Long Answer Type Questions [4 MARKS]

Que 1. If a transversal intersects two parallel lines, prove that the bisectors of any pair of corresponding angles so formed are parallel.

Sol. Given: A transversal EF cuts two parallel lines AB and CD at point G and H respectively. GL and HM are respectively the bisectors of a pair of corresponding angles $\angle EGB$ and $\angle GHD$ respectively [Fig. 6.26].

To prove: $GL \parallel HM$

Proof: Since $AB \parallel CD$ and EF is a transversal

$$\therefore \angle EGB = \angle GHD$$
 (Corresponding angles)

$$\Rightarrow \frac{1}{2} \angle EGB = \frac{1}{2} \angle GHD$$

$$\Rightarrow \angle EGL = \angle GHM$$

But these are corresponding angles formed by the lines GL and HM

$$\therefore$$
 $GL \parallel HM$

Que 2. In Fig. 6.27, prove that $\angle ADC = \angle A + \angle B + \angle C$.

Sol. Join B and D and produce BD to E (Fig. 6.28). Since the exterior angle of a triangle is equal to sum of the two interior opposite angles.

Therefore, in $\triangle ABD$

$$x = w + \angle A$$
 ...(i)

In
$$\triangle CBD$$
, $y = z + \angle C$...(ii)

Adding (i) and (ii), we get

$$x + y = w + \angle A + z + \angle C$$

$$x + y = w + z + \angle A + \angle C$$

$$x + y = \angle B + \angle A + \angle C$$

Hence, $\angle ADC = \angle A + \angle B + \angle C$

Que 3. In Fig. 6.29, $DE \parallel QR$ and AP and BP are bisectors of $\angle EAB$ and $\angle RBA$ respectively. Find $\angle APB$.

Sol. Since interior angles on the same side of transversal are supplementary

$$\therefore \qquad \angle EAB + \angle RBA = 180^{\circ}$$

$$\Rightarrow \frac{1}{2} \angle EAB + \frac{1}{2} \angle RBA = \frac{1}{2} \times 180^{0} \qquad \dots (i)$$

As AP and BP are bisectors of $\angle EAB$ and $\angle RBA$, respectively

$$\therefore \qquad \angle 1 = \frac{1}{2} \angle EAB \text{ and } \angle 2 = \frac{1}{2} \angle RBA \qquad \dots (ii)$$

From (i) and (ii), we get

$$\angle 1 + \angle 2 = 90^{0} \qquad \dots(iii)$$

In Δ APB, we have

$$\angle 1 + \angle 2 + \angle APB = 180^{\circ}$$

$$\Rightarrow 90^{0} + \angle APB = 180^{0}$$
 [Using (iii)]

$$\Rightarrow$$

$$\angle APB = 180^{0} - 90^{0} \qquad \therefore \angle APB = 90^{0}$$

$$\therefore \angle APB = 90^{\circ}$$

Que 4. Prove that the sum of the angles of a triangle is 180° .

Sol. Given: $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$

To prove: $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$

Construction: Through A, draw a line $XY \parallel BC$ (Fig. 6.30).

Proof: Since $XY \parallel BC$ and AB is the transversal

$$\therefore \qquad \angle 4 = \angle 2 \qquad \qquad \text{(Alternate interior angles)}$$

Similarly, $XY \parallel BC$ and AC is the transversal ...(ii)

Adding (i) and (ii), we get

$$\angle 4 + \angle 5 = \angle 2 + \angle 3$$

Adding ∠1 on both the sides

$$\angle 4 + \angle 1 + \angle 5 = \angle 1 + \angle 2 + \angle 3$$

But $\angle 4 + \angle 1 + \angle 5 = 180^{\circ}$

(∴ XAY is a straight line)

...(i)

$$\therefore \qquad \angle 1 + \angle 2 + \angle 3 = 180^{\circ}$$

Hence, the sum of the angles of a triangle is 180°

Que 5. If the bisector of angles $\angle B$ and $\angle C$ of a triangle ABC meet at a point O, then prove that $\angle BOC = 90^0 + \frac{1}{2} \angle A$.

Sol. In \triangle ABC (Fig. 6.31), we have

$$\angle A + \angle B + \angle C = 180^{\circ}$$

(: Sum of the angles of a Δ is 180°)

$$\Rightarrow \frac{1}{2} \angle A + \frac{1}{2} \angle B + \frac{1}{2} \angle C = \frac{180^{\circ}}{2}$$

$$\Rightarrow \frac{1}{2} \angle A + \angle 1 + \angle 2 = 90^{\circ}$$

$$\therefore$$
 $\angle 1 + \angle 2 = 90^{\circ} - \frac{1}{2} \dots (i)$

Now, in $\triangle OBC$, we have:

$$\angle 1 + \angle 2 + \angle BOC = 180^{0} \quad (\because \text{ Sum of the angles of } \Delta \text{ is } 180^{0})$$

$$\angle BOC = 180^{0} - (\angle 1 + \angle 2)$$

$$\Rightarrow \qquad \angle BOC = 180^{0} - (90^{0} - \frac{1}{2} \angle A) \qquad [Using (i)]$$

$$\Rightarrow \qquad \angle BOC = 180^{0} - 90^{0} + \frac{1}{2} \angle A$$

$$\therefore \qquad \angle BOC = 90^{0} + \frac{1}{2} \angle A$$

Que 6. In $\triangle ABC$ (Fig. 6.32), the sides AB and $\triangle ABC$ are produced to points E and D respectively. If bisectors BO and CO of $\angle CBE$ and $\angle BCD$ respectively meet at point O, then prove that $\angle BOC = 90^{0} - \frac{1}{2} \angle A$.

Sol. As $\angle ABC$ and $\angle CBE$ form a linear pair

$$\therefore \angle ABC + \angle CBE = 180^{\circ}$$

As BO is the bisector of $\angle CBE$

$$\therefore \qquad \angle CBE = 2 \angle 1$$

Therefore,
$$\angle ABC + 2\angle 1 = 180^{\circ}$$

$$\Rightarrow \qquad 2 \angle 1 = 180^{0}$$

$$\Rightarrow \qquad \angle 1 = 90^0 - \frac{1}{2} \angle ABC \qquad \dots(i)$$

Again, $\angle ACB$ and $\angle BCD$ form a linear pair

$$\therefore \qquad \angle ACB + \angle BCD = 180^{\circ}$$

As, CO is the bisector of $\angle BCD$, therefore, $\angle BCD = 2\angle 2$

So,
$$\angle ACB + 2\angle 2 = 180^{\circ}$$

$$\Rightarrow \qquad 2\angle 2 = 180^{\circ} - 180^{\circ} - \angle ACB$$

$$\Rightarrow \qquad \angle 2 = 90^0 - \frac{1}{2} \angle ACB$$

In $\triangle OBC$, we have

$$\angle 1 + \angle 2 + \angle BOC = 180^{\circ}$$
 (Angle sum property of triangle)

From, (i), (ii) and (iii), We have

$$90^{0} - \frac{1}{2} \angle ABC + 90^{0} - \frac{1}{2} \angle ACB + \angle BOC = 180^{0}$$

Now, in \triangle ABC, we have

$$\angle A + \angle B + \angle C = 180^{\circ}$$

Or
$$\angle B + \angle C = 180^{\circ} - \angle A$$

From (iv) and (V), we have

$$180^{0} - \frac{1}{2}(180^{0} - \angle A) + \angle BOC = 180^{0}$$

$$\Rightarrow \angle BOC = 180^{0} - 180^{0} + \frac{1}{2}(180^{0} - \angle A)$$

$$\Rightarrow BOC = \frac{1}{2}(180^{0} - \angle A)$$
Hence,
$$\angle BOC = 90^{0} - \frac{1}{2}\angle A$$