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Can you recall?

8.1 Introduction: 
In  XIth Std we have studied the Gauss’ 

Law which gives the relationship between 
the electric charge and its electric field. It 
also provides equivalent methods for finding 
electric field intensity by relating values of the 
field at a closed surface and the total charges 
enclosed by that surface. It is a powerful tool 
which can be applied for the calculation of the 
electric field when it originates from charge 
distribution of sufficient symmetry. The law 
can be written as 

 �
�

�
q

0
 � �� E ds
�� ���
�     --- (8.1)

where φ is the total flux coming out of a 
closed surface and q is the total charge inside 
the closed surface.

charge configurations with the help of some 
examples.
8.2.1 Electric Field Intensity due to Uniformly 
Charged Spherical Shell or Hollow Sphere:

Consider a sphere of radius R with its 
centre at O, charged to a uniform charge 
density σ (C/m2 ) placed in a dielectric medium 
of permittivity ε (ε = ε0�� )k . The total charge 
on the sphere,  q = σ × 4πR2

By Gauss’ theorem, the net flux  through a 
closed surface 
     φ   = q/ε

0
 (for air/vaccum k=1)       

where q is the total charge inside the closed 
surface.

1. What are conservative forces? 
2. What is potential energy ?
3. What is Gauss’ law and what is a  

Gaussian surface?

Common steps involved in calculating 
electric field intensity by using Gauss’ 
theorem:
1. Describe the charge distribution  

(linear/surface/volume)
2. Obtain the flux by Gauss’ theorem (Let 

this be  Eq. (A)) 
3. Visualize a Gaussian surface and justify 

it. 
4. With the electric field intensity E 

as unknown, obtain electric flux by 
calculation, using geometry of the 
structure and symmetry of the Gaussian 
surface (Let this be Eq. (B)) 

5. Equate RHS of Eq. (A) and Eq. (B) and 
calculate E.

To find the electric field intensity at 
a point P, at a distance r from the centre of 
the charged sphere, imagine a concentric 
Gaussian sphere of radius r passing through  
P. Let ds be a small area around the point P 
on the Gaussian surface. Due to symmetry and 
spheres being concentric, the electric field at 
each point on the Gaussian surface has the 
same magnitude E and it is directed radially 
outward. Also, the angle between the direction 
of E and the normal to the surface of the sphere 
(ds) is zero i.e., cos θ  = 1

∴  E
�� . ds
���

=  E ds cosθ  = E ds
∴ flux dφ  through the area ds = E ds
Total electric flux through the Gaussian 
surface � � � � �� � �E ds Eds E ds

�� ���
� � �

∴ φ  = E 4π r 2     --- (8.2)
From equations (8.1) and (8.2),  

8. Electrostatics

8.2 Application of Gauss' Law:
In this section we shall see how to obtain 

the electric field intensity for some symmetric 

Fig. 8.1: Uniformly charged spherical shell or 
hollow sphere.
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 q/ε
0
 = E 4π r2 

∴ E = q/ 4 0
2�� r        --- (8.3)    

  Since   q = σ × 4πR2

   We have E = σ × 4πR2  /  4 0
2�� r            

     ∴E = σR2 / ε0
2r             --- (8.4)

From Eqn. (8.3) it can be seen that, the 
electric field at a point outside the shell is the 
same as that due to a point charge. Thus it can 
be concluded that a uniformly charged sphere 
is equivalent to a point charge at its center.
Case (i) If point P lies on the surface of the 
charged sphere:    r = R
   ∴   E= q/ 4 0

2�� R =σ/ε0

Case (ii) If point P lies inside the sphere: Since 
there are no charges inside σ = 0, 
                              ∴ E = 0.
Example : 8.1
A sphere of radius 10 cm carries a charge of 
1μC. Calculate the electric field
 (i)  at a distance of 30 cm from the center 

of the sphere
 (ii) at the surface of the sphere and
 (iii)  at a distance of 5 cm from the center of 

the sphere.
Solution: Given: q = 1μC = 1 × 10-6 C
 (i)  Electric intensity at a distance r is  

E = q/ 4 0
2�� r   

  For r = 30 cm = 0.3 m

  E = �
.

9 10 1 10

0 3

9 6

2

� � �

� �

�

 = 105 N/C

 (ii) E on the surface of the sphere, R =10 
cm = 0.10m

  E = q/ 4 0
2�� R  

       
  = �

.

9 10 1 10

0 10

9 6

2

� � �

� �

�

 = 9 × 105 N/C

 (iii) E at a point 5 cm away from the centre 
i.e. inside the sphere E = 0.

Fig. 8.2: Infinitely long straight charged wire 
(cylinder).

Fig. 8.3: Direction of the field for two types of 
charges.   

8.2.2 Electric Field Intensity due to an 
Infinitely Long Straight Charged Wire:

Consider a uniformly charged wire of 
infinite length having a constant linear charge 
density λ (charge per unit length), kept in a 
medium of permittivity ε (ε = ε0�� )k .

To find the electric field intensity at P ,at 
a distance r from the charged wire, imagine 
a coaxial Gaussian cylinder of length l and 
radius r (closed at each end by plane caps 
normal to the axis) passing through the point 
P. Consider a very small area ds at the point P 
on the Gaussian surface.

By symmetry, the magnitude of the 
electric field will be the same at all the points 
on the curved surface of the cylinder and 
will be directed radially outward. The angle 
between the direction of E and the normal to 
the surface of the cylinder (ds) is zero i.e.,  
cosθ  =1
 ∴  E.ds = Eds cosθ  = Eds
         Flux dφ  through the area ds = E ds. 
Total electric flux  through the Gaussian 
surface  � � � � �� �� E ds Eds E ds

�� ���
� ��  

 ∴ φ  = E. 2πrl     --- (8.5)
From equations  (8.1) and (8.5)

q/ε0  = E 2π rl     
Since  λ = q/l , q =  λ l
∴ λ l /ε0  = E 2π rl 
E = λ  / ��2 0�� r         --- (8.6)                               
The direction of the electric field E is 

directed outward if λ is positive and inward if 
is λ negative (Fig 8.3).
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Can you recall?

8.2.3  Electric Field due to a Charged Infinite 
Plane Sheet:

Consider a uniformly charged infinite 
plane sheet with surface charge density σ. 
By symmetry electric field is perpendicular 
to plane sheet and directed outwards ,having  
same magnitude at a given distance on either 
sides of the sheet. Let P be a point at a distance 
r from the sheet and E be the electric field at P.

By symmetry  the electric field is at right 
angles to the  end caps and away from the 
plane. Its magnitude is  the same at P and P'. 
The flux passing through the curved surface is 
zero as the electric field is tangential to this 
surface.
∴ the total flux through the closed surface is 
given by 

� � ��
�
� � ��

�
�� �Eds Eds

p p 

       
'

 (since θ   = 0, cos θ  =1)
         = EA + EA
          ∴φ  = 2EA      --- (8.7)
  If σ is the surface charge density then
  σ = q/A, q = σA      
  ∴ Eq. (8.1) can be written as
 φ  = σA/ε0 �������������������������������������������������������������������������������������������������������          --- (8.8)
From Eq. (8.7) and Eq. (8.8) 
 2EA = σA/ε0  ∴ E = σ/2ε0

Example 8.2: The length of a straight thin 
wire is 2 m. It is uniformly charged with a 
positive charge of 3µC. Calculate
(i)  the charge density of the wire
(ii) the electric intensity due to the wire at 
a point 1.5 m away from the center of the 
wire
Solution:    Given 
charge q = 3 µC = 3 × 10-6 C
Length l = 2 m,  r = 1.5 m

(i) Charge Density λ = Charge/ length 

      = 
3 10

2

6� �� �

 = 1.5 × 10-6 C m-1 

(ii) Electric Intensity E = λ / ��2 0�� r     
 
      =  

1 5 10

2 3 142 8 85 10 1 5

6

12

.

. . .

� �

�

�
� � � �

�

�  

      = 1.798 × 104 N C-1

To find the electric field due to a charged 
infinite plane sheet at P, we consider a 
Gaussian surface around P in the form of a 
cylinder having cross sectional area A and 
length 2r with its axis perpendicular to the 
plane sheet. The plane sheet passes through 
the middle of the length of the cylinder such 
that the ends of the cylinder (called end caps 
P and P') are equidistant (at a distance r) from 
the plane sheet.

Fig. 8.4: Charged infinite plane sheet.

Example: 8.3 The charge per unit area 
of a large flat sheet of charge is 3µC/m2. 
Calculate the electric field intensity at 
a point just near the surface of the sheet, 
measured from its midpoint.
Solution: Given 
Surface Charge Density = σ = 3× 10-6  Cm-2 
Electric Intensity E = σ/2ε0

= 
3 10

2 8 85 10

6

12

� �

�

�
� �

�

�.
 = 1.7 × 105 N C-1

8.3 Electric  Potential  and Potential Energy:
We have studied earlier that the potential 

energy of a system is the stored energy that 
depends upon the relative positions of its 
constituents. Electrostatic potential energy is 
the work done against the electrostatic forces 
to achieve a certain configuration of charges 
in a given system. Since every system tries 
to attain the lowest potential energy, work 
is always required to be done to change the 
configuration.

What is gravitational Potential ?
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We know that like charges repel and unlike 
charges attract each other. A charge exerts a 
force on any other charge in its vicinity. Some 
work is always done to move a charge in the 
presence of another charge. Thus, potential 
energy arises from any collection of charges. 
Consider a positive charge Q fixed at some 
point in space. For bringing any other positive 
charge close to it, work is necessary. This work 
is equal to the change in the potential energy 
of their system. 
Thus, work done against a electrostatic force = 
Increase in the potential energy of the system.
  ∴



F . dr


 = dU,
where dU is the increase in potential energy 
when the charge is displaced through dr



 and 


F  is the force exerted on the charge.
Expression for potential energy:

Let us consider the electrostatic field due 
to a source charge +Q placed at the origin O. 
Let a small charge + q0� be brought from point 
A to point B at respective distances r

1
 and r

2
 

from O, against the repulsive forces on it. 



FE =  �
�

�
�

�

�
�

1

4 0

0
2�
Qq

r
r̂

where r  is the unit vector in the direction of  


r . Negative sign shows r  


and 


FE  are 
oppositely directed.
∴For a system of two point charge,

∆U =
r

r

1

2

∫dU  =
r

r
Qq

r
r dr

1

2 1

4 0

0
2� �

�

�
�

�

�
��

ˆ.


��������
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�
�

The change in the potential energy depends 
only upon the end points and is independent 
of the actual path taken by the charge. The 
change in potential energy is equal to the work 
done W

AB
 against the electrostatic force.

 

W U Qq
r rAB � �

�

�
�

�

�
� �

�

�
�

�

�
��

1

4

1 1

0
0

2 1�

So far we have defined/calculated the 
change in the potential energy for system of 
charges. It is convenient to choose infinity to 
be the point of zero potential energy as the 
electrostatic force is zero at r � � .

Thus, the potential energy U of the system 
of two point charges q

1
 and q

2
 separated by r 

can be obtained from the above equation by 
using r r r1 2� � ��and� . It is then given by 

 
U r

q q

r
� � � �

�
�

�

�
�
�
�
�

�
�
�

1

4 0

1 2

�             --- (8.9)

Units of potential energy :
SI unit=  joule (J)
“One joule is the energy stored in moving 

a charge of 1C through a potential difference 
of 1 volt. Another convenient unit of energy is 
electron volt (eV), which is the change in the 
kinetic energy of an electron while crossing   
two points maintained at a potential difference 
of 1 volt.”
 1 eV = 1.6 × 10-19 joule
 Other related units are:

Work done against the electrostatic force
 


FE , in displacing the charge q0  through a 
small displacement dr



 appears as an increase 
in the potential energy of the system.
dU =  



FE . dr


 = - F
E
.dr

Negative sign appears because the 
displacement d r  is against the electrostatic 
force 



FE .
For the displacement of the charge from 

the initial position A to the final position B, 
the change in potential energy ∆U, can be 
obtained by integrating dU

∴∆U = 
r

r

1

2

∫dU  =
r

r

EF r
1

2

� � �




.d

The electrostatic force (Coulomb force) 
between the two charges separated by distance 
r is

Fig. 8.5: Change +q
0
 displaced by dr towards 

charge +Q.
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 1 meV = 1.6 × 10-22 J
 1 kev = 1.6 × 10-16 J
Concept of Potential:

Equation (8.9) gives the potential energy 
of a two particle system at a distance r from 
each other.

 
U r

r

q q

r
� � � �

�
�

�

�
�
�
�
�

�
�
�

1

4 0

1 2

�  

          
�
�

�
�

�

�
� �

�

�
�

�

�
�

q

r
q

q

r
q1

0
2

2

0
14 4� � 

The quantity V r
q

r
� � � �

�
�

�

�
�

4 0�
�depends upon 

the charge q and location of a point at a distance 
r from it. This is defined as the electrostatic 
potential of the charge q at a distance r from it.
In terms of potential, we can write the 
potential energy of the ‘two charge’ system as 
U r V r q V r q� � � � � � � �1 2 2 1 ,
where V

1
(r) and V

2
(r) are the respective 

potentials of charges q1  and q2  at distance r 
from either.
∴ Electrostatic potential energy (U ) = electric 
potential V × charge q

 

Or, Electrostatic Potential (V ) = Electrostatic 
Potential Energy per unit charge.
i.e., V U q�� �/�=
Electrostatic potential difference between any 
two points in an electric field can be written as

V V2 1�−  =  
U U

q
2 1�� –    =  

dW

q
=  work done dW  

(or change in PE) per unit charge to move the 
charge from point 2 to point 1. 
Relation between electric field and electric 
potential:

Consider the electric field produced by a 
charge +q kept at point O (see Fig. 8.6). Let us 
calculate the work done to move a unit positive 
charge from point M to point N which is at a 
small distance dx from M. The direction of 
the electric field at M is along OM

� ����
. Thus the 

force acting on the unit positive charge is along 

OM
� ����

. The work done = dW = - Fdx = -Edx. The 
negative sign indicates that we are moving the 
charge against the force acting on it. As it is 

the work done on a unit positive charge, dw = 
dV = difference in potential between M and N.

  

 

� � �

� �

dV Edx

E
dV

dx
   

Thus the electric field at a point in an 
electric field is the negative of the potential 
gradient at that point.
Zero potential:

The nature of potential is such that its 
zero point is arbitrary. This does not mean 
that the choice of zero point is insignificant. 
Once the zero point of the potential is set, 
then every potential is measured with respect 
to that reference. The zero potential is set 
conveniently.

In case of a point charge or localised 
collection of charges, the zero point is set at 
infinity. For electrical circuits the earth is 
usually taken to be at zero potential.

Thus the potential at a point A in an 
electric field is the amount of work done to 
bring a unit positive charge from infinity to 
point A.

Example 8.4: Potential at a point A in 
space is given as 4 × 105 V. 
 (i)  Find the work done in bringing a charge 

of 3 μC from infinity to the point A. 
 (ii)  Does the answer depend on the path 

along which the charge is brought ?
Solution : Given 
    Potential (V ) at the point A = 4 × 105 V
    Charge  q

0 = 
3 μC =3×10 6– C

 (i) Work done in bringing the charge from 
infinity to the point A is 

  W∞  =  q
0 
V

             =  3 ×10-6  × 4 × 105

             =  12 × 10-1

             W∞  =  1.2 J
 (ii) No, the work done is independent of 

the path.
Example 8.5 If 120 J of work is done in 
carrying a charge of 6 C from a place where 
the potential is 10 volt to another place 
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Remember this

Fig. 8.6: Electric potential due to a point charge.

8.4 Electric Potential due to a Point Charge, 
a Dipole and a  System of Charges:
a) Electric potential due to a point charge:

Here, we shall derive an expression for the 
electrostatic potential due to a point charge.

Figure 8.6 shows a point charge +q, 
located at point O. We need to determine its 
potential at a point A, at a distance r from it.

  
 

=
-

4 0

q

��
x dx

r
�

�
� 2

 
�

��
��

�
��

�
��

�
�

�
�
�

�

��
-q

x
x dx

x

r

4

1 1

0

2

��


 
 

� �
�

�
��

�
��

q

r4

1

0��
1

   


1
0

�
��

�
�

�
�
�

     W = �
�

q

r4 0��
   

--- (8.12)

By definition this is the electrostatic 
potential at A due to charge q. 

 ∴V = W = �
q

r4 0��
  --- (8.13)

A positively charged particle produces 
a positive electric potential and a negatively 
charged particle produces a negative electric 
potential 
 At r = ∞, V = 

q

�
� 0

This shows that the electrostatics potential 
is zero at infinity.

Equation (8.13) shows that for any point 
at a distance r from the point charge q, the 
value of V is the same and is independent of 
the direction of r. Hence electrostatic potential 
due to a single charge is spherically symmetric.

Figure 8.7 shows how electric potential  

( V α 
1

r
)  and electric field (E α 2

1
 
r

) vary with 

r, the distance from the charge. 
� �

�
�
��

�
��

q

r4

1

0��
1

Fig. 8.7: Variation 
of electric field 

and potential with 
distance

where the  potential is V, find V
Solution: Given :  W

AB 
 =  120 J , q

0 
 =  6 C, 

V
A  

=  10 V, V
B
  =  V

As  V
B
  -  V

A  
=  
W

q
AB

0      

       V -  (10)  = 
120

6
       V -  (10)  =  20
   ∴ V  =  30 volt

As seen above the electric potential at a 
point A is the amount of work done per unit 
positive charge, which is displaced from ∞ to 
point A. As the work done is independent of 
the path, we choose a convenient path along 
the line extending OA to ∞.

Let M be an intermediate point on this 
path where OM = x. The electrostatic force on 
a unit positive charge at M is of magnitude

 �F
q

x
� �

1

4 0
2�

             --- (8.10)

It is directed away from O, along OM. For 
infinitesimal displacement dx from M to N, the 
amount of work done is given by 
 ∴dW = - Fdx     --- (8.11) 

The negative sign appears as the 
displacement is directed opposite to that of the 
force.
∴ Total work done in displacing the unit 
positive charge from ∞ to point A is given by 

  
       

W Fdx
q

x
dx

r r

� � � �
� �
� �

1

4 0
2��

Due to a single charge at a distance r,
Force (F) α � /1 2r , Electric field (E) α 1/ r 2  
but Potential (V) α 1/ r.
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b) Electric potential due to an electric dipole: 
We have studied electric and magnetic 

dipoles in XIth Std. Figure 8.8 shows an 
electric dipole AB consisting of two charges 
+q and -q separated by a finite distance 2l. 
Its dipole moment is 



p,  of magnitude p = q × 
2l, directed from -q to +q. The line joining the 
centres of the two charges is called dipole axis. 
A straight line drawn perpendicular to the axis 
and passing through centre O of the electric 
dipole is called equator of dipole. 

In order to determine the electric potential 
due to a dipole, let the origin be at the centre 
(O) of the dipole.

  V
2 
= 

–

�

q

r4 0 2��
  

The electrostatic potential is the work 
done by the electric field per unit charge,

V
W

Q
�

�

�
�

�

�
� . 

The potential at C due to the dipole is, 

  
 

V V V
q

r rC � � �
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�
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�
�1 2

0 1 24
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-

By geometry,
  r r r1

2
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For a short dipole, 2  << r  and 

If r r>>   is small ∴


2

2r
 can be neglected 
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Using binomial expansion, ( 1 + x)n = 1 + 
nx, x << l and  retaining terms up to the first 

order of 


r
  only, we get

Example 8.6: A wire is bent in a circle of 
radius 10 cm. It is given a charge of 250µC 
which spreads on it uniformly. What is the 
electric potential at the centre  ?
Solution : Given :
 q  =  250 µC =  250 × 10-6 C
 R  =  10 cm =  10-1 m
 V  =  ?
      As V  =

1

4 0π
q

r
=  9 10 250 10

10

9 6

1

� � � ��� �� � � �

�
    
    =  2.25 × 107 volt

Let C be any point near the electric dipole 
at a distance r from the centre O inclined at an 
angle θ  with axis of the dipole. r

1 
and r

2
 are 

the distances of point C from charges +q and 
-q, respectively.
Potential at C due to charge +q at A is,
  
  

V
q

r1
0

=
+

4�� 1

Potential at C due to charge -q at B is, 

Fig. 8.8: Electric potential due to an electric 
dipole.
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Electric potential at C, can also be expressed 
as,

 
V

p r

rC �
1

4 0
3��

�� �
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�
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.
,

r
r

where r is a unit vector along the position  
vector, OC

� ��� �= r
i) Potential at an axial point,θ = 00 (towards 
+q)  or 1800 (towards – q)

  V
p

raxial
o

�
�1

4 2��
i.e. This is the maximum value of the potential.
ii) Potential at an equatorial point, θ = 90° and 
V = 0

Hence, the potential at any point on the 
equatorial line of a dipole is zero. This is 
the minimum value of the magnitude of the 
potential of a dipole. 

Thus the plane perpendicular to the line 
between the charges at the midpoint is an 
equipotential plane with potential zero. The 
work done to move a charge anywhere in this 
plane (potential difference being zero) will be 
zero.

Example 8.7: A short electric dipole has 
dipole moment of   1 × 10-9 C m. Determine 
the electric potential due to the dipole at a 
point distance 0.3 m from the centre of the 
dipole situated 
a) on the axial line  b) on the equatorial line 
c)  on a line making an angle of 60° with the 
dipole axis.

Solution: Given  
p  =  1×10-9 Cm
r  =  0.3 m
a)  Potential at a point on the axial line

V  =
1

4 0
2π
p

r
= 

9 10 1 10

0 3

9 9

2

� � ��� � �

� �

�

.
=100 volt

b)  Potential at a point on the equatorial  line  
=  0
c)  Potential at a point  on a line making an 
angle of 60° with the dipole axis is 

V =
1

4 0
2�
�


p

r

cos
 = 

9 10 1 10 60

0 3

9 9

2

� � ��� � �

� �

� �cos

.
   =  50 volt

c) Electrostatics potential due to a system of 
charges:

We now extend the analysis to a system of 

charges.

Fig. 8.9: System of charges.

Consider a system of charges q
1
, q

2
 ......... 

q
n
 at distances r

1
, r

2
 ...... r

n
 respectively from 

point P. The potential V
1
 at P due to the charge 

q
1
 is 

 V
q

r1
0

=
1

4��
1

1
Similarly the potentials V

2
, V

3
 ........V

n
 at 

P due to the individual charges q
2
, q

3
 ...........q

n
  

are  given by

 
   
V

q

r
V

q

r
V

q

rn
n

n
2

0

2

2
3

0

3

3 0

1

4

1

4

1

4
� � �

�� �� ��
, ,  

By the superposition principle, the 
potential V at P due to the system of charges is 
the algebraic sum of the potentials due to the 
individual charges.
∴ V = V

1
 + V

2
 + ... + V

n

       
 

=
1

4
+ + ----- +

0

1

1

2

2��
q

r

q

r

q

r
n

n

�

�
�

�

�
�
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Use your brain power

8.5 Equipotential Surfaces:
An equipotential surface is that surface, 

at every point of which the electric potential is 
the same. We know that,

The potential (V) for a single charge q is 
given by V

q

r
=

1

4 0��
If r is constant then V will be constant. 

Hence, equipotential surfaces of single point  
charge are concentric spherical surfaces  
centered at the charge. For a line charge, the 
shape of equipotential surface is cylindrical.

Let the potential be zero at the point P and 
OP = x. For x < 0 ( i.e. to the left of O), the 
potentials of the two charges cannot add up 
to zero. Clearly, x must be positive. If x lies 
between O and A, then
V

1  
+  V

2
  =  0, where V

1  
and  V

2
  are the 

potentials at points O and A, respectively.

 

1

4 0 16
0

0

1 2

��
q

x

q

x
�

�
�
��

�
��
�

. �   

9 × 109
5 10 3 10

0 16
0

8 8� ��
�

�
�

�

�
�

�

�
� �

� �

x x
��

� �

. �
 

  

⇒9 ×109  × 10-8 
5 3

0 16
0

x x
�� ��

. �
�

�
�
��

�
��
�

⇒
5 3

0 16x x
�� ��

. �
−

− =  0

∴x  =  0.10 m,     x  = 10 cm
The other possibility is that x may also 

lie on extended OA. 

Equipotential surfaces can be drawn 
through any region in which there is an electric 
field.

By definition the potential difference 
between two points P and Q is the work done 
per unit positive charge displaced from Q to P.
∴ V

P
 – V

Q
 = W

QP

  If points P and Q lie on an equipotential 
surface, Vp = V

Q.

 ∴  W
QP 

= 0
Thus, no work is required to move a test 

charge along an equipotential surface.
a) If dx is the small distance over the 
equipotential surface through which unit  
positive charge is carried then

dW E x E dx� � �
�� �

.d cos� 0

Fig. 8.10 : Equipotential surfaces.

  Or, V
q

r
i

ii

n

�
�
�1

4 0 1��
For a continuous charge distribution, 
summation should be replaced by integration. 

Example 8.8: Two charges 5 × 10-8 C and 
-3 × 10-8 C  are located 16 cm apart. At what 
point (s) on the line joining the two charges 
is the electric potential  zero ? Take the 
potential at infinity to be zero.
Solution : As shown below, suppose the two 
point charges are placed on x- axis with the 
positive charge located at the origin O.

Is electrostatic potential necessarily zero at 
a point where electric field strength is zero? 
Justify.

As V
1  

+ V
2
  =  0

1

4 0π  

q

x

q

x
1 2

0 16
0�

�
�
��

�
��
�

� .  

9 × 109 
5 10 3 10

0 16
0

8 8� ��
�

�
�

�

�
�

�

�
� �

� �

x x
��

� �

� .
∴x  =  0.40 m,     x  = 40 cm

q
1
= 5 × 10-8 C q

2
= -3 × 10-8 C

q
1
= 5 × 10-8 C q

2
= -3 × 10-8 C
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Do you know?

 � cos = 0 or = 900� �
 i.e. E d x

�� �
⊥  as shown in Fig. 8.11

Hence electric field intensity


E  is always 
normal to the equipotential surface i.e., for any 
charge distribution, the equipotential surface 
through a point is normal to the electric field 
at that point.

Equipotential surfaces do not intersect each 
other as it gives two directions of electric 
fields at intersecting point which is not pos-
sible.

Fig. 8.12: Equipotential surfaces for a 
uniform electric field. 

Fig. 8.14: Equipotential surfaces for two 
identical positive charges.

Fig. 8.13: Equipotential surfaces for a dipole.

Fig. 8.15: (a) Between 
2 plane metallic 

sheets.  

Fig. 8.11: Equipotential surface ⊥ to 


E  

b) If the field is not normal, it would have a 
nonzero component along the surface. So to 
move a test charge against this component 
work would have to be done. But by the 
definition of equipotential surfaces, there 
is no potential difference between any two 
points on an equipotential surface and hence 
no work is required to displace the charge on 
the surface. Therefore, we can conclude that 
the electrostatic field must be normal to the 
equipotential surface at every point, and vice 
versa.

Example 8.9: A small particle  carrying a 
negative charge of 1.6 × 10-19 C is suspended 
in equilibrium between two horizontal 
metal plates 10 cm apart having a potential 

(b) When one of  the sheet is replaced by a 
charged metallic sphere.

Like the lines of force, the equipotential 
surface  give a visual picture of both the 
direction and the magnitude of electric field in 
a region of space.
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To calculate the electric potential energy 
of the two charge system, we assume that the 
two charges q

1
 and q

2  
are initially at infinity. 

We then determine the work done in bringing 
the charges to the given location by an external 
agency. 

In bringing the first charge q
1
 to position 

A r1

��� � , no work is done because there is no 
external field against which work needs to be 
done as charge q

2
 is still at infinity i.e., W

1
 = 

0. This charge produces a potential in space 
given by 

V
q

r1
0

1

1

=
1

4��
            --- (8.14)

 
    

Where r
1
 is the distance of point A from 

the origin. 
When we bring charge q

2
 from infinity to 

B r2

��� �  at a distance r
12

, from q
1
, work done is 

W
2
 = (potential at B due to charge q

1
) × q

2

=
4

×1

0 12
2

q

r
q

��
, (where AB = r

12
)    --- (8.15)

This work done in bringing the two 
charges to their respective locations is stored  
as the potential energy of the configuration of 
two charges. 
 �U

q q

r
=

1

4 0

1 2

12��
  --- (8.16)

Equation (8.16) can be generalised for a 
system of any number of point charges.

Example 8.10: Two charges of magnitude 
5 nC and −2 nC are placed at points  
(2 cm, 0, 0) and (20 cm, 0, 0) in a region of 
space, where there is no other external field. 
Find the electrostatic   potential energy of 
the system.
Solution : Given  
q

1
= 5 nC =  5 × 10-9 C

q
2
  =  -2 nC =  -2 × 10-9 C

r  =  (20 – 2) cm =  18 cm =  18 × 10-2 m

U  = �
1

4 0

1 2

π
q q

r

=  9 10 5 10 2 10

18 10

9 9 9

2

� � � � � � � �

� �

��� � � �� �
�

� �

�
    
= -5 × 10-7 J = -0.5 × 10-6 J = -0.5 μJ

8.6 Electrical Energy of Two Point Charges 
and of a Dipole in an Electrostatic Field:

When two like charges lie infinite distance 
apart, their potential energy is zero because 
no work has to done in moving one charge at 
infinite distance from the other. But when they 
are brought closer to one another, work has 
to be done against the force of repulsion. As 
electrostatic force is conservative, this work 
gets stored as the potential energy of the two 
charges. Electrostatic potential energy of 
a system of point charges is defined as the 
total amount of work done to assemble the 
system of charges by bringing them from 
infinity to their present locations.
a) Potential energy of a system of 2 point 
charges:

Fig. 8.16: System of two point charges.

difference of 4000 V across them. Find the 
mass of the particle.
Solution: Given :   
q  =  1.6 × 10-19 C
dx  =  10 cm =  10 × 10-2 m =  10-1  m
dV  =  4000 V

E  =
−dV
dx

= 
−

−

�4000

10 1

    = - 4 × 104 Vm-1

As the charged particle remain suspended 
in equilibrium,
F  =  mg  =  qE

∴m  =
qE

g
=  

� �� � � �� ��1 6 10 4 10

9 8

19 4. � � � � �

.
         =  0.653 ×  10-15 kg
   m  =  6.53 × 10-16  kg

Let us consider 2 charges q
1 
and q

2
 with 

position vectors r
1
 and r

2
 relative to some 

origin (O).

O
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b) Potential energy for a system of N point 
charges:

Equation (8.16) gives an expression for 
potential energy for a system of two charges. 
We now analyse the situation for a system of 
N point charges.

In bringing a charge q
3
 from ∞ to C  

( r3

��
) work has to be done against electrostatic 

forces of both q
1
and q

2

∴ W
3
 = (potential at C due to q

1 
and q

2
 )× q

3

 
=

1

4
+ ×

0

1

13

2

23
3��

q

r

q

r
q

�

�
�

�

�
�

 

 
=

1

4
+

0

1 3

13

2 3

23��
q q

r

q q

r

�

�
�

�

�
�

Similarly in bringing a charge q
4
 from 

∞  to D r4

��� �  work has to be done against 
electrostatic forces of q

1
, q

2
, and  q

3

 

       
W

q q

r

q q

r

q q

r4
0

1 4

14

2 4

24

3 4

34

=
1

4
+ +

��
�

�
�

�

�
�

Proceeding in the same way, we can  
write the electrostatic potential energy of a 
system of  N point charges at r r rN1 2

�� �� ���
, ....  as

 
    
U

q q

r
j k

jkall pairs

� �1

4 0��

(c) Potential energy of a single charge in an 
external field:

Above, we have obtained an expression 
for potential energy of a system of charges 
when the source of the electric field, i.e., 
charges and their locations, were specified. 

In this section, we determine the potential 
energy of a charge (or charges) in an external 
field E

��
 which is not produced by the given 

charge (or charges) whose potential energy we 
wish to calculate. The external sources could 
be known, unknown or unspecified, but what is 
known is the electric field E or the ̀ electrostatic 
potential V due to the external sources.

Here we assume that the external field 
is not affected by the charge q, if q is very 
small. The external electric field E and the 
corresponding external potential V may vary 
from point to point.

If V ( r


) is the external potential at any 
point P having position vector r



, then by 
definition, work done in bringing a unit positive 
charge from ∞  to the point P is equal to V. 
∴ Work done in bringing a charge q, from ∞
to the given point in the external field  
is qV ( r



). 
This work is stored in the form of potential 

energy of a system of charge q. 

∴PE of a system of a single charge q at r


 in 
an external field is given by 
 PE qV r� � �

   
--- (8.17)

(d)  Potential energy of a  system of two 
charges in an external field:

In order to find the potential energy of 
a system of two charges q

1
 and q

2 
located at 

r
1
 and r

2
 respectively in an external field, we 

calculate the work done in bringing the charge 
q

1 
from  ∞ to r

1
. 

From (8.17), in the said process work done 
        = q

1
V ( r


1 )       --- (8.18)
To bring the charge q

2
 to r

2
, the work is 

done not only against the external field E but 
also against the field due to q

1
.

Example 8.11: Calculate the 
electrostatic potential energy 
of the system of charges 
shown in the figure.

Solution : Taking zero of potential energy at 
∞, we get potential energy (PE) of the system 
of charges
 PE  =

1

4 0π   ∑
q q

r
j k

jk
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 ∴Work done on q
2
 against the external field 

= q
2
 V ( r2

��
) and  Work done on q

2
 against the 

field due to q
q q

r1
1 2

0 12

=
4��

, 

where r
12

 = distance between q
1
and q

2
.

By the Principle of superposition for 
fields, we add up  the work done on q

2
 against 

the two fields. 
 ∴ Work done in bringing q

2
 to r

2
 

 � �
�
�

�
�
� �

�

q V r
q q

r2 2
1 2

0 124��
 --- (8.19)

Thus from (8.18) and  (8.19) potential 
energy of the system 
= Total work done in assembling the 
configuration 
  = + +

41 2
1 2

0 12

q V r q V r
q q

r1 2

�� ��� � � � ��

(e) Potential  energy of a dipole in an external 
field:  

Fig. 8.17 : Couple acting on a dipole.

Example 8.12: Two charged particles 
having equal charge of 3 ×10-5 C each are 
brought from infinity to a separation of 
30 cm. Find the increase in electrostatic 
potential energy during the process.
Solution : Taking the potential energy (PE) 
at ∞ to be zero,
Increase in PE  =  present PE

V =  
q q

r
1 2

04
�

�π = 
9 10 3 10

0 3

9 5 2� � ( � � )

.

�� � � �

    
    = 

9 9 10 10

3 10

9 10

1

� � � � �

� �

� � �
�

�

�   = 
81

3
=  27 J

Example 8.13: 
a) Determine the electrostatic potential 
energy of a system consisting of two 
charges  -2 µC and +4 µC (with no external 
field) placed at (-8 cm, 0, 0) and (+8 cm, 0, 
0) respectively.
b) Suppose the same system of charges is 
now placed in an external electric field 
E = A (1/r2), where A = 8 × 105 cm-2, what 
would be the electrostatic potential energy 
of the configuration
Solution: Given :
   q

1  
=  -2 µC  =  -2 × 10-6 C, r

1
= 0.08 cm

      q
2
=  +4 µC =  +4 × 10-6 C, r

2
 = 0.08 cm

      r  =  16 cm =  0.16 m
a) Electrostatic potential energy of the 
system of two charges is  

        V  =
1

4 0

1 2

π
q q

r
 
 = 9 10 2 10 4 10

0 16

9 6 6� � � � � � �

.

�� � �� �� � �� �

            = 0.45 J
b) In the electric field, total potential energy 

(PE)  =
q q

r
1 2

04
�

�π
  +  q

1 
V ( r1

��
) + q

2 
V ( r2

��
)

   
E =

−dV
dr

∴ V = � � Edr  =  �
�A
r
dr

2
�� ,V  =

A

r
   
∴ Total PE  =

q q

r
1 2

04
�

�π +  
Aq

r
1

1

  + 
Aq

r
2

2   

                     = -0.45+ 
8 10 2 10

0 08

5 6� � � � � �

.

�� � � �� ��

 +

                        

8 10 4 10

0 08

5 6� � � � � �

.

�� � �� ��

        =  -0.45  -20  +  40
        =  19.55 J

Consider a dipole with charges -q and 
+q separated by a finite distance 2 , placed 
in a uniform electric field E

��
. It experiences a 

torqueτ


 which tends to rotate it.
 τ

� �� ��
= × p E  or � �� pE sin

In order to neutralize this torque, let us 
assume an external torqueτ



ext  is applied, 
which rotates it in the plane of the paper 
from angle θ0  to angle θ , without angular 
acceleration and at an infinitesimal angular 
speed. Work done by the external torque

 

W d pE dext� � � �� �� � � � �
�

�

�

�

0 0

sin
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� � �pE - cos� �

�

�

 
� � ��� ��pE - cos - - cos� �0

 
� �� �pE - cos cos� �0

 
� � �pE cos - cos� �0

This work done is stored as the potential 
energy of the system in the position when the 
dipole makes an angle θ  with the electric 
field. The zero potential energy can be chosen 
as per convenience. We can choose U (θ0 )  
= 0, giving  

� � �� � � � � �U U pE� � � �0 0cos - cos

a) If initially the dipole is perpendicular to the 

field E  i.e., �
�

0 2
�  then 

 
 

U pE� � �� � � � �cos - cos2

 � - cospE �

 U p E�� � � - .

b) If initially the dipole is parallel to the field 
E then �0 0�
  

U pE� �� � � � �cos - cos0

  
U pE� �� � � � �1 - cos

8.7 Conductors and Insulators,  Free Charges 
and Bound Charges Inside a Conductor:
a) Conductors and Insulators: 

When you come in contact with wires in 
wet condition or while opening the window of 
your car, you might have experienced a feeling 
of electric shock. Why don’t you get similar  
experiences with wooden materials?

The reason you get a shock is that  
there occurs a flow of electrons from one body 
to another when they come in contact via 
rubbing or moving against each other. Shock 
is basically a wild feeling of current passing 
through your body.

Conductors are materials or substances 
which allow electricity to flow through them. 
This is because they contain a large number 
of free charge carriers (free electrons). In a 
metal the outer (valence) electrons are loosely 
bound to the nucleus and are thus free for 
conductivity, when an external electric field is 
applied.

Metals, humans, earth and animal bodies 
are all conductors. The main reason we get 
electric shocks is that being a good conductor 
our human body allows a resistance free path 
for the current to flow from the wire to our 
body.
Under electrostatic conditions the conductors 
have following properties. 
1. In the interior of a conductor, net 

electrostatic field is zero. 
2. Potential is constant within and on the 

surface of a conductor. 
3. In static situation, the interior of a 

conductor can have no charge.
4. Electric field just outside a charged 

conductor is perpendicular to the surface 
of the conductor at every point.

5. Surface charge density of a conductor 
could be different at different points.

Example 8.14: An electric dipole consists 
of two opposite charges each of magnitude 
1µC separated by 2 cm. The dipole is placed 
in an external electric field of 105 N C-1. 
Find:
 (i)  The maximum torque exerted by the 

field on the dipole
 (ii)  The work the external agent will have 

to do in turning the dipole through 180° 
starting from the position  θ  =  0° 

Solution: Given : 
     p = q × 2l = 10-6 × 2 × 10-2 =  2 × 10-8 cm
    E = 105 NC-1

(i)  τ
max

 = p E sin 90°=  2 × 10-8 × 105 × 1 
    =  2 × 10-3  Nm
 (ii)  W = pE ( cosθ1 − cos �θ2 )
             = 2 × 10-8 × 105 × (cos 0- cos 180°)
                  =  2 × 10-3 ( 1 + 1 ) =  4 × 10-3 J
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In insulators, the electrons are tightly 
bound to the nucleus and are thus not available 
for conductivity and hence are poor conductors 
of electricity. There are no free charges since 
all the charges are bound to the nucleus. An 
insulating material can be considered as a 
collection of molecules that are not easily 
ionized. An insulator can carry any distribution 
of external electric charges on its surface or in 
its interior and the electric field in the interior 
can have non zero values unlike conductors.
8.8 Dielectrics and Electric Polarisation:

Dielectrics are insulates which can be 
used to store electrical energy. This is because 
when such substances are placed in an external 
field, their positive and negative charges 
get displaced in opposite directions and the 
molecules develop a net dipole moment. This 
is called polarization of the material and such 
materials are called dielectrics.

In every atom there is a positively 
charged nucleus and there are negatively 
charged electrons surrounding it. The negative 
charges form an electron cloud around the 
positive charge. These two oppositely charged 
regions have their own centres of charge 
(where the effective charge is located). The 
centre of negative charge is the centre of 
mass of negatively charged electrons and that 
of positive charge is the centre of mass of 
positively charged protons in the nucleus.

Thus, dielectrics are insulating materials 
or non- conducting substances which can be 
polarised through small localised displacement 
of charges. e.g. glass, wax, water, wood , mica, 
rubber, stone, plastic etc.

 Dielectrics can be classified as polar 
dielectrics and non polar dielectrics as 
described below.
Polar dielectrics:

A molecule in which the centre of mass 
of positive charges (protons) does not coincide 
with the centre of mass of negative charges 
(electrons), because of the asymmetric shape 
of the molecules is called polar molecule as 
shown in Fig. 8.18 (a). They have permanent 

Electrostatic shielding : 
• To protect a delicate instrument from 

the disturbing effects of other charged 
bodies near it, place the instrument 
inside a hollow conductor where E = 0. 
This is called electrostatic shielding.

• Thin metal foils are used in making the 
shields. 

• During lightning and thunder storm it is 
always advisable to stay inside the car 
than near a tree in open ground, since 
the car acts as a shield.

Faraday Cages:
• It is an enclosure which is used to block 

the external electric fields in conductive 
materials.

• Electro-magnetic shielding: MRI 
scanning rooms are built in such a 
manner that they prevent the mixing 
of the external radio frequency signals 
with the MRI machine.

b) Free charges and Bound charges inside 
materials:

The electrical behaviour of conductors 
and insulators can be understood on the basis 
of free and bound charges.

In metallic conductors, the electrons in 
the outermost shells of the atoms are loosely 
bound to the nucleus and hence can easily get 
detached and move freely inside the metal. 
When an external electric field is applied, they 
drift in a direction opposite to the direction of 
the applied electric field. These charges are 
called free charges.

The nucleus,  which consist of the positive 
ions and the electrons of the inner shells, 
remain held in their fixed positions. These 
immobile charges are called bound charges.

In electrolytic conductors, positive and 
negative ions act as charge carriers but their 
movements are restricted by the electrostatic 
force between them and the external electric 
field.
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dipole moments of the order of 10-30 Cm. They 
act as tiny electric dipoles, as the charges are 
separated by a small distance. The dielectrics 
like HCl, water, alcohol, NH

3 
etc are made of 

polar molecules and are called polar dielectrics. 
Water molecule has a bent shape with its two 
O - H bonds which are inclined at an angle of 
about 105°. It has a very high dipole moment 
of 6.1 × 10-30 Cm. Fig. 8.18 (b) and (c) show 
the structure of HCl and H

2
O, respectively. 

Polarization of a non-polar dielectric in an 
external electric field:

In the presence of an external electric 
field E

o
, the centres of the positive charge 

in each molecule of a non-polar dielectric is 
pulled in the direction of E

o
, while the centres 

of the negative charges are displaced in the 
opposite direction. Therefore, the two centres 
are separated and the molecule gets distorted. 
The displacement of the charges stops when 
the force exerted on them by the external field 
is balanced by the restoring force between the 
charges in the molecule.

Each molecule becomes a tiny dipole 
having a dipole moment. The induced dipole 
moments of different molecules add up giving 
a net dipole moment to the dielectric in the 
presence of the external field.

Fig. 8.18. Examples of  Polar molecules 
(b) HCI (c) H

2
O.

Non Polar dielectrics:
A molecule in which the centre of mass of 

the positive charges  coincides with the centre 
of mass of the negative charges is called a non 
polar molecule as shown in Fig. 8.19 (a). These 
have symmetrical shapes and have zero dipole 
moment in the normal state. The dielectrics 
like hydrogen, nitrogen, oxygen, CO

2
, benzene, 

methane are made up of nonpolar molecules 
and are called non polar dielectrics. Structures 
of H

2
 and CO

2
 are shown in Fig. 8.19 (b) and 

(c), respectively.

Fig. 8.19. (a) Nonpolar molecule. Examples of 
Nonpolar molecules (b) H

2
 (c) CO

2
.

Fig. 8.20 (a) Shows the non polar dielectric in 
absence of electric field while. 

Polarization of a polar dielectric in an 
external electric field:

The molecules of a polar dielectric have 
tiny permanent dipole moments. Due to thermal 
agitation in the material in the absence of any 
external electric field, these dipole moments 
are randomly oriented as shown in Fig. 8.21 

(a)

(c)(b)

(a)

(b)

(c)

Fig. 8.20 (b) shows it in presence of an 
external field.

Fig. 8.18. (a) A polar molecule.
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(a). Hence the total dipole moment is zero. 
When an external electric field is applied the 
dipole moments of different molecules tend to 
align with the field. As a result the dielectric 
develops a net dipole moment in the direction 
of the external field. Hence the dielectric is 
polarized. The extent of polarization depends 
on the relative values of the two opposing 
energies.

Reduction of electric field due to polarization 
of a dielectric: 

When a dielectric is placed in an external 
electric field, the value of the field inside the 
dielectric is less than the external field as a 
result of polarization. Consider a rectangular 
dielectric slab placed in a uniform electric 
field E

��
 acting parallel to two of its faces. 

Since the electric charges are not free to move 
about in a dielectric, no current results when it 
is placed in an electric field. Instead of moving 
the charges, the electric field produces a slight 
rearrangement of charges within the atoms, 
resulting in aligning them with the field. This 
is shown in Fig. 8.20 and Fig. 8.21. During the 
process of alignment charges move only over  
distances that are less than an atomic diameter. 

As a result of the alignment of the dipole 
moments there is an apparent sheet of positive 
charges on the right side and negative charges 
on the left side of the dielectric. These two 
sheets of induced surface charges produce an 
electric field E0

� ��
called the polarization field 

in the insulator which opposes the applied 
electric field 



E . The net field E
��

' , inside the 
dielectric is the vector sum of the applied field 


E  and the polarization field E0

� ��

 ∴ E' = E - E
0
  (in magnitude)

This is shown in Fig. 8.22 (a), (b) and (c).     

1. The applied external electric field which 
tends to align the dipole with the field.

2. Thermal energy tending to randomise the 
alignment of the dipole.
The polarization in presence of a strong 

external electric field is shown in Fig. 8.21 (b)
Thus, both polar and nonpolar dielectric 

develop net dipole moment in the presence of 
an electric field.

The dipole moment per unit volume is 
called polarization and is denoted by P

��
. For 

linear isotropic dielectrics P E
�� ��

= eχ .
χe  is a constant called electric 

susceptibility of the dielectric medium. 
It describes the electrical behaviour of a 
dielectric. It has different values for different 
dielectrics. 
For vacuum χ

e
 = 0.

Fig. 8.21 (a) Shows the polar dielectric in 
absence of electric field while. 

Fig. 8.21 (b) shows it in presence of an 
external field.

Fig. 8.22 (b) Induced surface charges on the 
dielectric establish a polarization field E0

� ��
in the 

interior.

Fig. 8.22 (a) When a dielectric is placed in an 
external electric field, the dipoles become aligned.
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Do you know?

The greater the applied field, greater is the 
degree of alignment of the dipoles and hence 
greater is the polarization field.

The induced dipole moment disappears 
when the field is removed. The induced dipole 
moment is often responsible for the attraction 
of a charged object towards an uncharged 
insulator such as charged comb and bits of 
paper. 
Table 1:Dielectric constants of various materials: 

Material Min Max
Air
Ebonite
Glass
Mica
Paper
Paraffin
Porcelain
Quartz
Rubber
Wood dry
Metals 

1
2.7
3.8
4
1.5
2
5
5
2
1.4
∞

1
2.7
14.5
9
3
3
6.5
5
4
2.9
∞

8.9 Capacitors and Capacitance, 
Combination of Capacitors in Series and 
Parallel:

In XIth Std. you have studied about resistors, 
resistance and conductance. A resistor is an 

electrical component which allows current to 
pass through it and dissipates heat but can’t 
store electrical energy. So there was a need 
to develop a device that can store electrical 
energy. The most common arrangement for 
this consists of a set of conductors (conducting 
plates) having charges on them and separated 
by a dielectric material. 

The conductors 1 and 2 shown in the Fig. 
8.23 have charges +Q and -Q with potential 
difference, V = V

1
 - V

2 
between them. The 

electric field in the region between them is 
proportional to the charge Q. 

Fig. 8.23: A capacitor formed by two conductors.

Fig. 8.22 (c) The net field ′E
���

 is a vector sum of 


E  and E0

� ��
.

If we apply a large enough electric field, we 
can ionize the atoms and create a condition 
for electric charge to flow like a conductor. 
The fields required for the breakdown of 
dielectric is called dielectric strength.

The potential difference V is the work 
done to carry a unit positive test charge from 
the conductor 2 to conductor 1 against the field. 
As this work done will be proportional to Q, 

then V ∝ Q and  the ratio Q�

V��
is a constant. 

 ∴ C = 
Q

V
  

The constant C is called the capacitance 
of the capacitor, which depends on the size, 
shape and separation of the system of two 
conductors.

The SI unit of capacitance is farad (F). 
Dimensional formula is [M-1 L-2T4A2].
 1 farad = 1 coulomb/1volt

A capacitor has a capacitance of one 
farad, if the potential difference across it rises 
by 1volt when 1 coulomb of charge is given 
to it. In practice farad is a big unit, the most 
commonly used units are its  submultiples.
  1µF = 10-6F
  1nF=10-9F 
  1pF = 10-12F 
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Fig. 8.24: (a) and (b) Parallel plate capacitor.

Uses of Capacitors
Principle of a capacitor:

To understand the principle of a capacitor 
let us consider a metal plate P

1
 having area A. 

Let some positive charge +Q be given to this 
plate. Let its  potential be V. Its capacity is 

given byC =
Q

V1

Now consider another insulated metal 
plate P

2
 held near the plate P

1
. By induction a 

negative charge is produced on the nearer face 
and an equal positive charge develops on the 
farther face of P

2
 (Fig. 8.24 (a)). The induced 

negative charge lowers the potential of plate 
P

1
, while the induced positive charge raises its 

potential.

based on the shape of the conductors.
Combination of Capacitors:

When there is a combination of capacitors 
to be used in a circuit we can sometimes 
replace it with an equivalent capacitor or a 
single capacitor that has the same capacitance 
as the actual combination of capacitors. The 
effective capacitance depends on the way the 
individual capacitors are combined. Here we 
discuss two basic combinations of capacitors 
which can be replaced by a single equivalent 
capacitor. 
(a) Capacitors in series:

When a potential difference (V ) is 
applied across several capacitors  
connected end to end in such a way that  
sum of the potential difference across all the 
capacitors is equal to the applied potential 
difference V, then the capacitors are said to be 
connected in series.

Fig. 8.25: Capacitors in series.

Fig. 8.26: Effective capacitance of three 
capacitors in series.

(a) (b)

As the induced negative charge is closer 
to P

1
 it is more effective, and thus there is a 

net reduction in potential of plate P
1
. If the 

outer surface of P
2
 is connected to earth, the 

induced positive charges on P
2
 being free, 

flows to earth. The induced negative charge on 
P

2
 stays on it, as it is bound to positive charge 

of P
1
. This greatly reduces the potential of P

2
,  

(Fig 8.24 (b)). If  V
1
 is the potential on plate P

2
 

due to charge (- Q) then the net potential of the 
system will now be +V-V

1
. 

Hence the capacity C =
Q

V -V2
1

 ∴C C2 1>

Thus capacity of metal plate P
1
, is 

increased by placing an identical earth 
connected metal plate P

2
 near it.

Such an arrangement is called capacitor. 
It is symbolically shown as 

⊥⊥
.

If the conductors are plane then it is  
called parallel plate capacitor. We also have 
spherical capacitor, cylindrical capacitor etc. 

In series arrangement as shown in Fig. 
8.25, the second plate of first conductor is 
connected to the first plate of the second 
conductor and so on. The last plate is connected 
to earth. In a series combination, charges on 
the plates (± Q)are the same on each capacitor.

Potential difference across the series 
combination of capacitor is V volt,
 where V = V

1
 + V

2
 + V

3

 
∴V =

Q

C
+
Q

C
+
Q

C1 2 3
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Remember this

Let C
s
 represent the equivalent capacitance 

shown in Fig. 8.26, thenV =
Q

Cs
 ∴

Q

C
=
Q

C
+
Q

C
+
Q

Cs 1 2 3

 

 
∴

1
=

1
+

1
+

1

1 2 3C C C Cs   
( for 3 capacitors in series)

This argument can be extended to yield 
an equivalent capacitance for n capacitors 
connected  in series which is equal to the sum 
of the reciprocals of individual capacitances 
of the capacitors. 

 
 

� � � � �
1 1 1 1

1 2C C C Ceq n

.................

If all capacitors are equal then 
  
  

1

C

n

C
C

C

neq
eq= = or  

Fig. 8.27: Parallel combination of capacitors.

b) Capacitors in Parallel:
The parallel arrangement of capacitors 

is as shown in Fig. 8.27 below, where the 
insulated plates are connected to a common 
terminal A which is joined to the source of 
potential, while the other plates are connected 
to another common terminal B which is 
earthed.

Example 8.15 When 108  electrons are 
transferred from one conductor to another, a 
potential difference of 10 V appears between 
the conductors. Find the capacitance of the 
two conductors.
Solution : Given : 
Number of electrons n =  108

                     V  =  10 volt
∴charge transferred 
Q  =  ne =  108 × 1.6 × 10-19 

 (∵ e = 1.6 × 10-19 C)
     =  1.6 × 10-11 C
∴  Capacitance between two conductors

C = 
Q

V
    =  

1 6 10

10

11. � �� �

  =  1 6 10 10. � �� �  F

Example 8.16: From the figure given below 
find the value of the capacitance C if the 
equivalent capacitance between A and B is 
to be 1 µF. All other capacitors are in micro 
farad.

Series combination is used when a 
high voltage is to be divided on several 
capacitors. Capacitor with minimum 
capacitance has the maximum potential  
difference between the plates.

In this combination all the capacitors 
have the same potential difference but the 
plate charges (± Q

1
) on capacitor1, (± Q

2
) 

on the capacitor 2 and (± Q
3
) on capacitor 3 

are not necessarily the same. If charge Q is 
applied at point A then it will be distributed to 
the capacitors depending on the capacitances.
∴Total charge Q can be written as Q = Q

1
 + 

Q
2
 + Q

3 
=  C

1
 V + C

2
 V + C

3
V

Let C
p
 be the equivalent capacitance of 

the combination then Q = C
p
V

 ∴C V =CV +C V +C Vp 1 2 3

 ∴C
p
 = C

1
 + C

2
 + C

3

The general formula for effective 
capacitance C

p
 for parallel combination of  n 

capacitors follows similarly
 C

p
 = C

1
 + C

2
+ .............. + C

n

If all capacitors are equal then C
eq

 = nC

Remember this

Capacitors are combined in parallel when 
we require a large capacitance at small 
potentials.
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A parallel plate capacitor consists of two 
thin conducting plates each of area A, held 
parallel to each other, at a suitable distance d 
apart. The plates are separated by an insulating 
medium like paper, air, mica, glass etc. One of 
the plates is insulated and the other is earthed 
as shown in Fig. 8.28.

Fig. 8.28: Capacitor with dielectric.

8.10 Capacitance of a Parallel Plate 
Capacitor Without and With Dielectric 
Medium Between the Plates:

In section 8.8 we have studied the 
behaviour of dielectrics in an external field. Let 
us now see how the capacitance of a parallel 
plate capacitor is modified when a dielectric is 
introduced between its plates.
a) Capacitance of a parallel plate capacitor 
without a dielectric: 

Solution : Given : 
C

1 
= 8 µF , C

2
  =  4 µF , C

3
 =  1µF ,  

C
4
 = 4 µF , C

5
  =  4 µF

The effective capacitance of C
4
 and C

5
 in 

parallel 
=  C

4
  +  C

5
 =  4  +  4 = 8 µF

The effective capacitance of C
3
 and 8 µF in 

series

 =  
1 8

1 8

� �

� �

�
�

 = 
8

9
  µF

The capacitance 8 µF is in parallel with 
the series combination of C

1 
 and C

2
. Their 

effective combination  is 

    
C C

C C
1 2

1 2+�
+

  

8

9
⇒

8 4

12

�� ��×
+

 

8

9
⇒

32

9
 µF

This capacitance of 
32

9
  µF is in series with 

C and their effective capacitance is given to 
be 1µF

 
 
 

   

32
9
32
9

1

32

9

32

9

�� ��

��

�� �� ��

�

�
�

� � � �

C

C

C C

          =  1.39 µF

When a charge +Q is given to the insulated 
plate, then a charge -Q is induced on the inner 
face of earthed plate and +Q is induced on 
its farther face. But as this face is earthed the 
charge +Q being free, flows to earth. 

In the outer regions the electric fields due 
to the two charged plates cancel out. The net 
field is zero.
  
 

E =
2

-
2

= 0
0 0

�
�

�
�

In the inner regions between the two 
capacitor plates the electric fields due to the 
two charged plates add up. The net field is thus 
       
      E

Q
=

2
+

2
= =

A0 0 0 0

�
�

�
�

�
� �    --- (8.20)  

The direction of E is from positive to 
negative plate.

Let V be the potential difference between 
the 2 plates. Then electric field between the 
plates is given by 

 E
V

d
V Ed= or =              --- (8.21)

Substituting Eq. (8.20) in Eq. (8.21) we 

get V
Q

A
=

ε0

d

Capacitance of the parallel plate capacitor 
is given by 
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Remember this

(1) If there are n parallel plates then there 
will be (n-1) capacitors, hence
  
 

C
A

d
= (n - 1) 0ε

(2) For a spherical capacitor, consisting 
of two concentric spherical conducting 
shells with inner and outer radii as a and b 
respectively, the capacitance C is given by

  
 

C
ab

b - a
= 4��0

�

�
�

�

�
�

(3) For a cylindrical capacitor, consisting 
of two coaxial cylindrical shells with radii 
of the inner and outer cylinders as a and b, 
and length l, the capacitance C is given by

 
 

C
b
ae

�
2 0�� 

log

Remember this

      --- (8.22)
 

C
Q

V

Q

Qd
A

A

d
= = =

�

�

0

0

�

�
�

�

�
�

Let E
0 

be the electric field intensity 
between the plates before the introduction of 
the dielectric slab. Then the potential difference 
between the  plates is given by V

0
 = E

0
d,

 where E
Q

Ao
o o

� �
�
� �

 , and

σ is the surface charge density on the plates.
Let a dielectric slab of thickness t (t < d) be 

introduced between the plates of the capacitor. 
The field E

0
 polarizes the dielectric, inducing 

charge - Q
p
 on the left side and +Q

p
 on the right 

side of the dielectric as shown in Fig. 8.29. 
These induced charges set up a field E

p
 

inside the dielectric in the opposite direction of 
E

0
. The induced field is given by 

 
E

Q

Ap
p

o

p

o

� �
�
� �  

� p
pQ

A
�

�

�
�

�

�
�

The net field (E) inside the dielectric 
reduces to E

0
- E

p
.
 

Hence, 
 E =E - E =

E

k

E

E - E
=ko p

o o

o p

    
�

�
�
�

�

�
�
�

,

where k is a constant called the dielectric 
constant. 
 � � �E

Q

A K
Q AK E

�
�

0
0  or   --- (8.23)

Fig. 8.29: Dielectric slab in the capacitor.

The dielectric constant of a conductor is 
infinite.

b) Capacitance of a parallel plate capacitor 
with a dielectric slab between the plates:

Let us now see how Eq. (8.22) gets 
modified with a dielectric slab in between the 
plates of the capacitor. Consider a parallel 
plate capacitor with the two plates each of area 
A separated by a distance d. The capacitance 
of the capacitor is given by

 C
A

d0 =
ε0

The field E
p
 exists over a distance t and E

0
 

over the remaining distance (d - t) between the 
capacitor plates. Hence the potential difference 
between the capacitor plates is

 
V =E d - t + E to � � � �

 
=E d - t +

E

k
to

o� � � �
       

E
E

k
��

�
�

�
�
�

0

 
=E d - t +

t

ko � ��
��

�
��

 =
o

Q

A
d - t +

t

k�
�
��

�
��

The capacitance of the capacitor on the 
introduction of dielectric slab becomes
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Fig. 8.30 : Capacitor filled with n dielectric slabs.

8.11 Displacement Current: C =
Q

V

Q
Q
A

d - t +
d
k

A

d - t +
t
k

= =

0

0

�

�
�
�
�

�
�
�

�
�
�

�
�
�  

Special cases: 
1. If the dielectric fills up the entire space then 

t = d �C
A k

d
k C= =0

0

�
 

∴ capacitance of a parallel plate capacitor 

increases k times i.e. k =
C

C0
 

2. If the capacitor is filled with n dielectric slabs 
of thickness t

1
, t

2
....... t

n 
then this arrangement is 

equivalent to n capacitors connected in series 
as shown in Fig. 8.30.  

 

�
�

�
�

�

�
�

C
A

t

k
+
t

k

t

k
n

n

=

+ ............. +

0�

1

1

2

2

3. If the arrangement consists of n capacitors 
in parallel with plate areas A

1
, A

2
, .............. A

n
 

and plate separation d 

C
d
A k + A k + .........+ A kn n=

�0
1 2 21

� �  
 
 if A A A

A

n1 2 n= .............. = then 
 
 C

A

dn
k k k= + + .........+0

1 2 n

� � �
4. If the capacitor is filled with a conducting 
slab (k = ∞) then 

 C =
d

d - t
C

�

�
�

�

�
� o  ∴ C > C

o

The capacitance thus increases by a factor   
 d

d - t

�

�
�

�

�
�

We know that electric current in a DC 
circuit constitutes a flow of free electrons. In 
a circuit as shown in Fig 8.31, a parallel plate 
capacitor with a dielectric is connected across a 
DC source. In the conducting part of the circuit 
free electrons are responsible for the flow of 
current. But in the region between the plates 
of the capacitor, there are no free electrons 
available for conduction in the dielectric.

As the circuit is closed, the current flows 
through the circuit and grows to its maximum 
value (i

c
) in a finite time (time constant of the 

circuit). The conduction current, i
c
 is found 

to be same everywhere in the circuit except 
inside the capacitor. As the current passes 
through the leads of the capacitor, the electric 
field between the plates increases and this in 
turn causes polarisation of the dielectric. Thus, 
there is a current in the dielectric due to the 
movement of the bound charges. The current 
due to bound charges is called displacement 
current (i

d
) or charge- separation current.

We can now derive an expression between 
i
c
 and i

d
.

From Eq (8.23) we can infer that the 
charge produced on the plates of a capacitor is 
due to the electric field E. 
q = Akε

0
 E 

Differentiating the above equation, we get

 
dq

dt
Ak

dE

dt
� �0    --- (8.24)

dq/dt is the conduction current (i
c
)in the 

conducting part of the circuit.

Fig. 8.31: Displacement current in the space 
between the plates of the capacitor.
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Example 8.17 A parallel plate capacitor 
has an area of 4 cm2 and a plate separation 
of 2 mm
(i)  Calculate its capacitance
(ii) What is its capacitance if the space 
between the plates is filled completely with 
a dielectric having dielectric constant of 
constant 6.7.
Solution : Given
 A  =  4 cm2 = 4 × 10-4 m2

 d  =  2 mm = 2 × 10-3 m
 ε

0
  =  8.85 × 10-12 C2 / Nm2

(i) Capacitance   C  =
A

d

�ε0

     =  8 85 10 4 10

2 10

12 4

3

.

� �

� � � ��� � �
�

� �

�
=  1.77 × 10-12 F

i
dq

dt
Ak

dE

dtc � � �0

dE

dt

i

Ak

dE

dt
ic
c� � �

�0

(for fixed value of A) 

The rate of change of electric field (dE/dt) 
across the capacitor is directly proportional to 
the current (i

c
) flowing in the conducting part 

of the circuit.
The quantity on the RHS of Eq (8.24) is 

having the dimension of electric current and is 
caused by the displacement of bound charges 
in the dielectric of the capacitor under the 
influence of the electric field. This current, 
called displacement current (i

d
), is equivalent 

to the rate of flow of charge (dq/dt=i
c
) in 

the conducting part of the circuit. In the 
absence of any dielectric between the plates 
of the capacitor, k =1 (for air or vacuum), the 
displacement current i

d 
= Aε

0
 (dE/dt).

As a broad generalization of displacement 
current in a circuit containing a capacitor, it 
can be stated that the displacement currents do 
not remain confined to the space between the 
plates of a capacitor. A displacement current 
(i

d
) exists at any point in space where, time-

varying electric field (E) exists (i.e. dE/dt ≠0). 8.12 Energy Stored in a Capacitor:
A capacitor is a device used to store energy. 

Charging a capacitor means transferring 
electron from one plate of the capacitor to the 
other. Hence work will have to be done by the 
battery in order to remove the electrons against 
the opposing forces. These opposing forces 
arise since the electrons are being pushed to 
the negative plate which repels them and 
electrons are removed from the positive plate 
which tends to attract them. In both the cases, 
the forces oppose the transfer from one plate to 
another. As the charges on the plate increases, 
opposition also increases.

This work done is stored in the form of 
electrostatic energy in the electric field between 
the plates, which can later be recovered by 
discharging the capacitor.

(ii) Capacitance ′C  = 
A k

d

ε0�

 =  
8 85 10 4 10 6 7

2 10

12 4

3

. .

� �

� � � � � ��� � � �
�

� �

�

 = 7.90 × 10-12 F
Example 8.18: In a capacitor of capacitance 
20 µF, the distance between the plates is 2 
mm. If a dielectric slab of width 1 mm and 
dielectric constant 2  is inserted between the 
plates, what is the new capacitance ?
Solution: Given
 C = 20 µF = 20 × 10-6 F 
  d =  2 mm =  2 × 10-3 m
    t = 1 × 10-3 m
  k =  2

C =
A

d

�ε0  and  ′C  =  
A

d t
t
k

�0�

�–� � ��  

⇒
C

C '
  = 
d t

t
k

d

�–� � �+

  

⇒
20

C '
  = 

2 10 1 10
1 10

2

2 10

3 3
3

3

� � � �
� �

� �

� � � �
��

�
�

�

�
�

�

� �
�

�

       

  
⇒ ′C =  26.6 µF
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Observe and discuss

Fig. 8.32: Capacitor  charged by a DC source.

Consider a capacitor of capacitance C 
being charged by a DC source of V volts as 
shown in Fig. 8.32.

During the process of charging, let q' 
be the charge on the capacitor and V be the 
potential difference between the plates. Hence
 C =

q'

V
 

A small amount of work is done if a small 
charge dq is further transferred between the 
plates.
  
 

� � �dW V dq
q

C
dq

'

Total work done in transferring the charge 

 
 

W dw
q

C
dq

C
q dq

O

Q

O

Q

� � �� ��
'

'
1

 

 

�
� ��

�
�
�

�

�
�
�

�
1

2

1

2

2

0

2

C

q Q

C

Q

'

This work done is stored as electrical 
potential energy U of the capacitor. This work 
done can be expressed in different forms as 
follows. 

� � �U
Q

C
CV QV Q =CV=

1

2
=

1

2
=

1

2
2

2



The energy supplied to the battery is QV 

but energy stored in the electric field is 
1

2
QV. The rest half 

1

2
QV of energy is 

wasted as heat in the connecting wires and 
battery itself.

Example 8.19: A parallel plate air capacitor 
has a capacitance of 3 × 10–9 Farad. A slab 
of dielectric constant 3  and thickness 3 cm 
completely fills the space between the plates. 

The potential difference between the plates 
is maintained constant at 400 volt. What is 
the change in the energy of capacitor if the 
slab is removed ?
Solution : Energy stored in the capacitor 
with air

                  E
a
= 

1

2�
 CV2    =

1

2
3 10� �× × –9 × (400)2    

                                   = 24 × 10–5 J
when the slab of dielectric constant 3 
is introduced between the plates of the 
capacitor, the capacitance of the capacitor 
increases to 
 C′ = kC
 C′ = 3 × 3 × 10–9   = 9 × 10–9 F
Energy stored in the capacitor with the 
dielectric (E

d
)

 E
d  

=
1

2�
C ' V2

 E
d  

=
1

2
 × 9 × 10-9 × (400)2 

                            = 72 × 10-5 J
Change in energy  =  E

d
– E

a
 = (72 - 24) × 10-5          

                              = 48 ×10–5 J
There is, therefore, an increase in the 

energy on introducing the slab of dielectric 
material.

8.13 Van de Graaff Generator:
Van de Graaff generator is a device used 

to develop very high potentials of the order of 
107 volts. The resulting large electric fields are 
used to accelerate charged particles (electrons, 
protons, ions) to high energies needed for 
experiments to probe the small scale structure 
of matter and for various experiments in 
Nuclear Physics.

It was designed by Van de Graaff (1901-
1967) in the year 1931.
Principle: This generator is based on
 (i)  the phenomenon  of Corona Discharge 

(action of sharp points),
 (ii)  the property that charge given to a hollow 

conductor is transferred to its outer surface 
and is distributed uniformly over it,

(iii) if a charge is continuously supplied to an 
insulated metallic conductor, the potential 
of the conductor goes on increasing.
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Construction:
Fig. 8.33 shows the schematic diagram of 

Van de Graaff generator.

Fig. 8.33: Schematic diagram of van de Graff 
generator.

P
1
 P

2 
= Pulleys

BB = Conveyer belt
A = Spray brush
C = Collector brush
D = Dome shaped hollow conductor
E = Evacuated accelerating tube
I = Ion source
P = DC power supply
S = Steel vessel filled with nitrogen
M = Earthed metal plate

filled with nitrogen at high pressure. A small 
quantity of Freon gas is mixed with nitrogen to 
ensure better insulation between the vessel S 
and its contents. A metal plate M held opposite 
to the brush A on  the other side of the belt is 
connected to the vessel S, which is earthed.
Working: The electric motor connected to the 
pulley P

1
 is switched on, which begins to rotate 

setting the conveyor belt into motion. The DC 
supply is then switched on. From the pointed 
ends of the spray brush A, positive charge is 
continuously sprayed on the belt B. The belt 
carries this charge in the upward direction, 
which is collected by the collector brush C and 
sent to the dome shaped conductor. 

As the dome is hollow, the charge is 
distributed over the outer surface of the dome. 
Its potential rises to a very high value due to 
the continuous accumulation of charges on it. 
The potential of the electrode I also rises to 
this high value. 

The positive ions such as protons or 
deuterons from a small vessel (not shown in 
the figure) containing ionised hydrogen or 
deuterium are then introduced in the upper part 
of the evacuated accelerator tube. These ions, 
repelled by the electrode I, are accelerated in 
the downward direction due to the very high 
fall of potential along the tube, these ions 
acquire very high energy. These high energy 
charged particles are then directed so as to 
strike a desired target.
Uses:  The main use of Van de Graff generator 
is to produce very high energy charged particles 
having energies of the order of 10 MeV. Such 
high energy particles are used 
1. to carry out the disintegration of nuclei of 

different elements,
2. to produce radioactive isotopes,
3. to study the nuclear structure,
4. to study different types of nuclear reactions,
5. accelerating electrons to sterilize food and 

to process materials.

An endless conveyor belt BB made of an 
insulating material such as reinforced rubber 
or silk, can move over two pulleys P

1
 and 

P
2
. The belt is kept continuously moving by 

a motor (not shown in the figure) driving the 
lower pulley (P

1
).

The spray brush A, consisting of a large 
number of pointed wires, is connected to the 
positive terminal of a high voltage DC power 
supply. From this brush positive charge can 
be sprayed on the belt which can be collected 
by another similar brush C. This brush is 
connected to a large, dome-shaped, hollow 
metallic conductor D, which is mounted on 
insulating pillars (not shown in the figure). E 
is an evacuated accelerating tube having an 
electrode I at its upper end, connected to the 
dome-shaped conductor.

To prevent the leakage of charge from 
the dome, the pulley and belt arrangement, 
the dome and a part of the evacuated tube 
are enclosed inside a large steel vessel S, 

Internet my friend

1. https://en.m.wikipedia.org
2. hyperphyrics.phy-astr.gsu.edu
3. https://www.britannica.com/science
4. https://www.khanacademy.org>in-i
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Q1. Choose the correct option
 i)  A parallel plate capacitor is charged and 

then isolated. The effect of increasing 
the plate separation on charge, potential, 
capacitance respectively are

  (A) Constant, decreases, decreases
  (B) Increases, decreases, decreases
  (C) Constant, decreases, increases
  (D) Constant, increases, decreases
 ii)  A slab of material of dielectric constant 

k has the same area A as the plates of a 
parallel plate capacitor and has thickness 
(3/4d), where d is the separation of the 
plates. The change in capacitance when 
the slab is inserted between the plates is

  (A) C
A

d

k

k
�

��
�
�

�
�
�

�0 3

4

  (B) C
A

d

k

k
�

�
�
�
�

�
�
�

�0 2

3

  (C) C
A

d

k

k
�

��
�
�

�
�
�

�0 3

2
 

  (D) C
A

d

k

k
�

�
�
�
�

�
�
�

�0 4

3
 

 iii)  Energy stored in a capacitor and 
dissipated during charging a capacitor 
bear a ratio.

  (A) 1:1  (B) 1:2
  (C) 2:1  (D) 1:3
 iv)  Charge +q and -q are placed at points 

A and B respectively which are distance 
2L apart. C is the mid point of A and B. 
The work done in moving a charge +Q 
along the semicircle CRD as shown in 
the figure below is 

  (C) 
qQ

L6 0��
  (D) 

�qQ
L4 0��

 v)  A parallel plate capacitor has circular 
plates of radius 8 cm and plate separation 
1mm. What will be the charge on the 
plates if a potential difference of 100 V 
is applied?

  (A) 1.78 × 10-8 C (B) 1.78 × 10-5 C
  (C) 4.3 × 104 C  (D) 2 × 10-9 C
Q2. Answer in brief.
 i) A charge q is moved from a point A 

above a dipole of dipole moment p to 
a point B below the dipole in equitorial 
plane without acceleration. Find the 
work done in this process.

Exercises

 ii)  If the difference between the radii of the 
two spheres of a spherical capacitor is 
increased, state whether the capacitance 
will increase or decrease.

 iii) A metal plate is introduced between 
the plates of a charged parallel plate 
capacitor. What is its effect on the 
capacitance of the capacitor?

 iv) The safest way to protect yourself from 
lightening is to be inside a car. Justify.

 v) A spherical shell of radius b with charge 
Q is expanded to a radius a. Find the 
work done by the electrical forces in the 
process.

 3.  A dipole with its charges, -q and +q 
located at the points (0, -b, 0)  and (0 +b, 
0) is present in a uniform electric field E. 
The equipotential surfaces of this field 
are planes parallel to the YZ planes.   (A) 

�qQ
L6 0��

  (B) qQ

L2 0��
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  (a) What is the direction of the electric  
field E? (b) How much torque would the 
dipole  experience in this field?

 4.  Three charges -q, +Q and -q are placed 
at equal distance on straight line. If the 
potential energy of the system of the 
three charges is zero, then what is the 
ratio of Q:q?

 5. A capacitor has some dielectric between 
its plates and the capacitor is connected 
to a DC source. The battery is now 
disconnected and then the dielectric is 
removed. State whether the capacitance, 
the energy stored in it, the electric field, 
charge stored and voltage will increase, 
decrease or remain constant.

 6. Find the ratio of the potential differences 
that must be applied across the parallel 
and series combination of two capacitors 
C

1
 and C

2
 with their capacitances in the 

ratio 1:2, so that the energy stored in 
these two cases becomes the same.

 7.  Two charges of magnitudes -4Q and 
+2Q are located at points (2a, 0) and (5a, 
0) respectively. What is the electric flux 
due to these charges through a sphere of 
radius 4a with its centre at the origin?

 8.  A 6 μF capacitor  is charged by a 300 
V supply. It is then disconnected 
from the supply and is connected to 
another uncharged 3μF capacitor. How 
much electrostatic energy of the first 
capacitor is lost in the form of heat and 
electromagnetic radiation ?

      [Ans: 9 × 10-2 J]
 9. One hundred twenty five small liquid 

drops, each carrying a charge of  
0.5 μC and each of diameter 0.1 m form 
a bigger drop. Calculate the potential at 
the surface of the bigger drop.

            [Ans: 2.25 × 106 V]
 10.  The dipole moment of a water molecule 

is 6.3 × 10–30 Cm. A sample of water 
contains 1021 molecules, whose dipole 
moments are all oriented in an electric 
field of strength 2.5 × 105 N /C. Calculate 
the work to be done to rotate the dipoles 
from their initial orientation θ

1 
= 0 to one 

in which all the dipoles are perpendicular 
to the field, θ

2
 = 90°.[Ans: 1.575 × 10-3 J]

 11. A charge 6 μC  is placed at the origin 
and another charge –5 μC is placed on 
the y axis at a position A (0, 6.0) m.

  a) Calculate  the total electric potential 
at the point P whose coordinates are  
(8.0, 0) m 

  b) Calculate the work done to bring 
a proton from infinity to the point 
P ? What is the significance of the 
negative sign ?

          [Ans: (a) Vp = 2.25 × 103 V
          (b) W = -5.4 × 10-16 J]
 12. In a parallel plate capacitor with air 

between the plates, each plate has an 
area of 6 × 10–3 m2  and the separation 
between the plates is 2 mm. a) Calculate 
the capacitance of the capacitor, b) If this 
capacitor is connected to 100 V supply, 
what would be the charge on each plate?  
c) How would charge on the plates be 
affected if a 2 mm thick mica sheet of  
k = 6 is inserted between the plates while 
the voltage supply remains connected ?

  [Ans: (a) 2.655 × 10-11 F, 
  (b) 2.655 × 10-9 C, (c) 15.93 × 10-9 C]
 13. Find the equivalent capacitance between 

P and Q. Given, area of each plate = A 
and separation between plates = d.

          [Ans: (a) 
2 0A

d

ε
 (b)

4 0A

d

ε
 ]


