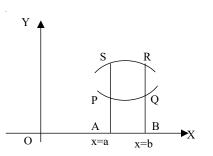

NUMERICAL INTEGRATION & AREAS

AREA OF PLANE CURVES

• If y = f(x) is continuous in [a,b] then the area bounded by the curve y = f(x), the xaxis and x = a, x = b(a < b) is given by $\int_{a}^{b} |f(x)| dx$

• The area bounded by the curve x = f(y), the axis of y and two abscissae y=c and y=d is given by $\int_{a}^{d} |f(y)| dy$



• Let $f(x) \ge 0$ in [a,c] and $f(x) \le 0$ in [c,b], so that the curve crosses the x-axis at c. Then the curve lies partly above the x-axis and partly below the x-axis. Hence required area is

$$\int_{a}^{b} |f(x)| dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} -f(x) dx$$

Let the area enclosed between the two curves $y = f_1(x)$ and $y = f_2(x)$ and ordinates x=a, x=b(b>a) is denoted by R. Then the area of the region R=Area of the region ASRB-Area of the

region.
$$APQB = \int_a^b f_2(x) dx - \int_a^b f_1(x) dx$$
.

- The area of one arc of the curve $y = \sin ax$ and x-axis is 2/a square units.
- The area of one arc of the curve $y = \cos ax$ and x-axis is 2/a square units.
- The area of the triangle formed by the lines $y = m_1 x + c_1, y = m_2 x + c_2, y = m_3 x + c_3$ is

$$\frac{1}{2} \left| \sum \frac{\left(c_1 - c_2 \right)^2}{m_1 - m_2} \right|$$
 sq. units.

• The area of the parallelogram formed by $a_1x + b_1y + c_1 = 0$, $a_1x + b_1y + d_1 = 0$, $a_2x + b_2y + c_2 = 0$, $a_2x + b_2y + d_2 = 0$ is

$$\frac{|(c_1 - d_1)(c_2 - d_2)|}{a_1 b_2 - a_2 b_1}$$
 sq. units.

The area of rhombus formed by $ax \pm by \pm c = 0$

is
$$\frac{2c^2}{|ab|}$$
 sq. units

The area of the triangle formed by the tangent and normal at $P(x_1, y_1)$ and x-axis (m is the

slope of tangent) is $\frac{1}{2}y_1^2 \left| m + \frac{1}{m} \right|$ sq. units.

The area of the triangle formed by the tangent and normal at $P(x_1, y_1)$ and y-axis (m is the

slope of tangent) is
$$\frac{1}{2}x_1^2 \left| m + \frac{1}{m} \right|$$
 sq. units.
The area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab sq. units.
The area between the parabolas $y^2 = 4ax$ and $x^2 = 4by$ is $\frac{16ab}{3}$ sq. units.
The area between the parabola $y^2 = 4ax$ and the line $y = mx$ is $\frac{8a^2}{3m^3}$ sq. units.
The area between the parabola $y^2 = 4ax$ and the line $y = mx$ is $\frac{8a^2}{3m^3}$ sq. units.
The area between the parabola $y^2 = 4ax$ and its latusrectum is $\frac{8a^2}{3}$ sq. units.
The area between the parabola $y^2 = 4ax$ and its latusrectum is $\frac{8a^2}{3}$ sq. units.
The area of the asteroid by the curve $\left(\frac{x}{a}\right)^{\frac{1}{2}} + \left(\frac{y}{b}\right)^{\frac{1}{2}} = 1$ is $\frac{3\pi ab}{8}$ sq. units.
The area of the asteroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ is $\frac{3\pi a^2}{8}$ sq. units.
The area of the asteroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ is $\frac{3\pi a^2}{8}$ sq. units.
The area bounded by $\sqrt{x} + \sqrt{y} = \sqrt{a}$ and the co-ordinate axes is $\frac{a^2}{6}$ sq. units.
The area enclosed between one arc of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$ and its base is $3\pi a^2$ sq. units.
Trapezoidal Rule: Let $y = f(x)$ be given function and for equally spaced $(n+1)$ arguments $x = a, a + h, a + 2h, \dots, a + (n-1)h, a + nh = b$ and $y_0 = f(x_0)$, $y_1 = f(x_1)$, $\dots, y_{n-1} = f(x_{n-1})$, $y_n = f(x_n)$ in $[a,b]$ then $\int_a^b y dx = \frac{h}{2}[(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1})]$.

tion and for equally spaced (n+1) arguments $x = a, a + h, a + 2h, \dots + a$ +(n-1)h, a+nh=b and $y_0 = f(x_0),$ $y_1 = f(x_1), \dots, y_{n-1} = f(x_{n-1}), y_n = f(x_n)$ here [a,b] is divided into n subintervals where n is even then $\int_a^b y dx =$. $\frac{h}{3}[(y_0 + y_n) + 4(y_1 + y_3 + \dots + y_{n-1})]$ $+2(y_{2}+y_{4}+...+y_{n-2})]$ **PROBLEMS:** A curve is passing through the points (1,2), (1.5,2.4), (2,2.7), (2.5,2.8), (3,3) then the area bounded by the curve, X-axis and x=1, x=3using Simpson's rule is 2. 5.1 3. 5.2 4. 5.4 1. 5 If the graph of y = f(x) passes through (0,0), (0.5, 0.19), (1, 0.34), (1.5, 0.43), (2, 0.47) then $\int_{0}^{2} f(x) dx$ by Simpson's rule is 1. 0.605 2. 0.61 3. 0.601 4. 0.615 The interval [1,7] is divided into 6 equal intervals and the value of $\int_{1}^{1} (x^2 + x + 1) dx$ using Trapezoidal and Simpson's rules are respectively Δ_1 and Δ_2 then 2. $\Delta_1 > \Delta_2$ 1. $\Delta_1 = \Delta_2$ 3. $\Delta_1 < \Delta_2$ 4. $\Delta_1 - \Delta_2 = 2$ Using Simpson's rule, by taking 4 equal parts, the value of $\int_{1}^{5} \frac{1}{x} dx =$ 2. 1.62 1. 1.58 3. 1.75 4. 2.3 Using Simpson's rule, by taking 4 equal parts, the value of $\int_{1}^{5} (2x-1) dx =$ 2. 20.7 3. 20 1. 22 4.19.7 Using Trapezoidal rule, by taking 4 equal intervals, the value of $\int_{1}^{5} (2x+1) dx =$ 1. 5 2.8 4. 28.2 3. 28 Using Trapezoidal rule, by taking 3 equal intervals, the value of $\int_{1}^{4} 3x^{2} dx =$ 1. 24.5 2. 34.5 3.64.5 4. 74.5

8.	If log ₁₀ 100	$0 = 2, \log_{10}$	101 = 2.0	04,	13.	Given that $e^0 = 1, e = 2.72, e^2 = 7.39$,			
	$\log_{10} 102 = 2.0086, \log_{10} 103 = 2.0128$ then					$e^{3} = 20.09, e^{4} = 54.6$. The approximate	te area		
	$\int_{100}^{103} \log_{10} x dx$ by Trapezoidal rule is 1. 6.0193 2. 6.0019			rule is		bounded by the curve $y = e^x$ between lin to x=4 using Simpson's rule is			
	3. 6.1093				14.	If $f(22) = 0.39$, $f(23) = 0.41$,	+. 54		
9.	9. A river is 80 meters wide. The depth "d" in meters at a distance x meters from one bank to				14.				
other bank is given by the following table.						f(24) = 0.43, f(25) = 0.44 and			
x me	eters: eters:			20 30 7 9		$f(26) = 0.46$ then $\int_{22}^{26} f(x) dx$ Using			
u me	40			70 80		Simpson's rule is			
	12			8 0		1. 1.6 2. 1.7 3. 1.8 4. 1			
	The appro Simpson's		ea of cros	ss section using	15.	The values of $f(x)$ for x=0,1,2,3,4,5			
	1. 700 sq.		2. 800) sq. mts		given by 2,4,10,16,20,24,38 respectivel	ly then		
10	3. 720 sq.			-		$\int_0^6 f(x) dx$ by Using Simpson's rule is			
10.	points.	urawii to p		gh the following		1. 90 2. 91 3. 92 4. 9	93		
x :1		2.5			16.	In Trapezoidal rule, the curve $y = f($	` ´		
y: 2	y: 2 2.4 2.7 2.8 3 2.6 2.1 Using Simpson's rule the approximate area			-		tween two successive ordinates is approximated as			
	bounded b	y the curve	-	xis and the lines		1. straight line 2. parabola			
	x=1 and x= 1. 6.78 sq		2 7 7	8 sa units	17.	3. cubic parabola 4. arc of a circle Using simpson's rule the part of the			
	1. 0.78 sq 3. 7.73 sq			8 sq. units	17.	y = f(x) between 3 successive ordinates is			
11.				l points are		assumed as			
x:	0 1	0.25	0.5	0.75		1. straight line2. parabola3. cubic parabola4. arc of a circle	e		
f(x):		0.8	0.67	0.57		-	•		
	0.5 The appro	ximate are	ea hounde	ed by the curve,		KEY			
				=0, x=1 using	1-10	3 1 2 2 3			
	Simpson's		2 0 7		11-17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
				93 sq. units 93 sq. units	11-17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$,		
12.	The veloci	ty of a trai	n which s	tarts from rest is		T INVERT			
			-	the time being and speed in		LEVEL - I			
	KMPH	ii iiiiiutes	nom su	ir and speed in	1.	The area enclosed by the curve $ x + y $	=1 in		
Minu		4 18	6 25	8 10 29 32		sq. units is			
	12		23 16		2.	1. 2 2. 4 3. 1 The area of the region bounded by the	4. 1/2 curve		
20 11 5 2 0			$y = x^3$, x-axis and the ordinates x=1, x=						
The approximate total distance in 20 minutes run by the train by Simpson's rule				1. $\frac{255}{4}$ sq. units 2. $\frac{225}{2}$ sq. unit					
1. 5.155 2. 5.05 3. 5 4. 4.99									
				3. $\frac{125}{3}$ sq. units 4. $\frac{124}{3}$ sq. units	s				
						3 3			
					1				

3. the area of the region bounded by the curve 13. The area bounded by the curve $y = \cos x$ in $y = x^2$, x-axis and the ordinates x=0, x=2 is $[0,\pi]$ is 1. 1 sq. unit 2. 2 sq. unit 1. $\frac{8}{3}$ sq. units 2. $\frac{3}{8}$ sq. units 4. 5 sq. units 3. 3/2 sq. units The area bounded by the ellipse $3x^2 + 2y^2 = 6$ 3. 24 sq. units 4. 25 sq. units 14. with the co-ordinate axes in sq. units is 4. The area bounded by the parabola $y = 4x^2$, Xaxis between the ordinates x=2, x=4 is 1. $\sqrt{6\pi}$ 2. $\sqrt{8\pi}$ 3. $\sqrt{12\pi}$ 4. $\sqrt{3\pi}$ The area bounded by the ellipse 15. 1. $\frac{224}{2}$ sq. units 2. $\frac{125}{2}$ sq. units $b^2x^2 + a^2y^2 = a^2b^2$ in the first quadrant in sq. units is 3. $\frac{122}{3}$ sq. units 4. $\frac{121}{3}$ sq. units 1. πab 2. $\frac{\pi ab}{2}$ 3. $\frac{\pi ab}{4}$ 4. $\frac{\pi ab}{3}$ The area of the region bounded by y = [x] and The area bounded by the parabola $y = x^2$ and 5. 16. the ordinates x=1, x=2 in sq. units is the straight line y=2x is 1. 2 2. 1 3. 4 4. 1/2 1. $\frac{4}{3}$ sq. units 2. $\frac{3}{4}$ sq. units The area bounded by the curve $x^2 = 4y$ and 6. the line x=2 in sq. units is 3. $\frac{2}{3}$ sq. units 4. $\frac{1}{3}$ sq. units 1.1 3. 3/2 4. 2 2. 2/3The area bounded by the curve $y = 1 + \frac{8}{x^2}$ with The area bounded by the curve 17. 7. $y = \sin 2x + \cos 2x$ and the x-axis between the X-axis and ordinates at x=2 and x=4 in sq. units ordinates x=0, $x = \frac{\pi}{4}$ is is 1.4 2. 2 3. $\frac{1}{2}$ 4. 5 8. The area bounded by the parabola $y = 4 - x^2$ 2. $\frac{1}{2}$ sq. unit 1. 1 sq. unit and X-axis in sq . units is 1. 32/3 2. 16/3 3. 8/3 4. 1/3 3. $\frac{2}{2}$ sq. units 4. 0 sq. units 9. The area bounded by the X-axis and the curve $y = 4x - x^2 - 3$ in sq. units is The area bounded by the curve $y = \cos x$, x-18. 1. 1/3 3. 4/3 2. 2/34. 7/3 axis between the ordinates $x = 0, x = 2\pi$ is 10. The area of the region bounded by the curve 1. 1 sq. unit 2. 4 sq. units $y^2 = 4ax$ and the line x=a is 3. $\frac{2}{2}$ sq, units 4. 2 sq. units 1. $\frac{8a^2}{3}$ sq. units 2. $\frac{4a^2}{3}$ sq. units 19. The area bounded by the curve $y = \sin x$, x-3. $\frac{a^2}{3}$ sq. units 4. $\frac{16a^2}{3}$ sq. units axis between the ordinates $x = -\pi$, $x = \pi$ is 1. 2 sq. units 2. 3 sq. units The area bounded by the curve $y = 7x - 10 - x^2$ 11. 4. $\frac{1}{2}$ sq. units 3. 4 sq. units with X-axis is 1. 9 sq. units 2. 3 sq. units The area of the curve $x = a \cos^3 t$, $y = b \sin^3 t$ 20. 3. 9/2 sq. units 4. 4 sq. units 12. The area bounded by any one of the arc of the in sq. units is curve $y = \sin x$ in sq. units with X axis 1. $\frac{3\pi ab}{4}$ 2. $\frac{3\pi ab}{8}$ 3. $\frac{\pi ab}{4}$ 4. $\frac{\pi ab}{8}$ 1. 2 sq. units 2. 1 sq. unit 3. 2/3 sq. unit 4. $\frac{1}{2}$ sq. units

SR. MATHEMATICS

NUMERICAL INTEGRATION

The area bounded by the parabola $y^2 = 4x$ and The area bounded by the circle $x^2 + y^2 = a^2$ 21. 28. its latusrectum is with the co-ordinate axes is 1. $\frac{8}{3}$ sq. units 2. $\frac{3}{8}$ sq. units 1. πa^2 sq. units 2. $\frac{\pi a^2}{4}$ sq. units 4. $\frac{1}{2}$ sq. units 3. $4\pi a^2$ sq. units 4. $\frac{\pi}{6}$ sq. units 3. 12 sq. units The area bounded by the curve $x = 4 - y^2$ and 22. The area of the region bounded by $\sqrt{x} + \sqrt{y} = 1$ 29. the Y-axis is in the first quadrant is 1. 32/3 sq. units 2.22/5 sq. units 2. $\frac{1}{2}$ sq. units 3. 1/3 sq. units 4. 64/3 sq. units 1. 1 sq. unit The area bounded by the curve $x = a \left(\frac{1 - t^2}{1 + t^2} \right)$, 23. 4. $\frac{1}{5}$ units 3. $\frac{1}{\epsilon}$ sq. units 30. Area bounded by the curve $y = \frac{2at}{1+t^2}$ in sq. units is $x = a\cos\theta, y = b\sin\theta$ is 1. $\frac{\pi a^2}{2}$ 2. πa^2 3. $\frac{\pi a^2}{4}$ 4. $\frac{3\pi a^2}{2}$ 1. πab sq. units 2. $\frac{\pi ab}{4}$ sq. units 4. $\frac{\pi ab}{2}$ sq. units The area bounded by the curve $y = \frac{x^2}{2}$ bounded 3. $2\pi ab$ sq. units 24. The area between the curve $y = (x-1)^2 - 25$ by x = 0, x = 2 and y = 0 is 31. and X-axis in sq. units is 1. $\frac{4}{5}$ sq. units 2. $\frac{3}{2}$ sq. units 1. $\frac{250}{3}$ 2. $\frac{500}{3}$ 3. $\frac{750}{3}$ 4. $\frac{1000}{3}$ 3. $\frac{3}{4}$ sq. units 4. $\frac{4}{3}$ sq. units The area of the region $y = ax - bx^2$ bounded 32. The area bounded by the 25. curve by X-axis in sq. units is y = (x-4)(x-1) and the X-axis is 1. $\frac{a^3}{6b^2}$ 2. $\frac{a^3}{6}$ 3. a 4. b 1. $\frac{6}{5}$ sq. units 2. $\frac{9}{4}$ sq. units The area of the region bounded by $y = \sin^4 x$, 33. X-axis and ordinates $x = 0, x = 2\pi$ (in sq. units) 3. $\frac{9}{2}$ sq. units 4. $\frac{5}{6}$ sq. units 1. $\frac{3\pi}{4}$ 2. $\frac{\pi}{4}$ 3. $\frac{3\pi}{2}$ 4. 3π The area between the curve $y^2 = 9x$ and the 26. line y = 3x is **KEY** 1. $\frac{1}{2}$ sq. units 2. $\frac{8}{2}$ sq. units 1-10 1 1 1 2 1 3. $\frac{1}{2}$ sq, units 4. $\frac{1}{5}$ sq. units 1 2 1 3 1 11-20 3 1 2 1 3 2 3 2 1 1 The area bounded by the curve xy = 4, x-axis 27. 21-30 2 1 1 4 3 between the ordinates x=2, x=4 is 3 3 4 1 1 1. $\log 2$ sq. units 2. $2\log 2$ sq. units 31-33 2 1 1 3. $3\log 2$ sq. units 4. $4\log 2$ sq. units

		1				
	LEVEL - II	8.	The area of the elliptic quadrant with the semi major axis and semi minor axis as 6 and 4 re-			
1.	The area of the region bounded by the curve $y = x^2 + 1$ and $y = 2x - 2$ between x=-1 and x=2 is	9.	spectively1. 6π sq. units2. 4π sq, units3. 24π sq. units4. 12π sq. unitsThe area enclosed between			
2.	1. 9 sq. units2. 12 sq. units3. 15 sq. units4. 14 sq. unitsThe area bounded by the two parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is		$y = \sin 2x, y = \sqrt{3} \sin x$ between $x = 0$ and $x = \frac{\pi}{6}$ is			
	1. $16a^2$ units 2. $\frac{16a^2}{3}$ sq. units		1. $\frac{7}{4} - \sqrt{3}$ sq. units 2. $\frac{7}{4} + \sqrt{3}$ sq. units			
	3. $\frac{32a^2}{3}$ sq. units 4. $\frac{64a^2}{3}$ sq. units		3. $\frac{7\sqrt{3}}{4}$ sq. units 4. $7 - \frac{\sqrt{3}}{4}$ sq. units			
3.	The area bounded by the two parabolas $y^2 = 8x$ and $x^2 = 8y$ is	10.	The area of the region bounded by the curve $y = \sin x$, x-axis between the ordinates			
	1. 64 sq. units 2. $\frac{64}{3}$ sq. units		$x = 0, x = 2\pi$ is 1. 1 sq. units 2. 2 sq. units 3. 3 sq. units 4. 4 sq. units			
	3. $\frac{32}{3}$ sq. units 4. $\frac{1}{3}$ sq. units	11.	The area bounded by the two curves $y = \sin x$, $y = \cos x$ and the X-axis in the first quadrant			
4.	The area bounded by the two curves $y = \sqrt{x}$ and $x = \sqrt{y}$ is		is 1. $2-\sqrt{2}$ sq. units 2. $2+\sqrt{2}$ sq. units 3. $2(\sqrt{2}-1)$ sq. units 4. 4 sq. units			
	1. $\frac{1}{3}$ sq, units 2. $\frac{2}{3}$ sq. units	12.	The area bounded by the curves $y = \sin x, y = \cos x$ and the y-axis and the first			
5.	3. $\frac{1}{5}$ sq. units The area bounded by the two parabolas		point of intersection is 1. $\sqrt{2}$ sq.,units 2. $\sqrt{2}-1$ sq. units			
5.	$y^2 = 4ax$ and $x^2 = 4by$ is 1. 16ab sq. units 2. 4ab sq. units	13.	3. $2 + \sqrt{2}$ sq. units 4. 0 sq, units The area of the region bounded by the curve			
	3. 8ab sq. units 4. $\frac{16ab}{3}$ sq. units		$y = x \sin x$ and X-axis between $x = 0, x = 2\pi$ is			
6.	The area bounded by the parabola $y^{2^{\circ}} = 4ax$ and the line y=mx is		1. 4π sq. units 2. 2π sq. units 3. $\frac{\pi}{3}$ sq. units 4. $\frac{\pi}{4}$ sq. units			
	1. $\frac{8a^2}{m^3}$ sq. units 2. $\frac{8a}{m^3}$ sq. units	14.	The area bounded by the curves $y = \cos x, y = \cos 2x$ between the ordinates			
	3. $\frac{8a}{m}$ sq. units 4 $\frac{8a^2}{3m^3}$ sq. units		$x = 0, x = \frac{\pi}{3}$ are in the ratio			
7.	The area bounded by $y^2 = 4ax$ and $y = mx$ is a^2		1. $2\sqrt{3}: 4-\sqrt{3}$ 2. 2:1			
	$\frac{a^2}{3}$ sq. units then m= 1. 1 2. 2 3. 3 4. 4		3. $2\sqrt{3}: 4 + \sqrt{3}$ 4. 1:3			

SR. MATHEMATICS

NUMERICAL INTEGRATION

The area bounded by y=sinx, y=cosx between 15. 23. the area bounded by the parabola $x^2 = 4av$, xany two successive intersections is axis and the straight line y=2a is 1. 2 2. $\sqrt{2}$ 3. $2\sqrt{2}$ 4.4 1. $16\sqrt{2}a^2$ sq. units 2. $\frac{16\sqrt{2}}{2}a^2$ sq. units The area bounded by $y = \cos x$, y = x + 1 and 16. y = 0 in the second quadrant is 3. $\frac{32\sqrt{2}}{2}a^2$ sq. units 4. $\frac{32\sqrt{2}}{5}a^2$ sq. units 1. $\frac{3}{2}$ sq. units 2. 2 sq. units 24. The area between the curve $y = x^2$ and 4. $\frac{1}{2}$ sq. units 3. 1 sq. unit y = x + 2 is 1. $\frac{9}{2}$ sq. units 2. $\frac{3}{2}$ sq. units 17. The area bounded by the curve $y = \sin x$, 3. 9 sq. units 4. 6 sq. units $y = \cos x$, x = 0 and $x = \frac{\pi}{4}$ is 25. The area of the region to the left of the parabola 1. $\sqrt{2} - 1$ sq. units 2. $\sqrt{2} + 1$ sq. units $x = 2v^2$ to the right of the Y-axis and between y=1 and y=3 is 3. $2\sqrt{2}$ sq. units 4. $2\sqrt{2}-1$ sq, units 1. $\frac{52}{3}$ sq. units 2. $\frac{9}{2}$ sq. units The area of a region bounded by X-axis and 18. the curves defined by $y = \tan x$, $-\frac{\pi}{3} \le x \le \frac{\pi}{3}$ 3. $\frac{13}{3}$ sq. units 4. $\frac{11}{2}$ sq. units and $y = \cot x, \frac{\pi}{6} \le x \le \frac{3\pi}{2}$ is The area of the region between the curves 26. $y = x^2$ and $y = x^3$ is 1. $\log 3$ sq. units 2. $\log 5$ sq. units 1. $\frac{1}{12}$ sq. units 2. $\frac{1}{3}$ sq. units 3. log1 sq. unit 4. $\log 2$ sq. units 19. Area bounded by the curve $y = \sin x - \cos x$ in 3. $\frac{1}{4}$ sq. units 4. $\frac{1}{2}$ sq. units $\left| 0, \frac{\pi}{2} \right|$ in sq. units is The area of the region bounded by y = x, $y = x^3$ 27. 2. $2\sqrt{2}$ 1. 2 is $3.2(\sqrt{2}-1)$ 4. $(\sqrt{2} - 1)$ 1. $\frac{1}{4}$ sq. units 2. $\frac{1}{12}$ sq. units The area bounded by the curve $y^2 = x$ and the 20. line x=4 is 3. $\frac{1}{3}$ sq. units 4. $\frac{1}{2}$ sq. units 1. $\frac{32}{3}$ sq. units 2. $\frac{16}{3}$ sq. units 28. The area of the region between the curve $y = 4x^2$ and the line y = 6x - 2 is 3. $\frac{8}{3}$ sq. units 4. $\frac{4}{3}$ sq. units 1. $\frac{1}{9}$ sq. units 2. $\frac{1}{12}$ sq. units The area bounded by the parabola $y^2 = 4x$ and 21. the line y = 2x - 4 on the Y-axis. 3. $\frac{3}{2}$ sq. units 4. $\frac{1}{5}$ sq. units 1. 9 sq. units 2. 5 sq. units 3. 4 sq. units 4. 2 sq. units 29. The part of the area bounded by the curve 22. The area enclosed between the parabola $x^{2}(y-1) = 6$ between the ordinates x=2 and $y^2 = 4ax$ and the lines x=a, x = 9a in sq. units x=3 is 2 sq. units, if the ordinate x=a divides is the area into equal parts then a= 1. $8a^2$ 2. $\frac{8a^2}{2}$ 3. $\frac{208a^2}{2}$ 4. a^2 1. $\sqrt{6}$ 2. $\sqrt{8}$ 3. $\frac{1}{\sqrt{2}}$ 4. $\frac{1}{\sqrt{3}}$ **SR. MATHEMATICS** NUMERICAL INTEGRATION 527

The area of the triangle formed by the positive 30. The area of the quadrilateral formed by the liens 37. X-axis and the normal and tangent to the circle y = 2x + 3, y = 0, x = 4 and x = 6 is $x^2 + y^2 = 4$ at $(1, \sqrt{3})$ in sq. units is 1. 26 sq. units 2. 24 sq. units 3. 25 sq. units 4. 29 sq. units 1. $\sqrt{3}$ 2. $\frac{1}{\sqrt{3}}$ 3. $2\sqrt{3}$ 4. $3\sqrt{3}$ The area in the first quadrant enclosed by the 31. X-axis under the curve $x^2 + y^2 = 4$ and the line The area bounded by $x^{2/3} + v^{2/3} = a^{2/3}$ in sq. 38. $x = \frac{y}{\sqrt{2}}$ is units is 1. $\frac{3\pi a^2}{8}$ 2. $\frac{3\pi a^2}{4}$ 3. $\frac{3\pi a^2}{16}$ 4. $\frac{3\pi a^2}{32}$ 1. $\frac{\pi}{2}$ sq. units 2. $\frac{2\pi}{2}$ sq. units 39. The between area the $y = \tan x$, $y = \cot x$ and x-axis $\left(0 \le x \le \frac{\pi}{2} \right)$ is 4. $\frac{\pi}{2}$ sq. units 3. π sq. units 1. $\log 2$ 2. $2\log 2$ 3. $\frac{1}{2}\log 2$ 4. 1 Area of the region bounded by y = |x| and y=232. Let A_n be the area bounded by the curve 40. 2. 2 sq. units 1. 4 sq. units $y = (\tan x)^n$ and the lines x=0, y=0 and $x = \frac{\pi}{4}$ 4. $\frac{1}{2}$ sq. units 3. 1 sq . units for $n \ge 2$, then $A_n + A_{n-2} =$ Area of the region bounded by y = |x| and 33. 1. $\frac{1}{n+1}$ 2. $\frac{1}{n-1}$ 3. $\frac{2}{n+1}$ 4. $\frac{2}{n-1}$ y = 1 - |x| is Area of the figure bounded by X-axis, 1. $\frac{1}{2}$ sq. units 41. 2. 1 sq. units $y = Sin^{-1}x$, $y = Cos^{-1}x$ and the first point of intersection from the origin is 3. $\frac{1}{2}$ sq. unit 4. 2 sq. units 1. $2\sqrt{2}$ 2. $2\sqrt{2}+1$ 3. $\sqrt{2}-1$ 4. $\sqrt{2}+1$ Area of the region The area bounded by the parabola $x = y^2$ and 42. 34. $\{(x, y) / x^2 + y^2 \le 1 \le x + y\}$ is the line y = x - 6 is 1. $\frac{125}{3}$ sq. units 2. $\frac{125}{6}$ sq. units 1. $\frac{\pi}{4} + \frac{1}{2}$ 2. $\frac{\pi}{4} - \frac{1}{2}$ 3. $\frac{125}{4}$ sq. units 4. $\frac{115}{3}$ sq. units 3. $\frac{\pi}{4} + \frac{3}{4}$ 4. $\pi + 1$ The area between the curves $y = \sqrt{x}$ and 35. The area under the curve $y = x^2 - 3x + 2$ with 43. boundaries as X-axis and the ordinates x=0, x=3 $v = x^3$ is is 1. $\frac{1}{12}$ sq. units 2. $\frac{5}{12}$ sq. units 1. $\frac{3}{5}$ sq. units 2. $\frac{11}{6}$ sq. units 3. $\frac{3}{5}$ sq. units 4. $\frac{4}{5}$ sq. units 3. $\frac{7}{6}$ sq. units 4. $\frac{4}{5}$ sq. units Area bounded by $y = \sqrt{a^2 - x^2}$, x + y = 0 and 36. 44. The area bounded by the curve y-axis in sq. units is $y = x^3 - 6x^2 + 8x$ and the x-axis is 2. $a^2\left(\frac{\pi}{\Lambda}\right)$ 1. $a^2\left(\frac{\pi}{2}\right)$ 2. $\frac{8}{2}$ sq. units 1. 8 sq. units 3. $a^{2} \left(\frac{\pi}{2}\right)^{2}$ 3. $\frac{3}{2}$ sq. units 4. $a^2 \pi$ 4. 6 sq. units

SR. MATHEMATICS

NUMERICAL INTEGRATION

Key	5.	The ar
1-10 1 2 2 1 4		and th
4 2 1 1 4 11-20 1 2 1 1 3		1. 5 s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3. $\frac{5}{4}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.	The ar
41-44 3 2 2 1		and the tive x-
LEVEL - III		1. <u>4</u> <i>a</i>
1. The area of the region bounded by $y = \tan x$ and tangent at $x = \frac{\pi}{4}$ and the x-axis is		3. $\frac{a^2}{}$
1. $\log \sqrt{2} - \frac{1}{4}$ sq. units	7.	The arrange y^2
 2. log √2 + ¹/₄ sq. units 3. log √2 4. log 2 2. The area between the parabola y² = 4x , normal at one end of latusrectum and X-axis in sq. units is 1. ¹/₃ 2. ²/₃ 3. ¹⁰/₃ 4. ⁴/₃ 3. The area lying in the first quadrant between the curves x² + y² = π² and y = sin x and y-axis is 1. ^{π3-8}/₄ sq. units 2. ^{π3+8}/₄ sq. units 3. 4(π³-8) sq. nits 4. ^{π-8}/₄ sq. units 	8.9.10.	1. $\frac{4a}{3}$ Area $y = e^x$ 1. $\left(e^x\right)$ 3. $\left(\sqrt{x}\right)$ The and $y = xe^x$ 1. $\frac{4}{e}$ The and $y = xe^x$ The angle $\frac{4}{e}$
y = 2 ^x , y = 2x - x ² between the lines x=0, x=2 is 1. $\frac{3}{\log 2} - \frac{4}{3}$ sq. units 2. $\frac{3}{\log 2} + \frac{4}{3}$ sq. units 3. 3-4 log 2 sq. units 4. $\frac{4}{3} - \frac{3}{\log 2}$ sq. units	11.	$y = ex$ 1. $\frac{e^2}{2}$ The value the curve of the curve

5.	The area of the region between the curve $y = x^3$						
	and the lines $y = -x$ and $y = 1$ is						
	1. 5 sq. units 2. $\frac{4}{5}$ sq. units						
	3. $\frac{5}{4}$ sq. units 4. $\frac{3}{5}$ sq. units						
6.	The area of the part of the circle $x^2 + y^2 = 8a^2$						
	and the parabola $y^2 = 2ax$ through which posi- tive x-axis passes in sq. units is						
	1. $\frac{4a^2(3\pi+2)}{3}$ 2. $\frac{2a^2(3\pi-2)}{3}$						
	3. $\frac{a^2(3\pi-2)}{3}$ 4. $\frac{2a^2(3\pi+2)}{3}$						
7.	The area between the parabolas $y^2 = 4a(x+a)$						
	and $y^2 = -4a(x-a)$ in sq. units is						
	1. $\frac{4a^2}{3}$ 2. $\frac{8a^2}{3}$ 3. $\frac{12a^2}{3}$ 4. $\frac{16a^2}{3}$						
8.	Area of the region bounded by $u = e^{x} + e^{-x} = 0$ and $u = 1$ in sq units is						
	$y = e^x$, $y = e^{-x}$, $x = 0$ and $x = 1$ in sq. units is						
	1. $\left(e+\frac{1}{e}\right)^2$ 2. $\left(e-\frac{1}{e}\right)^2$						
	3. $\left(\sqrt{e} + \frac{1}{\sqrt{e}}\right)^2$ 4. $\left(\sqrt{e} - \frac{1}{\sqrt{e}}\right)^2$						
9.	The area of the region bounded by the curves $y = xe^x$, $y = xe^{-x}$ and the line x=1 is						
	1. $\frac{4}{a}$ 2. $\frac{3}{a}$ 3. $\frac{2}{a}$ 4. $\frac{1}{a}$						
10.	$\begin{array}{ccc} e & e & e \\ \hline e & e & e \\ \hline e & e \\ \hline$						
	$y = ex \log x$ and $y = \frac{\log x}{ex}$ is						
	1. $\frac{e^2-5}{4e}$ 2. $e-\frac{5}{4}$ 3. $\frac{e}{4}-5$ 4. $\frac{e}{4}-\frac{1}{4e}$						
11.	The value of c for which the area bounded by						
	the curve $y = 8x^2 - x^5$, the lines x=1, x=c and						
	X-axis is $\frac{16}{3}$ sq. units is						
	1. 1 2. 0 32 41						

12.	The slope of the tangent to the curve $y = f(x)$ at	21. Area bounded by the curve $xy^2 = a^2(a-x)$ and					
	(x, f(x)) is 2x+1. If the curve passes through	Y-axis is					
	the point $(1,2)$ then the area of the region bounded by the curve, the X-axis and the line $x=1$ is	1. π 2. $\frac{\pi}{2}$ 3. $\frac{\pi a^2}{2}$ 4. πa^2					
	1. $\frac{2}{3}$ 2. $\frac{1}{3}$ 3. $\frac{1}{6}$ 4. $\frac{5}{6}$	22. For which of the following values of m is the area of the region bounded by the curve					
13.	The positive value of the parameter "a" for which the area of the figure bounded by	$y = x - x^2$ and the line $y = mx$ equal to $\frac{9}{2}$					
	$\pi = \frac{\pi}{2}$ $r = \frac{\pi}{2}$ $r = \frac{\pi}{2}$ is call to 9	14 2. 2 3. 1 42 23. The area bounded by $y = x^2$, $y = [x+1]$, $x \le 1$					
	$y = \sin ax$, $y=0$, $x = \frac{\pi}{a}$, $x = \frac{\pi}{3a}$ is equal to 8,						
	1. 1 2. 1/3 3. ½ 4. 1/4	and the y-axis is					
14.	The area of the region bounded by $y = x-1 $	1. $\frac{1}{3}$ 2. $\frac{2}{3}$ 3. 1 4. $\frac{7}{3}$					
	and y=1 in sq. units is 1. 1 2. $\frac{1}{2}$ 3. 2 4. 3	S S S S					
15.	Area of the region bounded by $y = x-1 $ and	4 2 4 3 1					
	y = 3 - x is	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	1. 1 sq. unit 2. 2 sq. unit	21-30 4 4 2					
	3. 3 sq. units4. 4 sq. units						
16.	The area bounded by the curve $y = f(x)$, the	LEVEL - IV					
	coordinates axes and the line $x=t$ is given by						
	te^t then $f(x) =$	NEW PATTERN QUESTIONS					
	$1. xe^{x} - e^{x} \qquad 2. xe^{x} + e^{x}$	1. I: The area bounded by $x = 2\cos\theta$, $y = 3\sin\theta$ is $2\zeta = s\alpha$ units					
	3. xe^x 4. $xe^x + 2e^x$	is 36π sq. units. II: The area bounded by $x = 2\cos\theta$,					
17.	Area of the region bounded by $y = x - [x]$,	$y = 2\sin\theta$ is 4π sq.units.					
	2x-1=0 and X-axis is	Which of the above statement is correct?					
	1. $\frac{1}{2}$ 2. $\frac{1}{4}$ 3. $\frac{1}{8}$ 4. 1	1. Only I2. Only II3. Both I and II4. Neither I nor II.					
18.	Area of the region bounded by $y = x - [x]$,	2. I: The area bounded by the curve $y = x^3$ and					
		y = x and $y = x$ and $y = x$					
	y = [x] and x-axis in $[0,2]$ is	the ordinates $x = -2$ and $x = 1$ with X-axis is					
	y = [x] and x-axis in [0,2] is 1. $\frac{5}{2}$ 2. $\frac{3}{2}$ 3. 1 4. 2						
19.	y = [x] and x-axis in $[0,2]$ is 1. $\frac{5}{2}$ 2. $\frac{3}{2}$ 3. 1 4. 2 The area bounded by the curve	the ordinates $x = -2$ and $x = 1$ with X-axis is					
19.	y = [x] and x-axis in $[0,2]$ is 1. $\frac{5}{2}$ 2. $\frac{3}{2}$ 3. 1 4. 2 The area bounded by the curve $a^2y^2 = x^3(2a-x)$ is	the ordinates $x = -2$ and $x = 1$ with X-axis is $\frac{15}{4}$ sq. units.					
	y = [x] and x-axis in [0,2] is 1. $\frac{5}{2}$ 2. $\frac{3}{2}$ 3. 1 4. 2 The area bounded by the curve $a^2y^2 = x^3(2a - x)$ is 1. $\frac{\pi a^2}{4}$ 2. $\frac{\pi a^2}{16}$ 3. $\frac{\pi a^2}{32}$ 4. πa^2	the ordinates $x = -2$ and $x = 1$ with X-axis is $\frac{15}{4}$ sq. units. II: The area bounded by the parabola $y^2 = x$ and the straight line $y = 4$ with Y-axis is $\frac{64}{3}$ sq. units.					
19. 20.	y = [x] and x-axis in [0,2] is 1. $\frac{5}{2}$ 2. $\frac{3}{2}$ 3. 1 4. 2 The area bounded by the curve $a^2y^2 = x^3(2a - x)$ is 1. $\frac{\pi a^2}{4}$ 2. $\frac{\pi a^2}{16}$ 3. $\frac{\pi a^2}{32}$ 4. πa^2 Area bounded by the curve $y^2(2a - x) = x^3$	the ordinates $x = -2$ and $x = 1$ with X-axis is $\frac{15}{4}$ sq. units. II: The area bounded by the parabola $y^2 = x$ and the straight line $y = 4$ with Y-axis is $\frac{64}{3}$ sq. units. Which of the above statement is correct?					
	$y = [x] \text{ and } x\text{-axis in } [0,2] \text{ is}$ 1. $\frac{5}{2}$ 2. $\frac{3}{2}$ 3. 1 4. 2 The area bounded by the curve $a^2y^2 = x^3(2a-x)$ is 1. $\frac{\pi a^2}{4}$ 2. $\frac{\pi a^2}{16}$ 3. $\frac{\pi a^2}{32}$ 4. πa^2 Area bounded by the curve $y^2(2a-x) = x^3$ and the line x=2a is	the ordinates $x = -2$ and $x = 1$ with X-axis is $\frac{15}{4}$ sq. units. II: The area bounded by the parabola $y^2 = x$ and the straight line $y = 4$ with Y-axis is $\frac{64}{3}$ sq. units.					
	y = [x] and x-axis in [0,2] is 1. $\frac{5}{2}$ 2. $\frac{3}{2}$ 3. 1 4. 2 The area bounded by the curve $a^2y^2 = x^3(2a - x)$ is 1. $\frac{\pi a^2}{4}$ 2. $\frac{\pi a^2}{16}$ 3. $\frac{\pi a^2}{32}$ 4. πa^2 Area bounded by the curve $y^2(2a - x) = x^3$	the ordinates $x = -2$ and $x = 1$ with X-axis is $\frac{15}{4}$ sq. units. II: The area bounded by the parabola $y^2 = x$ and the straight line $y = 4$ with Y-axis is $\frac{64}{3}$ sq. units. Which of the above statement is correct? 1. Only I 2. Only II					

SR. MATHEMATICS

NUMERICAL INTEGRATION

3 I: The area bounded by the curve $y = \log_1 x X_2$ 2. Mat	tab the following:				
$\int J$. If the area bounded by the curve $y = \log_e x$, X^2	2. Match the following: List - I List - II				
ax_{1s} and the line $x=e_{1s}$ is 1 sq. units.	Area bounded by $y^2 = 4ax$				
	$x^{2} = 4ay$ is a. $\frac{8a^{2}}{3}$				
	Area bounded by $y^2 = 4ax$				
Which of the above statement is correct?1. Only I2. Only II3. Both I and II4. Neither I nor II.	its latusrectum is b. $\frac{a^2}{6}$				
	bounded by				
$y = \cos x$ and Y-axis is $\sqrt{2} - 1$ sq. units. $x =$	$2\cos\theta, y = 2\sin\theta$ is c. $\frac{16a^2}{3}$				
II: The area bounded by $y = \cos x$, $y = x+1$,	, <u>, , , , , , , , , , , , , , , , , , </u>				
With a fith a share statement is a smart?	bounded by $\sqrt{x} + \sqrt{y} = \sqrt{a}$				
$1 Only I \qquad 2 Only II \qquad 10$	d. 2π				
3. Both I and II 4. Neither I nor II.	c,a,d,b 2. b,d,a,c				
5. I: The area bounded by the line $y=x$ and the curve $3.a$	a,b,c,d 4. c,d,b,a				
	tch the following:				
II: The area bounded by the curves $y = x^3$ and List - I	List - II				
1 2 and the ordinates $y=1$ $y=2$ is $-\frac{1}{2}$ so units	bounded by $y = x $				
	and y=2 is a. 4 2. Area bounded by				
	-				
3. Both I and II 4. Neither I nor II. $\frac{ x }{a} + \frac{ y }{b}$	$\frac{ x }{a} + \frac{ y }{b} = 1$, when a, b>0 is b. $\frac{(\pi - 2)ab}{4}$				
KEY 3. Area	between the ellipse				
1-5 2 3 3 3 1 $\frac{x^2}{a^2} + \frac{y^2}{b^2}$	$\frac{2}{2} = 1$ and the chord				
1. Match the following: $\frac{x}{a} + \frac{y}{b} =$	=1 c. 1				
List - IList - IIu1. Area of the region4. Area	bounded by $y = [x]$,				
hounded by	xis and $x=1$, $x=2$ is d. 2ab				
$y = 2x - x^2$ and X-axis a. 1/3 The	e correct match is				
	a,d,c,b 2. a,d,b,c				
$ \langle \lambda, V \rangle, \lambda \rangle > V > \lambda \rangle$ [1 $\frac{1}{2}$	b,d,a,c 4. a,b,c,d tch the following:				
3. Area bounded by List	-				
	f the region				
4. Area bounded by $y = x x $, bounded					
x-axis and x=-1, x=1 d. $4/3$ $y = 5si$	n x from x=0 a. 3/2				
	4π and x-axis				
3. d.a.b.c $4. a.b.c.d$	rea bounded by				
y=cosx i	in $[0, 2\pi]$ and				
the X-ax	tis b. $\sqrt{2} - 1$				

SR. MATHEMATICS

NUMERICAL INTEGRATION

٦

3. The area bounded by 2. y=sinx, y=cosx and the y-axis c. 4 4. The area bounded by $y = \cos x$, y = x + 1, y=0d. 40 The correct match is 1. a,b,c,d 2. d, b, a, c3. d,c,b,a4. d,a,b,c KEY 1.3 2. 1 3. 2 4.3 A: Area bounded by $x = 4 - v^2$ with Y-axis 1. B: Area bounded by $x = 6 + 5y - y^2$ with Yaxis 3. C: Area bounded by $2x = y^2 - 1$ with Y-axis The ascending order of A,B,C is 1. A,B,C 2. B,C,A 3. A,C,B 4. C,A,B A: The area bounded by x = 3, $v^2 = 3x$ 2. B: The area bounded by y = 1 - |x| and X-axis. C: The area enclosed between the curve $y = x^2$ and the line y=3xThe descending order of A,B,C is 1. A,C,B 2. B,C,A 3. A,B,C 4. C,A,B 3. Arrangement of the following areas between the curves is descending order: A: $v^2 = 4x$, $x^2 = 4v$ B. $y = x, y = x^3$ C. $v^2 = 8x, v = 2x$ D. $y = \sqrt{x}, y = x^2$ 1. A.B.C.D 2. A,C,B,D 3. D,B,C,A 4. D.C.B.A KEY 3. 2 1.4 2. 1 Assertion(A): If $e = 2.72, e^2 = 7.39$, 1. $e^3 = 20.09, e^4 = 54.6$ then $\int_0^4 e^x dx$ by Simpson's rule is 53.873 Reason(R):Simpson's rule is $\int_{a}^{b} y dx = \frac{h}{2}$ $[(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1})].$ 1. Both A and R are true and R is the correct explanation of A. 2. Both A and R are true but R is not the correct explanation of A. 3. A is true but R is false. 4. A is false but R is true...

Assertion(A): The area bounded by $y^2 = 4x$ and $x^2 = 4y$ is $\frac{16}{3}$ sq. units. Reason(R): The area bounded by $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16ab}{3}$ sq. units 1. Both A and R are true and R is the correct explanation of A. 2. Both A and R are true but R is not the correct explanation of A. 3. A is true but R is false. 4. A is false but R is true. Assertion(A): The area bounded by $y^2 = 4x$ and y = x is $\frac{8}{3}$ sq. units. Reason(R): The area bounded by $y^2 = 4ax$ and y = mx is $\frac{8a^2}{3m^3}$ sq. units. 1. Both A and R are true and R is the correct explanation of A. 2. Both A and R are true but R is not the correct explanation of A. 3. A is true but R is false.

4. A is false but R is true.

KEY

1. 3 2. 1 3. 1

LEVEL -V

I. The area enclosed between the two curves $y = f_1(x)$ and $y = f_2(x)$ and ordinates x = a, x = b (b > a) is denoted by R. Then the area of the region. R = Area of the region covered by $f_1(x)$ - Area of the region covered by $f_2(x)$ 1. The are of the region bounded by the curve $y = x^2 + 1$ and y = 2x - 2 between x = -1 and x = 21.9 Sq. Units 2. 12 Sq. Units 4. 14 Sq. Units 3. 15 Sq. Units The area bounded by the curve $y^2 = x$ and the 2. line x = 4 is 1. $\frac{32}{3}$ Sq. Units 2. $\frac{16}{3}$ Sq. Units 3

			1. 248 2. 242.5 3. 242.8 4. 243
	$\frac{8}{3}$ Sq. Units 4. $\frac{4}{3}$ Sq. Units	5.	1. 248 2. 242.5 3. 242.8 4. 243 The area of the region bounded by $x^2 = 8y$,
II.	Let $y = f(x)$ be given function and for equally		x = 4 and the x-axis is (EAMCET 2001)
			1. $\frac{2}{3}$ 2. $\frac{4}{3}$ 3. $\frac{8}{3}$ 4. $\frac{10}{3}$
	spaced $y = f(x)$ arguments $x = a, a + h$, $a + 2h \cdot a + nh = b$ and	6.	3 3 3 3 x: 1 2 3 4
	$y_0 = f(x_0), y_1 f(x_1), y_2 = f(x_2)$		y: 0.7111 0.7222 0.7333 0.7444
			Using above table and Trapezoidal rule, the
	$y_n = f(x_n)$ in $[a,b]$. Then		approximate value of $\int_{1}^{4} y dx$ is (EAMCET 2001)
	$\int_{0}^{b} y dx = \frac{h}{2} \Big[(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1}) \Big].$		1. 0.1833 2. 1.1833
		7.	3. 2.1883 4. 3.183 The area in square units of the region bounded
1.	The value of $\int_{-1}^{4} 3x^2 dx$ taking 3 intervals is		by the curve $x^2 = 4y$, the line x=2 and the X-
	1		axis is
	1. 24. 5 2. 34.5 3. 64.5 4. 74.5		(EAMCET 2000) 1. 1 2. 2/3 3. 4/3 4. 8/3
2.	The value of $\int (2x+1) dx$ taking 4 equal inter-	8.	The area in square units bounded by the curves $\frac{3}{2}$ and the anti-action $\frac{1}{2}$ is
	vals.		$y = x^3$, $y = x^2$ and the ordinates x=1, x=2 is (EAMCET 2000)
	1. 5 2. 8 3. 28 4.28.2		1. $\frac{17}{12}$ 2. $\frac{12}{13}$ 3. $\frac{2}{7}$ 4. $\frac{7}{2}$
	KEY		12 15 7 2
	I 1) 2 2) 1 II 1) 3 2) 3	9.	The area bounded by the parabola $x = 4 - y^2$ and the Y-axis, in square units is
	DEVIOUS FAMOET OUESTIONS		(EAMCET 1999)
	PREVIOUS EAMCET QUESTIONS		1. $3/32$ 2. $32/3$ 3. $33/2$ 4. $16/4$
1.	The area in square units bounded by the curves	10.	The approximate value of $\int_{-3}^{3} x^2 dx$, using Trap-
	$y^2 = 4x$ and $x^2 = 4y$ in the plane is		ezoidal rule and taking 6 equal intervals is (EAMCET 1999)
	(EAMCET 2005) 1. 8/3 2. 16/3 3. 32/3 4. 4/3		1. 11.5 2. 19 3. 115 4. 120
2.	The area bounded by $y = x^2 + 2$, X-axis, x=1	11.	The area bounded by $y = 3x$ and $y = x^2$ is (in square units)
	and x=2 is (EAMCET 2004)		(EAMCET 1998)
	1. $\frac{16}{3}$ 2. $\frac{17}{3}$ 3. $\frac{13}{3}$ 4. $\frac{20}{3}$	12.	1. 10 2. 5 3. 4.5 4. 9 The area (in square units) bounded by the x-axis,
3.	3 3 3 3 3 If [2,6] is divided into 4 intervals of equal length		
			part of the curve $y = 1 + \frac{8}{x^2}$ and the lines x=2 and
	then approximate value of $\int_{2}^{6} \frac{1}{x^{2} - x} dx$ using		x=4 is (EAMCET 1997)
	Simpson's rule (EAMCET 2003)		1. 2 2. 3 3. 4 4. 5
	1. 0.3222 2. 0.2333	13.	AOB is the positive quadrant of the ellipse
	3. 0.5222 4. 0.2555		$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where OA=a, OB=b. Then area be-
4.	The approximate value of $\int_{1}^{9} x^{2} dx$ by using		tween the arc AB and chord AB of the ellipse is
	Trapezoidal rule with 4 equal intervals is (EAMCET 2002)		(EAMCET Re-exam 1996)
	(1/10/01/2002)		

	1. πab 2. $(\pi - 2)ab$	Eamcet-20					
		22. The area (in square units) of the region enclosed					
	3. $\frac{ab(\pi+2)}{2}$ 4. $\frac{ab(\pi-2)}{4}$		e curves $y =$	-		E-2007	
14.	Area of the segment cut off from the parabola	1) $\frac{1}{12}$	(2) $\frac{1}{6}$	3) $\frac{1}{2}$	4) 1		
	$x^2 = 8y$ by the line $x - 2y + 8 = 0$ is	12	0	3			
	(EAMCET Re-exam 1996) 1. 12 2. 24 3. 48 4. 36	KEY					
15.	Area bounded by the curves $y = x$, $y = x^3$ is	1-10 2	3	3	1	3	
	(EAMCET Re-exam 1996) 1. ¹ / ₄ 2. 1/6 3. 1/12 4. 1/2	3 11-20 3	3 2 4	1	2	2 4	
16.	1. $\frac{1}{4}$ 2. $\frac{1}{6}$ 3. $\frac{1}{12}$ 4. $\frac{1}{2}$ The area in square units bounded by the X-axis,	11-20 3 3	4	4 1	2 1	4	
		21-30 1	1				
	part of $y=1+\frac{8}{x^2}$ and the ordinates x=2 and	DDEI			IEOTI		
	x=4 is	PRE	VIOUS AI	EEE Q	UESII	UNS	
	(EAMCET Re-exam 1996) 1. 2 2. 3 3. 4 4. 5	1. The a	area of the re	gion hou	nded bv	v = x - 2	
17.	The area bounded by the X-axis and the curve		x = 3 and $x = 3$		liaca oy	<i>y w z</i> ,	
	$y = 4x - x^2 - 3$ is (EAMCET - 1996)		x = 3 and $x = 2$. 2		3	4. 1	
	1. 2/3 2. 8/3 3. 4/3 4. 1/3						
18.	The area, in square units of the region bounded	on bounded					
	by the parabolas $y^2 = 4x$ and $x^2 = 4y$ is		v = 3 - x is	2	2	1 1	
	(EAMCET - 1996) 1. 16/3 2. 32/3 3. 8/3 4. 4/3		2.2				
		3. The area of the region bounded by y and $y = -x$ is				y = 2x - x	
19.	$f(x) = \frac{1}{1+x}$ for $0 \le x \le 1$ and the interval		-	3	35	10	
	[0,1] is divided into 2 equal subintervals. Us-	1. $\frac{3}{2}$	2. $\frac{43}{6}$	- 3.	$\frac{55}{6}$	4. $\frac{10}{3}$	
	ing Trapezoidal rule, $\int_0^1 \frac{1}{1+x} dx =$		I	KEY			
	(EAMCET - 1996)						
	1. $\frac{17}{24}$ 2. $\frac{17}{14}$ 3. $\frac{17}{48}$ 4. $\frac{17}{12}$	1.	4 2.4	3. 1			
20.	Given e=2.72, $e^2 = 7.39$, $e^3 = 20.09$,						
	$e^4 = 54.60$, the approximate value of $\int_0^4 e^x dx$						
	using Simpson's rule and taking $h=1$ is						
	(EAMCET - 1995) 1. 57.325 2. 53.873						
	3. 58.873 4. 57.325						
21.	Area of the region enclosed by $y^2 = 8x$ and						
	y=2x is (EAMCET 1005)						
	(EAMCET - 1995) 1. 4/3 2. ³ / ₄ 3. ¹ / ₄ 4. ¹ / ₂						