Short Answer Type Questions – I

Q. 1. At 700 K, the equilibrium constant K, for the reaction $2SO_3(g) \rightarrow 2SO_2(g) + O_2(g)$ is (1.80 x 10⁻³ kPa). What is the numerical value in moles per litre of K_C for this reaction at the same temperature?

Ans.
$$K_p = K_c (RT)^{\Delta n}$$

 $2SO_3(g) \rightarrow 2SO_2(g) + O_2(g)$
 $\Delta n = np - n_R$
 $= 3 - 2 = 1$
 $K_c = \frac{K_p}{(RT)^{\Delta n}}$
 $K_c = \frac{1 \cdot 80 \times 10^{-3}}{0 \cdot 0821 \times 700}$
 $= 3 \cdot 1 \times 10^{-5} \text{ mol/lit.}$

Q. 2. The following concentrations were obtained for the formation of NH₃ from N₂ and H₂ at equilibrium at 500K. $[N_2] = 1.5 \times 10^{-2} M$, $[H_2] = 3.0 \times 10^{-2} M$ and $[NH_3] = 1.2 \times 10^{-2} M$. Calculate equilibrium constant.

Ans. For the reaction,

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

Equilibrium constant

$$K_c = \frac{[NH_3]^2}{[N_2][H_2]^3}$$

= $\frac{(1.2 \times 10^{-2})^2}{(1.5 \times 10^{-2})(3 \times 10^{-2})^3}$
= 0.106 x 10⁴
= 1.06 x 10³

Q. 3. At equilibrium, the concentrations of $N_2 = 3.0 \times 10^{-3} M$, $O_2 = 4.2 \times 10^{-3} M$ and NO = 2.8 x 10⁻³ M in a sealed vessel at 800 K. What will be K_c for the reaction-

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$$

Ans. For the reaction, $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$

Equilibrium constant = $K_c = \frac{[NO]^2}{[N_2][O_2]}$

$$=\frac{(2.8\times10^{-3})^2}{(3.0\times10^{-3})\times(4.2\times10^{-3})}$$
$$= 0.622$$

Q. 4. PCl₅, PCl₃ and Cl₂ are at equilibrium at 500K and having concentration 1.59 M PCl₃, 1.59 M Cl₂ and 1.41 M PCl₅. Calculate K_C for the reaction, $PCl_5 \rightleftharpoons PCl_3 + Cl_2$

Ans. For the reaction, $PCl_5 \rightleftharpoons PCl_3 + Cl_2$ Equilibrium constant = $K_c = \frac{[PCl_3][Cl_2]}{[PCl_5]}$ = $\frac{(1.59) \times (1.59)}{(1.41)}$

= 1.79

Q. 5. Which of the following reactions involve homogeneous equilibrium or heterogeneous equilibrium?

(i) $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$

(ii) $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$

(iii) $CH_3COOC_2H_5(aq) + H_2O_{(1)}$

 $CH_3COOH(aq) + C_2H_5OH_{(aq)}$

(iv)
$$BaCO_3(s) \rightleftharpoons BaO(s) + CO_2(g)$$

Ans. (i) Homogeneous equilibrium

(ii) Heterogeneous equilibrium

(iii) Homogeneous equilibrium

(iv) Heterogeneous equilibrium

Q. 6. For the reaction, N2(g) + 3H2(g) \rightleftharpoons 2NH3(g), the partial pressures of N_2 and H_2 are 0.80 and 0.40 atmosphere respectively at equilibrium. The total pressure of the system is 2.80 atmosphere. What is K_p for the above reaction?

Ans. For the reaction, $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

Equilibrium constant = $K_p = \frac{(P_{N_{H_3}})^2}{(P_{N_2}) \times (P_{H_2})^3}$

Given,
$$P_{N_2} = 0.80$$
 atm
 $P_{N_2} = 0.40$ atm
 $P_{total} = 2.80 atm$
 $P_{N_2} + P_{H_2} + P_{NH_3} = P_{total}$
 $0.80 + 0.40 + P_{NH_3} = 2.80$
 $P_{NH_3} = 2.80 - 1.20$
 $= 1.60$ atm
 $\therefore K_p = \frac{(1.60)^2}{(0.80) \times (0.40)^3}$
 $= 50$

Q. 7. K_c for the reaction $SO_2 + \frac{1}{2}O_2 \rightleftharpoons SO_3$ at 600°C is 61.7. Calculate K_p . What is the unit of K_p for the above equilibrium? (R = 0.0821 L atm degree⁻¹ mol⁻¹)

Ans. For the reaction

$$SO_{2} + \frac{1}{2}O_{2} \rightleftharpoons SO_{3}$$
Given, $K_{c} = 61.7$
 $T = 600 + 273 = 873K$
 $\Delta n = No. \text{ of moles of product - No. of moles of Reactants}$
 $= 1 - \left(1 + \frac{1}{2}\right)$
 $= -\frac{1}{2}$
 $\therefore K_{p} = K_{c}(RT)^{\Delta n}$
 $= 61.7(0.0821 \times 873)^{-1/2}$
 $= 7.29$
 $K_{p} = \frac{(Pso_{3})}{(Pso_{2}).(P_{O_{2}})^{1/2}}$
 $= \frac{atm}{atm.(atm)^{1/2}}$

 $= atm^{-1/2}$

: The unit of K_p for the above equilibrium is atm^{-1/2}

Q. 8. The ionic product of water is $0.11 \ge 10^{-14}$ at 273 K, $1 \ge 10^{-14}$ at 298 K and $7.5 \ge 10^{-14}$ at 373K. Deduce from this data whether the ionization of water to hydrogen and hydroxide ion is exothermic or endothermic?

Ans. $K_{\omega} = (H_3 O^+)(OH^-)$

According to the data, the value of K_{ω} is increasing with temperature. Therefore, according to Le-Chatelier's principle, the ionisation of water is endothermic.

Q. 9. Glycine is an amino acid. It exists in the form of Zwitter ion as $\begin{array}{c} \bigoplus & \ominus \\ NH_3CH_2COO \end{array}$ What are the conjugate acid and conjugate base of this zwitter ion?

Ans. Conjugate acid $\bigoplus_{NH_3CH_2COOH}$ Conjugate base H_2CH_2COO

Q. 10. Explain ionic product of water. What is the effect of temperature on ionic product of water? [DDE, 2017-18]

Ans. In pure water, one H_2O molecule donates proton and acts as an acid and another H_2O molecule accepts a proton and acts as a base at the same time. So, the following equilibrium exists –

 $\begin{array}{ll} H_2O(l) &+ & H_2O(l) \rightleftharpoons H_3O^+(aq) &+ & OH^-(aq) \\ Acid & Base & Conjugate Acid & Conjugate base \\ \end{array}$ Dissociation constant $K = \frac{[H_3O^+][OH^-]}{[H_2O]}$

The concentration of water is omitted from the denominator as water is a pure liquid and its concentration remains constant. $[H_2O]$ is incorporated with in the equilibrium constant to give a new constant, K_w , which is called the ionic product of water.

$$\mathbf{K}_{\mathbf{w}} = [H^+] \left[OH^- \right]$$

The value of ionic product (K_w) increases with increase in temperature.

Q. 11. What is pH? What is its value for acidic solution?

Ans. The pH of a solution is defined as the negative logarithm to base 10 of the activity (a_{H^+}) of hydrogen ion or concentration of hydrogen ion $[H^+]$.

$$pH = -log_{10}[H^+]$$

For acidic solution, the value of pH is less than 7.

Q. 12. What is pOH? What is its value for neutral water at 25°C?

Ans. pOH is a measure of hydroxide ion (OH⁻) concentration.

$$pOH = -log_{10}[OH^-]$$

For neutral water, the value of pOH is 7 at 25°C.

Q. 13. What will be the conjugate bases for the following Bronsted acids: HE, H₂SO₄, H₃PO₄ and HCO_{3}^{-2} ?

Ans.

Bronsted Acid	Conjugate Base
HF	F^{-}
H_2SO_4	HSO ₄
H ₃ PO ₄	$H_2PO_4^-$
HCO ₃	CO3 ²⁻

Q. 14. Write the conjugate acids for the following Bronsted bases: NH_2^- , NH₃ Cl⁻⁻ and HCOO⁻⁻.

Ans.

Bronsted Base	Conjugate Acid
NH_2^-	NH_3
NH ₃	NH_4^+
Cl-	HCl
HC00 ⁻	НСООН

Q. 15. The species: H_2O , HCO_3^- , HSO_4^- , and NH_3 can act both as Bronsted acids and bases. For each case give the corresponding conjugate acid and conjugate base.

Ans.

Species	Conjugate Acid	Conjugate Base
H ₂ 0	$H_{3}O^{+}$	OH^-
HCO ₃ ⁻	H_2CO_3	<i>CO</i> ₃ ²⁻
HSO_4^{-}	H_2SO_4	<i>SO</i> ₄ ²⁻
NH ₃	NH_4^+	NH_2^-

Q. 16. Classify the following species into Lewis acids and Lewis bases and show how these act as such:

(a) HO⁻⁻ (b) F⁻⁻ (c) H⁺ (d) BCl₃

Ans. (a) HO^- : It acts as Lewis base as it can donate lone pair of electrons.

(b) F^- : It acts as Lewis base as it can donate lone pair of electrons.

(c) H^+ : It acts as Lewis acid as it can accept lone pair of electrons.

(d) BCl_3 : It acts as Lewis acid as it can accept lone pair of electrons.

Q. 17. The pK_a of acetic acid and pK_b of ammonium hydroxide are 4.76 and 4.75 respectively. Calculate the pH of ammonium acetate solution. [DDE, 2017-18]

Ans. Given,

$$pK_a = 4.76$$

$$pK_b = 4.75$$

$$\because pH = 7 + \frac{1}{2} [pK_a - pK_b]$$

$$= 7 + \frac{1}{2} [4.76 - 4.75]$$

$$= 7 + \frac{1}{2} [0.01]$$

$$= 7 + 0.005$$

$$= 7.005$$

Q.18. Calculate the pH of 0.1 M solution of acetic acid. If the degree of dissociation of acid is 0.0132. [KVS, Silchar Region, 2016-17]

Ans. $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$

Initial conc.C00Equilibrium conc.C(1-a)CaCa

 $Ka = \frac{Ca^2}{(1-a)} = Ca^2$ = 0.1 × (0.0132)² = 1.74 × 10⁻⁵ $pK_a = -\log pK_a$ = -log (1.74 × 10⁻⁵)

$$= 5 - 0.2405 = 4.76$$
$$[H^+] = Ca$$
$$= 0.1 \times 0.0132$$
$$= 1.32 \times 10^{-3}M$$
$$pH = -\log [H^+]$$
$$= -\log(1.32 \times 10^{-3})$$
$$= 3 - 0.1206 = 2.88$$

Q. 19. Calculate the pH of a 0.01 M solution of acetic acid. K_a for CH_3COOH is 1.8 x 10⁻⁵ at 25°C. [DDE, 2017-18]

Ans. For the reaction,

 $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$ Initial conc. Equilibrium conc. $C(1-a) \qquad Ca \qquad Ca$

Conc.

where α = Degree of dissociation

Dissociation constant of acid,

$$K_a = \frac{[CH_3COO^-][H^+]}{[CH_3COOH]}$$
$$= \frac{Ca.Ca}{C(1.a)}$$
$$= \frac{C^2a^2}{C(1-a)}$$

 \therefore For weak acid (1-a) is negligible. So,

$$K_a = \frac{Ca^2}{1}$$

$$K_a = Ca^2$$

$$a = \sqrt{\frac{K_a}{C}}$$

$$= \sqrt{\frac{1.8 \times 10^{-5}}{0.01}}$$

$$= \sqrt{18 \times 10^{-4}}$$

= 4.24 x 10⁻²
[H⁺] = Ca
= 0.01 x 4.24 x 10⁻²
= 4.24 x 10⁻⁴
pH = -log₁₀[H⁺]
= -log₁₀[4.24 × 10⁻⁴]
= -log₁₀4.24 + 4 log10
= -0.6273 + 4 = 3.37

Q. 20. Account for the following:

(a) A solution of Na₂CO₃ is alkaline.

(b) Ba(OH)₂ is soluble in water while Baso₄ is almost insoluble. [KVS, 2013]

Ans. (a) $Na_2CO_3 + H_2O \rightleftharpoons H_2CO_3 + 2 NaOH$ or $CO_3^{2-} + 2 Na^+ + 2H_2O \rightleftharpoons 2Na^+ + 2 OH^- + H_2CO_2$

 $Or CO_3^{2-} + 2 H_2 0 \rightleftharpoons H_2 CO_3 + 20H^-$

Since N_2CO_3 produces OH^- ions in solution, hence N_2CO_3 solution is alkaline is nature.

(b) The lattice enthalpy of $BaSO_4$ is much more than its hydration enthalpy and hence it is insoluble in water. But hydration enthalpy of $Ba(OH)_2$ is much more than lattice enthalpy. Therefore, $Ba(OH)_2$ is soluble in water.

Q. 21. (a) Define buffer solution.

(b) Give one example each of acidic and basic buffer. [DDE, 2017-18]

Ans. (a) The solution which resists change in pH on dilution or with the addition of small amounts of acid or alkali is called buffer solution.

(b) Example of acidic buffer-

 $CH_{3}COOH + CH_{3}COONa (pH = 4.75)$

Example of basic buffer-

 $NH_4OH + NH_4CI (pH = 9.25)$

Q. 22. The solubility of $Ca_3(PO_4)_2$ in water is x moles/liter. Calculate its solubility product. [DDE, 2017-18]

Ans. $\begin{array}{c} Ca_3 \ (PO_4)_2 \rightleftharpoons 3Ca^{2+} + 2PO_4^{3-} \\ x & 3x & 2x \end{array}$

Solubility product $K_{sp} = [Ca^{2+}]^3 [PO_4^{3-}]$

 $= (3x)^3(2x)^2$

 $= 27x^3 \times 4x^2$

 $= 128x^5$

Q. 23. Calculate the solubility of A_2X_3 in pure water, assuming that neither kind of ion reacts with water. The solubility product of A_2X_3 , $K_{sp} = 1.1 \times 10^{-23}$.

Sol. Solubility
$$\begin{array}{c} A_2 X_3 \rightleftharpoons 2A^{3+} + 3X^{2-} \\ S & 2S & 3S \end{array}$$

: Solubility product

$$K_{sp} = [A^{3+}]^2 [X^{2-}]^3$$

$$K_{sp} = (2s)^2 (3s)^3$$

$$= 1.1 \times 10^{-23} = 108 S^5$$

or $S^5 = \frac{1.1 \times 10^{-23}}{108}$

$$= 1.0 \times 10^{-25}$$

or $S = 1.0 \times 10^{-5} mol/L$

Q. 24. The values of K_{sp} of two sparingly soluble salts Ni(OH)₂ and AgCN are 2. 0 × 10^{-15} and 6. 0 × 10^{-17} respectively. Which salt is more soluble? Explain. [NCT, 2008, KVS, 2008, 2010]

Ans.
$$AgCN \Rightarrow Ag^{+} + CN^{-}$$

 $K_{sp} = [Ag^{+}][CN^{-}] = 6 \times 10^{-17}$
 $Ni(OH)_{2} \Rightarrow Ni^{2+} + 2OH^{-}$
 $K_{sp} = [Ni^{2+}][OH^{-}]^{2} = 2 \times 10^{-15}$
 $Let [Ag^{+}] = S, then [CN^{-}] = S_{1}$
 $Let [Ni^{2+}] = S_{2}, then [OH^{-}] = 2S_{2}$

∴ From eq. (i)

$$S_1 \times S_1 = 6 \times 10^{-17}$$

 $S_1^2 = 6 \times 10^{-17}$
 $S_1 = 7.8 \times 10^{-9}$
∴ From eq. (ii)
 $(S_1) \times (2S_2)^2 = 2 \times 10^{-15}$
 $4S_2^3 = 2 \times 10^{-15}$
 $S_2^3 = \frac{2 \times 10^{-15}}{4}$
 $= 0.5 \times 10^{-15}$
or $S_2 = 0.58 \times 10^{-4}$

Since solubility of Ni(OH)₂ is more than AgCN, so, Ni(OH)₂ is more soluble than AgCN.

Q. 25. Calculate the molar solubility of Ni(OH)₂ in 0.10 M NaOH. The ionic product of Ni(OH)₂ is 20×10^{-15} .

Ans. $Ni(OH)_2 \rightleftharpoons Ni^{2+} + 2OH^-$

Let the solubility of Ni(OH)₂ be equal to S. Dissolution of S mol/L of Ni(OH)₂ provides S mol/L of Ni^{2+} and 2S moVL of OH^- , but the total concentration of $OH^- = (0.10 + 2S)$ mol/L because the solution already contains 0.10 mol/L of OH^- from NaOH.

$$K_{sp} = 2.0 \times 10^{-15}$$

$$K_{sp} = [Ni^{2+}][OH^{-}]^{2}$$

$$2.0 \times 10^{-15} = (S)(0.10 + 2s)^{2}$$

$$As K_{sp} \text{ is small, } 2S \triangleleft \triangleleft 0.10$$

$$\therefore 0.10 + 2S \simeq 0.10$$

Hence, $2 \times 10^{-15} = (S) (0.10)^{2}$

$$S = \frac{2 \times 10^{-15}}{0.01}$$

$$S = 2 \times 10^{-13} M = [Ni^{2+}]$$

Q. 26. The ionization constant of formic acid is 1.8×10^{-4} . Calculate the ratio of sodium formats and formic acid in a buffer of pH 4.25.

Ans.

$$K_a = 1.8 \times 10^{-14}$$

pH = 4.25
For acidic buffer,
pH = PK_a + log $\frac{[Salt]}{[acid]}$
or log $\frac{[Salt]}{[acid]} = pH - PK_a$
PK_a = -log[K_a]
= -log[1.8 × 10⁻⁴]
= -log 1.8 × 4 log 10
= -0.2552 + 4
= 3.7448 = 3.74
From eq. (i)
log $\frac{[Salt]}{[acid]} = 4.25 - 3.74$
= 0.51
or $\frac{[Salt]}{[acid]} = antilog 0.51$
= 3.24

Q. 27. In one liter saturated solution of AgCl $[K_{sp} = 1.6 \times 10^{-10}]$, 0.1 mol of CuCl $[K_{sp} = 1.0 \times 10^{-6}]$ is added. Find out the resultant concentration of Ag^+ in the solution. [KVS, Agra Region, 2016-17, 2015-16]

Ans. Let the concentration of AgCl is $x \mod L$ and concentration of CuCl is $y \mod L$

$$AgCl \rightleftharpoons Ag^{+} + Cl^{-}$$

$$CuCl \rightleftharpoons Cu^{+} + Cl^{-}$$

$$y = 0.1 \quad y = 0.1$$

$$K_{sp} of AgCl = [Ag^{+}][Cl^{-}]$$

$$= x (x + y) \qquad \dots (i)$$

$$K_{sp} of CuCl = [Cu^{+}][Cl^{-}]$$

$$= y (x + y) \qquad \dots (ii)$$

On solving equation (i) and (ii), we get

$$\frac{K_{sp} of AgCl}{K_{sp} of CuCl} = \frac{x}{y}$$

$$\frac{1.6 \times 10^{-10}}{1.0 \times 10^{-6}} = \frac{x}{0.1}$$
or
$$x = \frac{1.6 \times 10^{-10} \times 0.1}{1.0 \times 10^{-6}}$$

$$= 1.6 \times 10^{-5} \text{ mol/L}$$