Electromagnetic System

□ Magneto motive force

MMF = Number of turns in the coil x current

Magnetic flux

$$\phi = \frac{MMF}{Rejuctance}$$

- Reluctance
 - Opposition offered by the magnetic flux is called Reluctance.

$$RI = \frac{I}{\mu A}$$

where, R/ = Reluctance

I = Length of magnetic path, meter

A = Area of cross-section normal to flux path, m²

 $\mu = \mu_0 \mu_r$ = Permeability of the magnetic material

 $\mu_{r}=$ Relative permeability of the magnetic material

- □ Self inductance
 - The self-inductance L is defined as the magnetic flux-linkages per ampere

$$L = \frac{\Psi}{\Gamma}$$

Magnetic flux density

Magnetic field intensity

- Relation between magnetic flux density and field intensity $B = \mu H$
- ☐ Energy density in electric field

$$\omega_{i,id} = \int_0^D \mathbb{E} \cdot dD = \frac{1}{2} \frac{D^2}{\epsilon_0}$$

where, D = Electric field flux density

E = Electric field intensity or potential gradient

$$E = \frac{D}{\epsilon_0}$$

Reluctance Motor

□ Reluctance at space angle θ,

where, RI_q = quadrature-axis reluctance

 RI_d = direct-axis reluctance

 $\theta_{\rm r}={\rm space}$ angle between stator d-axis and long rotor axis

□ Torque

$$T_{\rm e} = -\frac{1}{2}\phi^2 \frac{\mathrm{d}RI}{\mathrm{d}\theta}$$

$$T_e = -\frac{1}{2}\phi^2(RI_q - RI_g)\sin 2\theta,$$

Space angle

$$\theta_r = \omega_r t - \delta$$

where, δ = rotor position from stator d-axis at t = 0 or load angle

□ Direct-axis inductance

$$L_0 = \frac{N^2}{RI_0}$$

Quadrature-axis inductance

$$L_{q} = \frac{N^{2}}{R I_{q}}$$

Average torque

$$T_{e(av)} = \frac{1}{8} \phi_{max}^2 (RI_0 - RI_0) \sin 2\delta$$

$$T_{e(ax)} = \frac{V_L^2}{4\omega} \left(\frac{1}{X_q} \frac{1}{X_d} \right) \sin 2\delta$$

$$T_{\text{e(av)}} \equiv \frac{V_{\text{t}}}{4\omega} (I_{\text{q}} - I_{\text{d}}) \sin 2\delta$$

where, I_d , I_q = Current taken from the supply when the rotor is held in minimum and maximum reluctance position.