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Chapter 5

UNIPLANAR MOTION WHEN THE
ACCELERATION IS CENTRAL AND
VARYING AS THE INVERSE
SQUARE OF THE DISTANCE

65. In the present chapter we shall consider the motion when the
central acceleration follows the Newtonian Law of Attraction.

This law may be expressed as follows; between every two parti-
cles, of masses m and my placed at a distance r apart, the mutual

attraction 1s
mipmyp

2

r
units of force, where 7 is a constant, depending on the units of mass

and length employed, and known as the constant of gravitation.

If the masses be measured in grammes, and the length in centime-
ters (C.G.S. System) the value of y is 6.66 x 10~® approximately,
and the attraction is expressed in dynes.

If the masses be measured in kilogrammes, and the length in me-
tres (M.K.S. System) the value of v is 6.66 x 10~!! approximately,

and the attraction is expressed in newtowns.

66. A particle moves in a path so that its acceleration is always

H .
(distance)?’
path is a conic section and to distinguish between the three cases

directed to a fixed point and is equal to to show that its

that arise.

107
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When P = %, the equation (5) of Art. 53 becomes
r

Wdp _p (1)
Sdr P .. (1).
Integrating we have, by Art. 54,
W 2u
2
=—=—+C . (2).
v P2 - + (2)

Now the (p,r) equation of an ellipse and hyperbola, referred to a

focus, are respectively

) )
—2:—a—1,and—2:—a+l ..(3),
P r 14 r
where 2a and 2b are the transverse and conjugate axes.
Hence, when C is negative, (2) is an ellipse; when C is positive, it

is a hyperbola.
2

Also when C = 0, (2) becomes P _ constant, and this is the (p,r)
r
equation of a parabola referred to its focus.
Hence (2) always represents a conic section, whose focus is at the

centre of force, and which is an

ellipse negative
parabola ; according as C is zZero ¢,
or hyperbola or positive
. . 2 < 2,“ . .
i.e. according as v s le according as the square of the

2
velocity at any point P is § —“, where S is the focus.

Again, comparing equations (2) and (3), we have, in the case of

h u C
the ellipse, — = — = —.
e ellipse 2 O]
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b2
L h=\u— = \/ W x semi-latus-rectum, and C = —E.
a a
: : ) 2 1
Hence, in the case of the ellipse, v =u | ——— ..(4).
roa
2 1
So, for the hyperbola, v> = 1 (— + —) , and, for the parabola,
roa
2
V2 = _,u

-
It will be noted that in each case the velocity at any point does not
depend on the direction of the velocity.
Since £ is twice the area described in the unit of time (Art. 54),

therefore, if 7' be the time of describing the ellipse, we have

7 _ Aarea of theellipse = 7ab  2xm 32
= ; = =
L \ [ VB (5),
2 2 a

so that the square of the periodic time varies as the cube of the major

axis.

CoR. 1. If a particle be projected at a distance R with velocity V in
any direction the path is an ellipse, parabola or hyperbola, according
as V2 <=> 27“
Now the square of the velocity that would be acquired in falling
from infinity to the distance R, by Art. 31.
:2/R(—%>dr: [2—“]R _2H
oo r r R

oo

Hence the path is an ellipse, parabola or hyperbola according as the
velocity at any point is <=>> that acquired in falling from infinity to

the point.
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CoOR. 2. The velocity V; for the description of a circle of radius R is
given by

g

Vi :
El = normal acceleration = so that V12 =7

ﬁ )
_ Velocity from infinity

Vi= NG

67. In the previous article the branch of the hyperbola described is

the one nearest the centre of force.
If the central acceleration be from the centre and if it vary as the
inverse square of the distance, the further branch is described. For in

this case the equation of motion is

h* dp u h? 2u
L -(1).
p3 dr r? p? r + (1)
Now the (p,r) equation of the further branch of a hyperbola is
b* . 2a
P2
. . . Woou
and this always agrees with (1) provided that it C,
a

h? 1 2
so that 1 = /il X semi-latus-rectum, and v = —=H (— — —) :
P a r

68. Construction of the orbit given the point of projection and the
direction and magnitude of the velocity of projection.

Let S be the centre of attraction, P the point of projection, TPT’
the direction of projection, and V the velocity of projection.
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2
Case I Let V? < S—i; then, by Art.66, the path is an ellipse whose
2 1
major axis 2a is given by the equation V> = u (E — —) , where R =
a
2R
SP, so that 2a = —‘u
2u—V2R

Draw PS’, so that PS” and PS are on the same side of TPT’, making
/T'PS" = /TPS, and take
V2R2
PS=2a—SP=2a—R=———.
21— V2R

Then S’ is the second focus and the elliptic path is therefore known.

2
CaseIl. Let V? = S_‘IL” so that the path is a parabola. Draw the direc-

tion PS’ as in Case I; in this case this is the direction of the axis of
the parabola. Draw SU parallel to PS’ to meet TPT' in U; draw SY
perpendicular to TPT’ and YA perpendicular to SU. Then A is the
vertex of the required parabola whose focus is S, and the curve can
be constructed.
. SY?  2p§ .

The semi-latus-rectum = 25A = ZS—P = where pg 1s the per-

pendicular from § on the direction of projection.
2

Case III. Let V2 > S_“Iﬁ’ so that the path is a hyperbola of transverse
axis 2a given by the equation

2UR
VZR-2u’
In this case PS’ lies on the opposite side of TPT’ from PS, such that
/TPS=/TPS',and S’P — SP = 2a, so that

V2R2
V2R—-2u’

2 1
VZ:u <E+5) , and hence 2a =

SP=R+2a=
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The path can then be constructed, since S’ is the second focus.

69. Kepler’s Laws. The astronomer Kepler, after many years of pa-
tient labour, discovered three laws connecting the motions of the

various planets about the sun. They are:

1. Each planet describes an ellipse having the sun in one of its
foci.

2. The areas described by the radii drawn from the planet to the
sun are, in the same orbit, proportional to the times of describing
them.

3. The squares of the periodic times of the various planets are

proportional to the cubes of the major axes of their orbits.

70. From the second law we conclude, by Art. 54, that the accelera-
tion of each planet, and therefore the force on it, is directed towards
the Sun.

From the first law it follows, by Art. 55 or Art. 66, that the accel-
eration of each planet varies inversely as the square of its distance
from the Sun.

From the third law it follows, since from Art. 66 we have

T2 = 4771-2.6{3,

that the absolute acceleration u (i.e. the acceleration at unit distance
from the Sun) is the same for all planets.
Laws similar to those of Kepler have been found to hold for the

planets and their satellites.
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It follows from the foregoing considerations that we may assume

Newton’s Law of Gravitation to be true throughout the Solar System.

71. Kepler’s Laws were obtained by him, by a process of continually
trying hypotheses until he found one that was suitable; he started
with the observations made and recorded for many years by Tycho
Brahé, a Dane, who lived from A.D. 1546 to 1601.

The first and second laws were enunciated by Kepler in 1609 in his
book on the motion of the planet Mars. The third law was announced
ten years later in a book entitled On the Harmonies of the World.
The explanation of these laws was given by Newton in his Principia
published in the year 1687.

72. Kepler’s third law, in the form given in Art. 69, is only true on
the supposition that the Sun is fixed, or that the mass of the planet is
neglected in comparison with that of the Sun.

A more accurate form is obtained in the following manner.

Let S be the mass of the Sun, P that of any of its planets, and y

the constant of gravitation. The force of attraction between the two

is thus }/.'—2, where r is the distance between the Sun and planet at
r

any instant.

S
The acceleration of the planet is then o (: }’_2) towards the Sun,
r

P
and that of the Sun is 3 <: ’)/_2) towards the planet.
r

v
V' N

S P o p
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To obtain the acceleration of the planet relative to the Sun we must
give to both an acceleration 3 along the line PS. The acceleration of
the Sun is then zero and that of the planet is o + 3 along PS. If, in
addition, we give to each a velocity equal and opposite to that of the
Sun we have the motion of P relative to the Sun supposed to be at
rest.

The relative acceleration of the planet with respect to the Sun then

S+P
r
Hence the i of Art. 66 is y(S+ P), and, as in that article we then
have
_ 2 pn
Y(S+P)

If T1, be the time of revolution and a; the semi-major axis of the
relative path of another planet P, we have similarly

27 3/2 S+ P T2 a3
T] = a, T T T3
VY(S+P) S+P T; ay
2 &3
Since Kepler’s Law, that 77 varies as —, 1s very approximately
4

Lis very nearly unity, and hence that P and

true, 1t follows that
P, are either very nearly equal or very small compared with S. But
it is known that the masses of the planets are very different; hence

they must be very small compared with that of the Sun.

73. The corrected formula of the last article may be used to give an
approximate value to the ratio of the mass of a planet to that of the
Sun in the case where the planet has a small satellite, whose periodic

time and mean distance from the planet are known.
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In the case of the satellite the attraction of the planet is the force
which for all practical purposes determines its path.

If P be the mass of the planet and D its mean distance from the
Sun, then, as in the previous article,
_® D3/?

Y(S+P)

Similarly, if p be the mass of the satellite, d its mean distance from

the planet, and ¢ its periodic time, then
2r

t = 432,
Y(P+p)
 S+PT* D’
CP4p 2 d¥

The quantities 7',¢,D and d being known, this gives a value for
S+P

P+p
As a numerical example take the case of the Earth £ and the Moon
m.
S+E t* D’

Then _— = .
E+m T? d3
Now T = 3657 days, t = 27% days, D = 149,600,000 km., and

d = 386,000 km., all the values being approximate.

2
S+E 271 149,600\ °
Sy i E — 325,900 .
" Etm <365}1> X( 386 ) 7V approx

Therefore S+ E = 325,900 times the sum of the masses of the Earth
and Moon. Also m = E /81 nearly.

. § =330,000F nearly.

This is a fairly close approximation to the accurate result.
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If the Sun be assumed to be a sphere of 708,000 km. radius and
mean density n times that of the Earth, assumed to be a sphere of
6400 km. radius, this gives

n x 708,000 = 330,000 x 6400°
~ 330,000 330 1

Lon= 105 approx. = 331~ about 1

1 1
Hence the mean density of the Sun = 1 that of the Earth = 1 X
5.527 = 1.4g/ cm® approx. so that the mean density of the Sun is

nearly half as much again as that of water.

74. It is not necessary to know the mean distance and periodic time
of the planet P in order to determine its mass, or rather the sum of
its mass and that of its satellite.

For if E and m be the masses of the Earth and Moon, R the distance
of the Earth from the Sun, r that of the Moon from the Earth, if Y

denote a year and y the mean lunar month, then we have

27 3/2
Yy = R (1),
VYIS +E) M

27 3/2

y= \/m.r .(2).

f= 2T P (3)
Y(P+p)
From (1) and (3),
12 Y?
(P+p) s = (S+E) 5 )

From (2) and (3),
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£2 y2
(P—|—p)d—3:(E—|—m)ﬁ ..(5).
Equation (4) gives the ratioof P+ p to S+ E.

Equation (5) gives the ratio of P+ p to E + m.

EXAMPLES

1. Show that the velocity of a particle moving in an ellipse about a
centre of force in the focus is compounded of two constant veloc-
ities, % perpendicular to the radius and % perpendicular to the
major axis.

2. A particle describes an ellipse about a centre of force at the focus;
show that, at any point of its path, the angular velocity about the

other focus varies inversely as the square of the normal at the point.
i}

3. A particle moves with a central acceleration |=-———— it
(distance)

is projected with velocity V at a distance R. show that its path is a

rectangular hyperbola if the angle of projection is

~1 H

VR VZ_Z_N v
R
U

4. A particle describes an ellipse under a force |= W] to-

wards the focus; if it was projected with velocity V from a point

sin

distant r from the centre of force, show that its periodic time is
~3/2
2 [2 V2] /

N
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10.

11.

. If the velocity of the Earth at any point of its orbit, assumed to

be circular, were increased by about one-half, prove that it would
describe a parabola about the Sun as focus.

Show also that, if a body were projected from the Earth with a
velocity exceeding 11.2 km per second, it will not return to the

Earth and may even leave the Solar System.

. A particle i1s projected from the Earth’s surface with velocity v;

show that, if the diminution of gravity be taken into account, but

the resistance of the air neglected, the path is an ellipse of major

. 2ga? : , .
axis 5, Where a 1s the Earth’s radius.
a—v

. Show that an unresisted particle falling to the Earth’s surface from

a great distance would acquire a velocity \/2ga, where a is the
Earth’s radius.

Prove that the velocity acquired by a particle similarly falling into
the Sun is to the Earth’s velocity in the square root of the ratio of
the diameter of the Earth’s orbit to the radius of the Sun.

. If a planet were suddenly stopped in its orbit, supposed circular,

show that it would fall into the Sun in a time which is ry times

the period of the planet’s revolution.

. The eccentricity of the Earth’s orbit round the Sun is @; show

that the Earth’s distance from the Sun exceeds the length of the
semi-major axis of the orbit during about 2 days more than half
the year.

The mean distance of Mars from the Sun being 1.524 times that of
the Earth, find the time of revolution of Mars about the Sun.

The time of revolution of Mars about the Sun is 687 days and

1
his mean distance 2275 x 10° km.; the distance of the Satellite
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12.

13.

14.

Deimos from Mars is 23,500 km and its time of revolution 30 hrs.
18 mins.; show that the mass of the Sun 1s a little more than three
million times that of Mars.

The time of revolution of Jupiter about the Sun i1s 18.6 years and
its mean distance 777 x 10° km; the distance of his first satellite is
420,000 km, and its time of revolution 1 day 18% hrs.; show that
the mass of Jupiter is a little less than one-thousandth of that of the
Sun.

The outer satellite of Jupiter revolves in 16§ days approximately,

and its distance from the planet’s centre is 16— radii of the latter.
The last discovered satellite revolves in 12 hours nearly; find its
distance from the planet’s centre.

Find also the approximate ratio of Jupiter’s mean density to that

of the Earth, assuming that the Moon’s distance is 60 times the

Earth’s radius and that her siderial period is 27% days nearly.

[Use equations (2) and (3) of Art. 74, and neglect m in comparison
with E, and p in comparison with P.]

A planet is describing an ellipse about the Sun as focus; show that
its velocity away from the Sun is greatest when the radius vector

to the planet is at right angles to the major axis of the path, and that
2mae

TV1—e?

and T the periodic time.

it then is where 2a is the major axis, e the eccentricity,

75. To find the time of description of a given arc of an elliptic orbit

starting from the nearer end of the major axis.

d
The equation rzg = h of Art. 53 gives
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6 ) ] 12
ht = d9:/ do .(1).
/0 : 0 (I+ecosB)? (1)
If e > 1, then by the well-known result in Integral Calculus
o  de 2 1 l—-e 6O
= tan tan — .. (2).
/0 1+ecosO® /1 —¢2 an 1+e an2 )

Differentiating with respect to the constant e we have
o _
cos 6
do
0 (I+ecosB)?
2e l—e O 1 sin 0
~1
= ———-tan ——tan— | — ...(3).
(1—e2)3/2 l+e 2| 1—e*1+ecosB )

’ : do
/0 (1+ecos)?

B /9 1 ecos 0 20

~ Jo [1+ecos® (1+ecosh)?

B 2 - l—etane e sin 6

N (1—e2)3/2 l+e 2 1—e?21+ecosB
2 12 a3/2(1 _ )2

Hence, since — = =

ho/ul v
3/2 1 — :
=4 [2tan1 ( etan9> Y wr L P

VI l+e 2 I+ecosB

ALITER. If we change the variable 6 into a new variable ¢ given by

, we have, by (1),

the relation
(1+ecosB)(1 —ecosd) =1—e?, so that

_ 2 ain2
cos —e  sinte = (I —e”)sin ¢’
1 —ecos¢ (1 —ecos¢)?

cos O =
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ing(1—e” V1—e?
SinOU =€) 15 wehavedd = Y= 4o,
(1 —ecos¢)? 1 —ecos¢

and sin6.d06 =

Hence

0 do _ [91—ecos¢ 1 .
/0 (1—|—ecos€)2_/0 md‘f’—mW—emnm ..(6)

9 1—cos¢p 1—el—cos® 1—-e ,0

Now tan? 2 — - — " %an?2 and
O T 1 cos9  1+eltcosf 1te T
sin ¢ = - sin 0
" 14ecosO

Substituting in (6) we have result (4), and proceed as above.

76. To find the time similarly for a hyperbolic orbit.

0
do 1 \/e—|-1—|—'\/e—1tan§
log

1—|—ecos@z 2 — 1 0
\/ l1—+ve—1tan—
e+ e an2

Differentiating with respect to e, we have,

0 _
/ cos 6 70
0 (1+ecosh)?
0
—e \/€—|—1—|—\/€—1tan§ N 1 sinG

6 2 _ '
\/m_mtanz e 11+€COSG

0
Ife> l,then/
0

— —(62 1 log
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/ do

(1+ecosB)?
0 1

_ / ~ ecosB 40
0o [14+ecos® (1+ecosh)?

0]
1 \/e—}—l—l—ve—ltanz 1 sin O

= ————=5log +
2 __1)\3/2 (o] 2 _
(e 1) / \/m_mtanz e 11+€COSG

2 32 3/2(02 — 1)3/2
Hence, since in this case — = _d (e )

VR JE

the equation (1) of the last article gives

)
\/27 sin 6 \/e+1+\/e—1tan§

r=4 T
VI eve I tecosg  ° 0
\/e—i—l—\/e—ltanz

ALITER. Change the variable 6 into a new variable ¢ such that
(1+ecosB)(ecoshg —1) = e?> — 1, so that

ecoshg ., (e*—1)sinh?¢ ez —1
0= , 0= ,and d@ = :
€08 ecosh¢ — 1 o (ecosh¢ —1)2 an ecosh¢ — 1
0 do
Th
en/o (14 ecosB)?
1 ¢
:m/o (ecosh¢ —1)d¢
1 :
:m[681nh¢—¢].
¢ coshp—1 e—1 , 0
Now tanh® L = = tanh®—, and
oW T osho+1 el gy A
¢
2tanh — -
sing — 2 _Jo_1Sml
l—tanhzg 14ecos
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./9 do
" Jo (14ecosB)?

e sin 0 2 canh-"! e—ltane
e2—11+ecosO (e2—1) et+1 2

1 1
which 1s the same as before, since tanh ' x = Elog o

Y

1 —x
77. In the case of a parabolic orbit to find the corresponding time.

The equation to the parabola is r = T cosd where 2d is the
CosS
latus-rectum and is measured from the axis. Hence the equation (3)

of Art. 53 gives
d2
hi= [ r2de = / a6.
/ : (1+cosB)?

ht /9 e
" d2 0 6
4 4~
COS 2

1 /9 ) )
:4_1/0 secza.seczde

1 [0 .0 0

—1 tane—i—ltan?’g
2 2 3 2|

h Jud /i

But E = d2 = d3/2.

t a2 t 0 + ! tan> 0 24’ tan 0 + | tan> 0 if
= —— |tan— + — —| =4/ — R — a
2\/ﬁ 2 3 2 u 2 3 2

be the apsidal distance.
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78. Motion of a projectile, vacations of gravity being taken into con-
sideration but the resistance of the air being neglected.

The attraction of the Earth at a point outside it at a distance r from
the centre is % Hence the path of a projectile in vacuo is one of the
cases of Art.r66, one of the foci of the path described being at the
centre of the Earth.

If R be the radius of the Earth, then % = the value of gravity at
the surface of the Earth = g, so that u = gR?.

The path of a projectile which starts from a point on the Earth’s
surface is therefore an ellipse, parabola, or hyperbola according as
V? § %u, i.e. according as V? § 2gR.

79. The maximum range of a particle starting from the Earth’s sur-

face with a given velocity may be obtained as follows :

Let S be the centre of the Earth and P the point of projection. Let K
be the point vertically above P to which the velocity, V, of projection
is due, so that, by Art. 31, we have
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If H be the second focus of the path, the semi-major axis is
1
> (R+PH).

Hence, by equation (4) of Art. 66,

By comparing this with equation (1) we have PH = h, so that the
locus of the second focus is, for a constant velocity of projection, a
circle whose centre is P and radius 4. It follows that the major axis
of the path is SP + PH or SK.

The ellipse, whose foci are S and H, meets a plane LPM, passing
through the point of projection, in a point Q, such that SQ + QH =
SK. Hence, if SO meet in T the circle whose centre is S and radius
SK, we have QT = QH. Since there is, in general, another point, H’,
on the circle of foci equidistant with H from Q, we have, in general,
two paths for a given range.

The greatest range on the plane LPM is clearly Pq where gt equals
qO. Hence Sq+qP = Sq+qO+ OP = Sq + qt + PK = SK + PK.

Therefore g lies on an ellipse, whose foci are the centre of the
Earth and the point of projection, and which passes through K.

Hence we obtain the maximum range.

80. Suppose that the path described by a planet P about the Sun S
is the ellipse of the figure. Draw PN perpendicular to the major axis
and produce it to meet the auxiliary circle in Q. Let C be the centre.

The points A and A’ are called respectively the Perihelion and
Aphelion of the path of the planet.



126 Chapter 5: Uniplanar Motion When the Acceleration is central and varying ...

The angle ASP is called the True Anomaly and the angle ACQ the
Eccentric Anomaly. In the case of any of the planets the eccentricity
of the path is small, being never as large as 0.1 except in the case of
Mercury when it is 0.2; the foci of the path are therefore very near
C, the ellipse differs little in actual shape from the auxiliary circle,
and hence the difference between the, True and Eccentric Anomaly

is a small quantity.

If — be the time of a complete revolution of the planet, so that n is
n

its mean angular velocity, then nt is defined to be the Mean Anomaly
and n is the Mean Motion. It is clear therefore that nt would be the
Anomaly of an imaginary planet which moved so that its angular
velocity was equal to the mean angular velocity of P.

2 2w T

== = 222 (Art. 66), con= £

no a3/?

Let 0 be the True Anomaly ASP, and ¢ the Eccentric Anomaly

ACO.

Since
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If /1 be twice the area described in a unit of time, then

h
it — Sectorial area ASP

= Curvilinear area ANP + triangle SNP
b o :
= — X Curvilinear area ANQ + triangle SNP

a

b 1
= — X (Sector ACQ - triangle ANQ) + ESN NP
a

b (1 1 1
_ 7 <§aZ¢ . _azsin(Z)C()s(p) —|—§<aCOS¢ —ae).bSiIl(P

a 2
b
- %(¢ _esing).
By the polar equation to a Conic Section, we have
[ a(l —é?)

SP

14 ecosO 1+ecos9’an a—e a(l—ecos¢)

. (1—ecos@)(l1+ecosh) =1—e?,
cosp —e

. (2).

d .. 0=
an cos [—ecoso

81. If e be small, a first approximation from (1) to the value of ¢ is
nt, and a second approximation is nt + esinnt.

From (2), a first approximation to the value of 0 is ¢, and a second
approximation is ¢ + A where

: cosp —e
—A = ————, and
cos ¢ sin @ [ ecosd’ an
" l:ﬂ:esinq) approx.
I —ecos@

Hence, as far as the first power of e,
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0 = ¢ +esin@ = nt + esinnt + esin(nt + esinnt) = nt + 2esinnt.

1 — 2
Also SP = all=e) =a(l —ecosB), to the same approximation,
Il +ecosb

= a — aecos(nt +2esinnt) = a — aecosnt.

If an approximation be made as far as squares of e, the results are

found to be
2 2

5
¢ = nt +esinnt +%sin2nt, 0 = nt +2esinnt + %sinZnt, and
2
r= a{l —ecosnt + %(1 —cosZnt)}.

82. From equation (2) of Art. 80, we have
,0 1—cos® (l+e)(l—cosp) 1+e

an?®

tan? — = = = t
Y T 11 coso (I—e)(14+cosp) 1—e 2
so that
¢ =2tan"! _etang and
N l+e 2|’
o 1—e 0
2tan — 2 tan — .
)
Sln(P: 2¢ = iii g :\/1_621811’1—9.
l+tan?= 1+ tan — T ecos
2 l1+e 2

Hence, from equation (1) of the same article, remembering that
n=/l/a*?, we have

3/2 1— 0 in 60

a e sin
t=-—|2tan"! tan~ » —eV/1—e?———| .
\/ﬁl a { l+e anz} ‘ ¢ l1+ecosB

This is the result of Art. 75 and gives the time of describing any
arc of the ellipse, starting from perihelion.
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83. When a particle is describing an elliptic orbit, it may happen that
at some point of the path it receives an impulse so that it describes
another path; or the strength of the centre of force may be altered so
that the path is altered. To obtain the new orbit we shall want to know
how the major axis has been altered in magnitude and position, what
is the new eccentricity, etc.

The new orbit will not necessarily be an ellipse and the student
will find it a useful exercise to examine the various cases for him-
self. Similar consideration apply when the initial orbit is a circle,
hyperbola, or parabola.

84. Tangential disturbing force.
Let APA’ be the path of a particle moving about a centre of force at
S, and let H be the other focus.

When the particle has arrived at P let its velocity be changed to
v+ u, the direction being unaltered; let 2a’ be the new major axis.

Then we have

2 1 2 1
2 2
—n|=_= S e 1
' ‘u[SP a]’ (vtu) [SP a’] (1)
P
A A
S H

. I . .. .
Hence, by subtraction, we have — Since the direction of motion 1s
a

unaltered at P, the new focus lies on PH; and, if H' be its position,
we have HH' = (H'P+ SP) — (HP + SP) =24’ — 2a.
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If the change of velocity u be small and equal to dv, say, then by
differentiating the first of equations (1) we have 2vév = %561.
a
[For SP is constant as far as these instantaneous changes are con-

cerned.] 5
2v.0v.a

U

- (2).

Hence da, the increase in the semi-major axis =

Again, since HH' is now small, we have
HH'sinH _ 20a.sinH

tan HSH' = —
2ae + HH' cosH 2ae

Hence 8y, the angle through which the major axis moves
oasinH  2va

= HSH' = = —.sinH.0v ..(3).
ae eu
Since the direction of motion at P is unaltered by the blow, the
0 0
value of £ is altered in the ratio o so that 6h = —Vh.
V V

But 12 = pa(l —é?).
. 2hdh = uda(a—e?) — pa.2ede.
. paede=2vdv.a*(1 —e*) — 2?%12,
— @2 2 _
so that 662@.(1 ‘ ).av a
% e u

This gives the increase in the value of the eccentricity.

2r
Since the periodic time 7' = == a2

ST 36 5 Ve
T 30a 3vaov
=5 = I ...(5).

85. If the disturbing force is not tangential, the velocity it produces

must be compounded with the velocity in the orbit to give the new
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velocity and tangent at the point P. The equations (1) or (2) of the
last article now give the magnitude, 24/, of the new major axis.
Also since the moment of the velocity of the point P about the

focus S is equal to

VUL X semi-latus-rectum, i.e. to y/a'(1—e?)

we obtain the new eccentricity.

Finally by drawing a line making with the new tangent at P an
angle equal to that made by SP, and taking on it a point H’, such that
SP + H'P is equal to the new major axis, we obtain the new second

focus and hence the new position of the major axis of the orbit.

86. Effect on the orbit of an instantaneous change in the value of the
absolute acceleration .

When the particle is at a distance r from the centre of force, let the
value of u be instantaneously changed to u’, and let the new values
of the major axis and eccentricity be 24’ and ¢'.

Since the velocity is instantaneously unaltered in magnitude, we

u(%—é) =vi=y (%—é) (1),

an equation to give a'.

have

The moment of the velocity about S being unaltered, 4 remains the

\/ U 1—e \/,ua -..(2),

same, so that

giving €.
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The direction of the velocity at distance r being unaltered, we ob-
tain the new positions of the second focus and of the new major axis
as in the previous article.

If the change o u in u, be very small the change da in a is obtained
by differentiating the first equation in (1), where v and r are treated
oa 2 ou

as constants, and we have — = >
a u

So, from (2), we have, on taking logarithmic differentials,
5,LL_|_5a_ 2ede o 2ebe :6‘u_v2a5u:5_u 1_\/2_61 |
wooa l1-é l—e* u  u? u u
2

_na3/2,

v

. dT _38a 16y 15,u(1+3av2>

Again, since the periodic time T =

T 2 a 2 u 2 U

U
EXAMPLES

1. If the period of a planet be 365 days and the eccentricity e is

—, show that the times of describing the two halves of the orbit,

bounded by the latus rectum passing through the centre of force,

are 36 1+ ! very nearl
2 157 y Y

2. The perihelion distance of a comet describing a parabolic path is

1 : :

— of the radius of the Earth’s path supposed circular; show that the
n

time that the comet will remain within the Earth’s orbit is

2 nt? n_lofa ear.
3rc n 'V 2n year

[If S be the Sun, a the radius of the Earth’s path, A the perihelion
of the comet’s path, and P the intersection of the paths of the earth
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2a
. 2
and comet, then a = SP = n , so that cos@ = —— 1, and
1+4cosB n

0
therefore tan 5 =+vn—1.
3/2

2n
Now use the formula of Art. 77, remembering that —a”/~ =

one year. |
3. The Earth’s path about the Sun being assumed to be a circle, show

that the longest time that a comet, which describes a parabolic

path, can remain within the Earth’s orbit is — of a year.

4. A planet, of mass M and periodic time 7', when at its greatest dis-
tance from the Sun comes into collision with a meteor of mass m,
moving in the same orbit in the opposite direction with velocity

v if % be small, show that the major axis of the planet’s path is

dm vI |1 —e
M 1\ 1l+e

5. When a periodic comet is at its greatest distance from the Sun

reduced by

its velocity v is increased by a small quantity 6v. Show that the

comet’s least distance from the Sun is increased by the quantity

45v.{f(<;_+;)>}1/2.

6. A small meteor, of mass m, falls into the Sun when the Earth i1s
at the end of the minor axis of its orbit; if M be the mass of the

Sun, show that the major axis of the Earth’s orbit is lessened by

2a%, that the periodic time is lessened by ﬁm of a year, and that

: : : . b m
the major axis of its orbit is turned through an angle U
ae
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7.

10.

I1.

12.

The Earth’s present orbit being taken to be circular, find what its

1
path would be if the Sun’s mass were suddenly reduced to — of
n

what it 1s now.

. A comet is moving in a parabola about the Sun as focus; when at

the end of its latus-rectum its velocity suddenly becomes altered

in the ratio n : 1, where n < 1; show that the comet will describe

an ellipse whose eccentricity is v/ 1 — 2n2 +2n#, and whose major

axis is —E where 2/ was the latus-rectum of the parabolic path.
—n

. A'body 1s moving in an ellipse about a centre of force in the focus;

when it arrives at P the direction of motion is turned through a right
angle, the speed being unaltered; show that the body will describe
an ellipse whose eccentricity varies as the distance of P from the
centre.
Two particles, of masses m and m;, moving in co-planar parabo-
las round the Sun, collide at right angles and coalesce when their
common distance from the Sun is R. Show that the subsequent path
of the combined particles is an ellipse of major axis

my +my)?

( 21m1m22 | k.
A particle is describing an ellipse under the action of a force to one
of its foci. When the particle is at one extremity of the minor axis
a blow is given to it and the subsequent orbit is a circle; find the
magnitude and direction of the blow.
A particle m is describing an ellipse about the focus with angular
momentum mh, and when at the end of the minor axis receives a

small impulse mu along the radius vector to the focus. Show that

4ab
the major axis of the path is altered by ot

, that the eccentric-
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13.

14.

15.

16.

ity is altered by L;l—a(l — ¢%)%2, and that the major axis is turned

2
au(l —e :
Q, where a, b are the semi-axes and e

through the angle
the eccentricity of the ellipse.

A particle is describing a parabolic orbit (latus-rectum 4a) about
a centre of force () in the focus, and on its arriving at a distance
r from the focus moving towards the vertex the centre of force
ceases to act for a certain time 7. When the force begins again
to operate prove that the new orbit will be an ellipse, parabola or

hyperbola according as
r—a
2U
Show that the maximum range of a projectile on a horizontal plane

T<=>72r

where R 1is the radius

R
through the point of projection is 2h.R -,
of the Earth, and # is the greatest height to which the projectile can
be fired. [Use the the result of Art. 79.]

When variations of gravity and the spherical shape of the Earth are

taken into account, show that the maximum range attainable by a
: : h
gun placed at the sea level is 2R sin™! (1—3) , and that the necessary

1 h
angle of elevation is Ecos_1 z) where R is the Earth’s radius

and £ 1s the greatest height above the surface to which the gun can
send the ball.

Show that the least velocity with which a body must be projected
from the Equator of the Earth so as to hit the surface again at the
North Pole is about 7.2 km per second, and that the corresponding
direction of projection makes an angle of 67%0 with the vertical at

the point of projection.
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ANSWERS WITH HINTS

Art. 74 EXAMPLES.
10. 686.7 days 13. 2.56; .23
Art. 86 EXAMPLES.
7. Hyperbola, n > 2
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