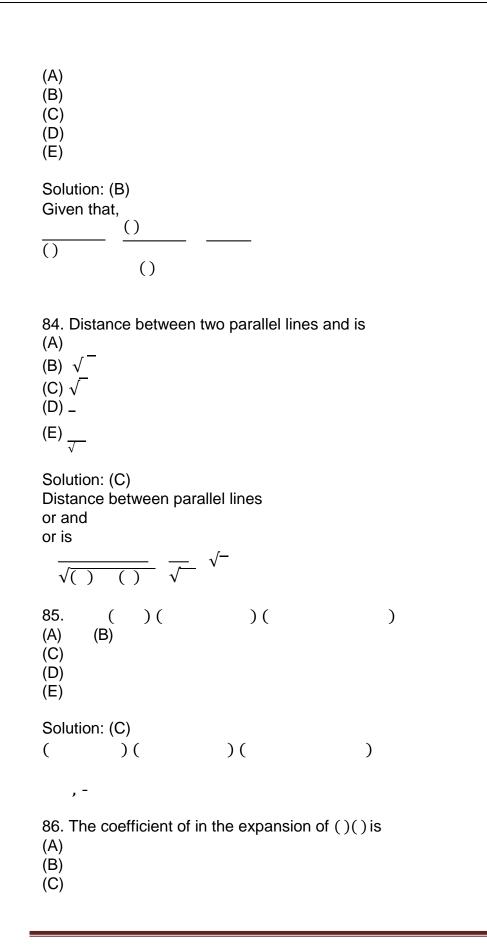
Solution: (C) Given equation of straight line is



(E) Solution: (C) Given that, ^ ^) By equating the coefficients of ^ ^ and ^, we get(i)(ii) ... (iii) By solving Equations (i), (ii) and (iii), we get 80. (A) <u>√</u> (B)-(C) -(D) <u>√</u> (E) $\frac{\sqrt{\sqrt{2}}}{\sqrt{2}}$ Solution: (A) () 81. If and ^ ^ are collinear and _ , then is equal to (A) (^ (B) ^ (C) ^ (D) ^ (E) ^ Solution: (B) Since, and are collinear vector. Therefore,(i)

 $\rightarrow \rightarrow \rightarrow$ $|\overrightarrow{}||\overrightarrow{}|$ _____ | | ----By Equation (i), $\rightarrow \rightarrow \rightarrow$ | → | | || → | || -→ _(^ ^ ^) → (^ ^ ^) 82. If $| \overrightarrow{} | | \overrightarrow{} |$ and $\overrightarrow{} \overrightarrow{}$, then $| \overrightarrow{} \overrightarrow{} |$ is equal to (A) (B) ↓ ____ (C) √ — (D) ↓ ____ (E) ↓ — Solution: (E) Given that, $| \overrightarrow{} | | \overrightarrow{} |$ and $\overrightarrow{} \overrightarrow{}$ $\stackrel{\rightarrow}{\rightarrow}|\stackrel{\rightarrow}{}||\stackrel{\rightarrow}{\rightarrow}|$ $\sqrt{--}$ | [→] → | | [→] || [→]

83. If , then is equal to



(D) (E) Solution: (D) ()()() () ()()Coefficient of 87. The equation of the circle with centre () which passes through () is (A) (B) (C) (E) (D) Solution: (B) Radius of circle is $\sqrt{()}$ () $\sqrt{}$ So, equation of circle is ()()88. The point in the plane which is equidistant from () () and () is (A) () (B) () (C) () (D) () (E) () Solution: (D) Let the points are () () and (). We know that -coordinate of every point an -plane is zero so let () be a point on -plane such that Now, ()()()()()()().....(i) and, ()()()()()()()..... (ii) in Equation (i), we get Putting Hence, the required point is ()

```
89. Let be such that () and () () () for all natural numbers
 and . If \Sigma ()(), then is equal to
(A)
(B)
(C)
(D)
(E)
Solution: (A)
We have,
() and ()()()
Now, ()()()()
()()()()
and so on
   ( ) .....(i)
Now, we have
\Sigma ()()
   ()()()()
   ()()()()()()()()
   (),()()-()
   ( ),
                       ()-(
                   -
   () 6 ) 7()
    ()()()()
        ,()()-
90. lf
                       and
                                      , then
(A)
(B)
(C)
(D)
(E)
Solution: (D)
Given that,
and
Here, — _ _ and —
               and
By solving these equations, we get
```

```
91. Let () () be continuous, () () for all () and ()
-, then the value of
                        _-/ is
(A)
(B)
(C)
(D)
(E)
Solution: (B)
   is continuous
   ()()()
   -()( - )
 ()()
         _
Given, -/-/-
    () / _ _ ... (i)
Therefore, .-/
     - [using Equation (i)]
92. √√
(A)
(B)
(C)
(D)
(E)
Solution: (C) \sqrt{-}
                         -/
                       \sqrt{-----})\frac{(\sqrt{----}\sqrt{---})}{(\sqrt{----}\sqrt{---})} (by rationalization)
           (√
       \sqrt{\sqrt{}}
                                   \sqrt{\sqrt{}}
         4\sqrt{\sqrt{-5}}
                                              _ ()()
93. If is differentiable at and
(A)
```

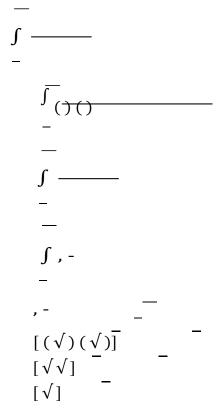
(B) (C) (D) (E) Solution: (E) $(\bigcirc \bigcirc);$ function is differentiable. ()<u>.</u> Given function is continuous. () and () Hence, () 94. The maximum value of the function is attained at (A) (B) (C) (D) (E) Solution: (D) We have, () () and () At point of local maximum as minimum, we must have ()()Clearly, () and () So, () has local maximum at . 95. If $\int () -* ()+$, then..... \neq is (A) (B) _ (C) (D) (E) Solution: (C) We have, ∫()*()+ On differentiating both sides, we get ()()()() () --/

96.
$$\int_{-}^{-}$$
 (A) ($\sqrt{-}$)
(B) ($\sqrt{-}$)
(C) ($\sqrt{-}$)
(D) ($\sqrt{-}$)
(E) $\sqrt{-}$

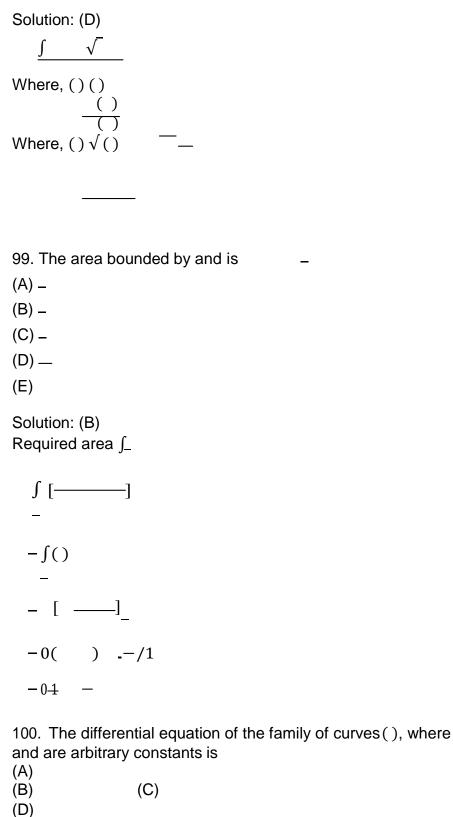
Solution: (E) Let <u>∫</u> _____(i)

6∫()∫()7

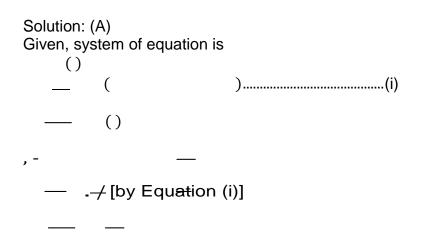
By adding Equations (i) and (ii), we get



$ \begin{array}{c} [\sqrt{} \\ (\sqrt{} \\ \hline (\sqrt{} \\ \hline (\sqrt{} \\ \hline \end{array}) \\ \hline \hline \sqrt{} \end{array} $
97. ∫ [−] (A) (B) (C) – (D) (E)
Solution: (C) Let <u>_</u> (i)
$\int_{-}^{-} \dots (ii)$ By adding Equations (i) and (ii), we get $\int_{-}^{-} \int_{-}^{-} \dots \dots$
∫, _ _
98. $4 \frac{\int \sqrt{-5}}{5}$ (A) - (B) - (C) - (D) (E) -



(E)



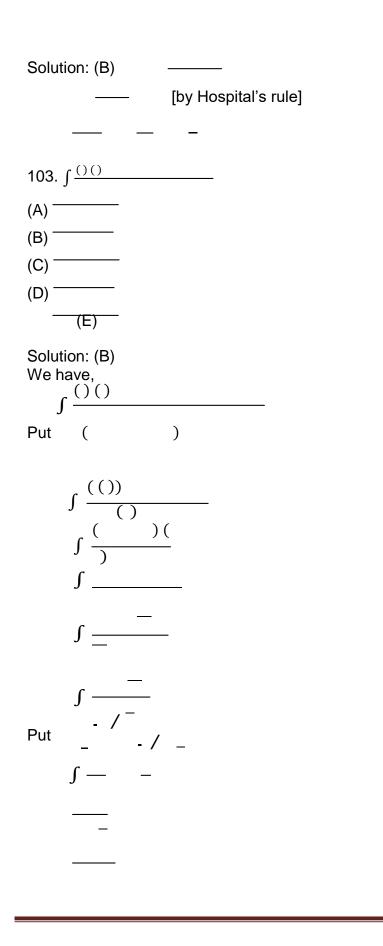
This is required differential equation.

101. The real part of $(\sqrt{})$ is (A) (B) (C) (D) (E) Solution: (B)

 $(\sqrt{)}^{-}$ $\sqrt{-6}_{7}$ $() 6^{\sqrt{7}}$ $6^{--\sqrt{7}}_{-}$ $[\sqrt{}]\sqrt{-}_{-}$ Hence, real part is $\sqrt{.}$

102.(—— A) – (B) — (C) (D)

(E)



and ()

Page 48

104. A plane is at a distance of units from the origin and perpendicular to the vector $\hat{}$. The equation of the plane is

Solution: (C)

Equation of plane whose distance from origin is $and normal is^{is}$

Given that,

^

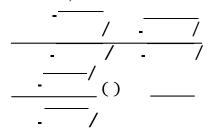
By formula,

→ _____ → (^ ^ ^)

105. is equal to

(A) ----/ (B) () (C) ----/ (D) ----/ (E) ()

Solution: (D Given that, _____

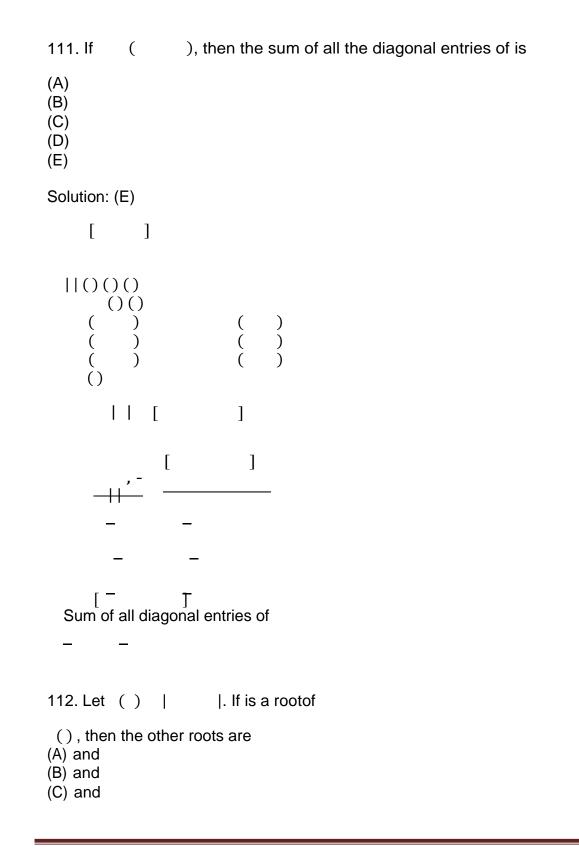


106. If , then (A) (B) (C) (D) (E) Solution: (B) Given that,(i) Differentiating to, () _____, -Again differentiating to, , () -[by Equation (i)] 107. The arithmetic mean of is (A) _____ (B) — (C) — (D) (E) Solution: (A) () Take () () () ()Now, arithmetic mean Σ , where ()

108. The variance of first natural numbers is

(A) — (B) — (C) — (D) — (E) — Solution: (D) Since, variance of first natural number is () Variance of first natural number is ()() 109. If is a set with elements and *() +, then the number of elements in is (A) (B) (C) (D) (E) Solution: (B) Total numbers of elements in the set The selection of two distinct elements from given elements. () 110. A coin is tossed and a die is rolled. The probability that the coin shows head and the die shows is (A) _ (B) ____ (C) _ (D) ____ (E) ____ Solution: (B) () and ()

So, required probability - / - / -



(D) and (E) and Solution: (A) Given, () | | I I , -()| ()| I , -(),()()()-()(), at () ()()()

Hence, other roots are and .

113. If, -----[][], then can be (A) (B) (C) (D) (E) Solution: (D) Given that, , -[][] [][] [][] ()()

()() ()() 114. lf 0 1 and 0 1, then (A) (B) _ (C) (D) (E) Solution: (B) We have, 0 1 1 { 0 1 ----0 1} ____ [] Now, it is given that 0 1 [1] 0 115. If | |, then is equal to (A) (B) (C) (D) (E) Solution: (B)

Given that, | |, ()()()On equating the coefficient of both sides, we get ()()()116. | _____ (A) (B) (C) ()()() (D) (E) () Solution: (B) Given that, | ||)| (() , -117. lf () | |, then () () ()() () (A) (B) (C) (D) (E) Solution: (A) Given,

$$\begin{array}{c} () \\ () \\$$

_ -[-] -,--,-_ _

119. The equation of the plane passing through the points ()() and ()

is

(A) (B)

(C)

(D)

(E)

Solution: (B) Given that,

and Equation of plane passing through these points is

L

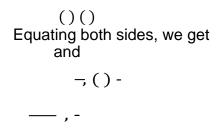
120. In an arithmetic progression, if the th term is , then the sum of first terms is

- (A) ()
- (B) () (C) () (D) () (E) ()

Solution: (A) Let be the first term of an and is the common difference.

Since,

()



,-()