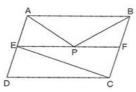
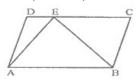
CBSE Test Paper 05 CH-9 Areas of Parallelograms & Triangles

- 1. The median of a triangle divides it into two
 - a. congruent triangles.
 - b. triangles of different areas.
 - c. right angles.
 - d. isosceles triangles.
- 2. ABCD is a parallelogram and E and F are mid-points of AD and BC respectively. P is any point on EF. If area of $\triangle EFC = 8\ cm^2$, then $ar(\triangle AEP + \triangle BFP)$ is

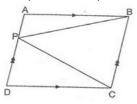


- a. $16 \ cm^2$.
- b. $4 \ cm^2$.
- c. $12 \ cm^2$.
- d. $8 \, cm^2$.
- 3. In the figure if area of parallelogram ABCD is $30\ cm^2,$ then $ar\ (ADE)+ar(BCE)$ is equal to

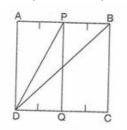


- a. $20 \ cm^2$.
- b. $30 \ cm^2$.
- c. $15 \ cm^2$.

- d. $25 \ cm^2$.
- 4. In the given figure, ABCD is a parallelogram. If $ar(riangle BAP)=10\ cm^2$ and $ar(riangle CPD)=30\ cm^2$,then $ar(\parallel\ ABCD)$ is



- a. $100 \ cm^2$.
- b. $80 \ cm^2$.
- c. $60 \ cm^2$.
- d. $40 \ cm^2$.
- 5. ABCD is a square. P and Q are mid-point of AB and DC respectively. If AB = 8 cm, then $ar (\triangle BPD)$ is



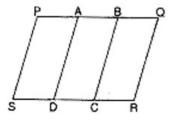
- a. 16 cm^2 .
- b. $24 \ cm^2$.
- c. $32 \ cm^2$.
- d. $18cm^2$.
- 6. Fill in the blanks:

If the sum of the parallel sides of a trapezium is 7 cm and distance between them is 4 cm, then area of the trapezium is _____.

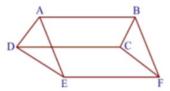
7. Fill in the blanks:

If Base = 9 and corresponding altitude = 4, then the area of parallelogram is _

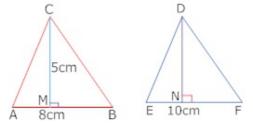
8. Is the given figure lie on the same base and between the same parallels. In such a case, write common base and the two parallels:



- 9. In a parallelogram PQRS, PQ = 13. The altitude corresponding to sides PQ is equal to 5 cm. find the area of parallelogram.
- 10. ABCD is trapezium with AB || DC. A line parallel to AC intersects AB at X and BC at Y. Prove that ar(\triangle ADX) = ar(\triangle ACY)
- 11. Show that BDEF is parallelogram. If D, E and F the mid- points of the side BC, CA and AB of triangle ABC
- 12. In figure, ABCD, DCFE and ABFE are parallelograms. Show that ar (ADE) = ar (BCF).



13. Find the altitude corresponding to side EF if area of $\triangle ABC = \triangle DEF$. If in $\triangle ABC AB = 8$ cm and altitude corresponding to AB is 5 cm. In $\triangle DEF$, EF = 10 cm



- 14. P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that ar (APB) = ar (BQC).
- 15. The medians BE and CF of a triangle ABC intersect at G. Prove that the area of \triangle GBC = area of the quadrilateral AFGE.

CBSE Test Paper 05 CH-9 Areas of Parallelograms & Triangles

Solution

1. (b) triangles of different areas.

Explanation: The median of a triangle divides it into two triangles of different areas. If in a triangle ABC, AD is a median, then Area of triangle ABD = Area of triangle ACD.

2. (d) $8 \, cm^2$.

Explanation: Here, EFBA and EFCD are parallelograms of equal area. Therefore, area $(\triangle ABP) = \frac{1}{2} \times area (||gmEFBP)$ And area $(\triangle EFC) = \frac{1}{2} \times area (||gmEFCD)$ Therefore, area $(\triangle ABP) = area (\triangle EFC)$ And area $(\triangle ABP) = area (\triangle ECD)$ Now, area $(\triangle ABP) = area (||gmABEF) - [area (\triangle AEP) - area (\triangle BFP)].....$ (i)Since EC is a diagonal of parallelogram EFCD. Therefore, $area <math>(\triangle EFC) = area (\triangle ECD)$ $\Rightarrow area (\triangle ECD) = area (||gmEFCD) - area (\triangle EFC).....(ii)$ From eq.(i) and (ii), we get area $(||gmABEF) - [area (\triangle AEP) + area (\triangle BFP)] = area (||gmEFCD) - area$ $\Rightarrow area (\triangle EFC) = area (\triangle AEP) + area (\triangle BFP)] = 8 cm^2$ 3. (c)15 cm².

Explanation: In the given figure, parallelogram ABCD and triangle ABE are on the same base and between the same parallels.

Therefore, area ($\triangle ABE$) = $\frac{1}{2} \times \text{area} (||gmABCD)$ $\Rightarrow \text{ area} (\triangle ABE) = \frac{1}{2} \times 30 = 15 \text{ cm}^2$

```
Now Area of parallelogram ABCD =

area (\triangle ADE) + area (\triangle ABE) + area (\triangle BCE)

\Rightarrow 30 = area (\triangle ADE) + 15 + area (\triangle BCE)

\Rightarrow area (\triangle ADE) + area (\triangle BCE) = 30 - 15

\Rightarrow area (\triangle ADE) + area (\triangle BCE) = 15 cm<sup>2</sup>
```

4. (b) $80 \ cm^2$.

Explanation:

In the given figure, $\operatorname{area}(\triangle PBC) = \frac{1}{2} \times \operatorname{area}(\|gmABCD)$ $\Rightarrow \operatorname{area}(\triangle ABP) + \operatorname{area}(\triangle PCD) = \frac{1}{2} \times \operatorname{area}(\|gmABCD)$ $\Rightarrow \frac{1}{2} \times \operatorname{area}(\|gmABCD) = 10 + 30$ $\Rightarrow \operatorname{area}(\|gmABCD) = 80 \text{ cm}^2$

5. (a) $16 \ cm^2$.

Explanation:

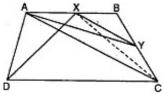
Since P is the mid-point of AB. Therefore, BP = $\frac{1}{2}$ AB = 4 cm And, height of the triangle BPD = AD = 8 cm Therefore, area (\triangle BPD) = $\frac{1}{2} \times 4 \times 8 = 16$ cm²

- 6. 14cm²
- 7. 36
- 8. Since BCDA and PQRS don't have a common base, so the two figures do not lie between the same parallel lines and common base.
- 9. Area of parallelogram = base x Altitude
 =13 x 5
 =65 cm²
- 10. Given: ABCD is a trapezium with AB || DC. A line parallel to AC intersect AB at X and

BC at Y.

To Prove : $ar(\triangle ADX) = ar(\triangle ACY)$

Construction : Join CX.



Proof : ar(\triangle ADX) = ar(\triangle ACX). . .[Triangles are on the same base AX and between the same parallels are equal]. . .(1) ar(\triangle ACX) = ar(\triangle ACY). . .[Triangles are on the same base AC and between the same parallels are equal]. . .(2) ar(\triangle ADX) = ar(\triangle ACY). . .[From (1) and (2)]

11. Join DE, EF and FD E and F are the mid-points of AC and AB

By mid point theorem,

EF | | BC,

EF || BD and DE || BF

BDEF is a || gram.

12. As we know that opposite sides of a parallelogram are always equal.

 $\therefore \text{ In parallelogram ABFE, AE = BF and AB = EF}$ In parallelogram DCFE, DE = CF and DC = EF In parallelogram ABCD, AD = BC and AB = DC $\text{Now in } \triangle \text{ ADE and } \triangle \text{ BCF,}$ AE = BF[Opposite sides of parallelogram ABFE] DE = CF[Opposite sides of parallelogram DCFE] And AD = BC[Opposite sides of parallelogram ABCD] $\therefore \triangle \text{ADE} \cong \triangle \text{BCF [By SSS congruency]}$ $\therefore ar (\triangle \text{ ADE}) = ar (\triangle \text{ BCF})$ $[\because \text{ Area of two congruent figures is always equal]}$

13.
$$\operatorname{ar}(\triangle ABC) = \operatorname{ar}(\triangle DEF)$$

 $\frac{1}{2} \times AB \times CM = \frac{1}{2} \times EF \times DN$

 $rac{1}{2} imes 8 imes 5=rac{1}{2} imes 10 imes DN$ 20 = 5DN DN = 4 cm Altitude corresponding to side EF is 4 cm

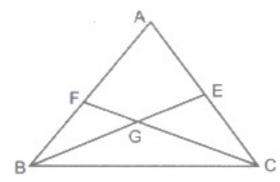
14. Given: ABCD is a parallelogram. P is a point on DC and Q is a point on AD.

To prove: ar (Δ APB) = ar (Δ BQC) Construction: Draw PM || BC and QN || DC. Proof: Since QC is the diagonal of parallelogram QNCD. \therefore ar (\triangle QNC) = $\frac{1}{2}$ ar (\parallel gm QNCD)(i) Again BQ is the diagonal of parallelogram ABNQ. \therefore ar (\triangle BQN) = ar (\parallel gm ABNQ)(ii) Adding eq. (i) and (ii), ar (\triangle QNC) + ar (\triangle BQN) = ar (\parallel gm QNCD) + ar (\parallel gm ABNQ) \Rightarrow ar (Δ BQC) = ar (\parallel gm ABCD)(iii) Again AP is the diagonal of || gm AMPD. \therefore ar (\triangle APM) = $\frac{1}{2}$ ar (|| gm AMPD)(iv) And PB is the diagonal of gm PCBM. \therefore ar (\triangle PBM) = $\frac{1}{2}$ ar (| gm PCBM)(v) Adding eq. (iv) and (v), ar (\triangle APM) + ar (\triangle PBM) = $\frac{1}{2}$ ar (||gm AMPD) + $\frac{1}{2}$ ar (||gm PCBM) ar (\triangle APM) + ar (\triangle PBM) = $\frac{1}{2}$ ar (||gm AMPD) + $\frac{1}{2}$ ar (||gm PCBM) \Rightarrow ar (\triangle APB) = $\frac{1}{2}$ ar (||gm ABCD)(vi) From eq. (iii) and (vi), ar (\triangle BQC) = ar (APB) or ar (APB) = ar (\triangle BQC)

15. BE and CF are medians of a triangle ABC intersect at G. We have to prove that the ar(\triangle GBC) = area of the quadrilateral AFGF.

Since, median (CF) divides a triangle into two triangles of equal area, so we have

 $ar(\Delta BCF) = ar(\Delta ACF)$ $\Rightarrow ar(\Delta GBF) + ar(\Delta GBC) = ar(AFGE) + ar(\Delta GCE) \dots (1)$



Since, median (BE) divides a triangle into two triangle of equal area, so we have $\Rightarrow ar(\Delta GBF) + ar(AFGE) = ar(\Delta GCE) + ar(\Delta GBE) \dots (2)$ Subtracting (2) and (1), we get $ar(\Delta GBC) - ar(AFGE) = ar(AFGE) - ar(\Delta GBC)$ $\Rightarrow ar(\Delta GBC) + ar(\Delta GBC) = ar(AFGE) + ar(AFGE)$ $\Rightarrow 2ar(\Delta GBC) = 2ar(AFGE)$ Hence, $ar(\Delta GBC) = ar(AFGE)$