Surface Areas and Volumes

NOTES

In this chapter, we will learn about some important formulas related to 2-D and 3-D geometrical shapes.

Area of a Triangle

- > Area of a triangle $=\frac{1}{2} \times (\text{Perpendicular}) \times \text{Base}$
- > Area of a triangle having lengths of the sides a, b and c is $=\sqrt{s(s-a)(s-b)(s-c)}$ sq. units, where
 - $s=\frac{1}{2}(a+b+c)$

> Area of an equilateral triangle = $\frac{\sqrt{3}}{4}a^2$, where a is the side of the equilateral triangle.

Circle

- $\blacktriangleright \quad \text{Circumference of the circle} = 2\pi r$
- Area of the circle = πr^2
- $\Rightarrow \quad \text{Area of the semicircle} = \frac{1}{2}\pi r^2$
- > Perimeter of the semicircle $= \pi r + 2r$

Length of Arc and Area of a Sector

Let an arc AB an angle $0 < 180^{\circ}$ at the center (O) of a circle a^4 radius; Then we have:

- $\blacktriangleright \quad \text{Length of the arc } AB = \frac{2\pi\theta}{360^{\circ}}$
- Area of the sector $OACB = \frac{\pi r^2 \theta}{360^\circ}$

- > Area of the minor segments ACBA = area of sector OACB of the corresponding triangle AOB
- > Area of the major segment ADBA = area of the circle-area of the minor segment

Perimeter and Area of a Rectangle

Let ABCD be a rectangle in which length AB = 1 units, breadth BC = b units then we have:

C

 \blacktriangleright Area = $(l \times b)$ square units

1

> breadth (b) =
$$\frac{\text{area (A)}}{\text{length (l)}}$$
 units

- > Diagonal (d) = $\sqrt{l^2 + b^2}$ units
- > Perimeter (p) = 2(l + b) units

Area of Four Walls of a Room

D

Let I, b and h are respectively the length/ breadth and height of a room, then area of four walls of the room = $\{2(l+b) \times h\}$ sq units.

Perimeter and Area of Square

Let ABCD be a square with each side equal to 'a' units, then

Area =
$$a^2$$
 sq. units

$$\Rightarrow \quad Area = \left(\frac{1}{2} \times (diagonal)^2\right) \text{ sq. units}$$

- > Diagonal $=a\sqrt{2}$ units
- \blacktriangleright Perimeter = 4a units

Area of Some Special Types of Quadrilateral

> Area of a parallelogram = (base \times height)

Area of a rhombus $=\frac{1}{2} \times (\text{product of diagonal})$

Area of a Trapezium = $\frac{1}{2}$ (Sum of length of parallel sides) × (distance between then) = $\frac{1}{2}(a+b) \times h$

Solids

The objects having definite shape and size are called solids. A solid occupies a definite space.

Cuboid

For a cuboid of length = 1, breadth = b and height = h, we have:

▶ Volume = $(l \times b \times h)$ cubic units

> Total surface area = 2(lb+bh+lh) sq. units

> Lateral surface area =
$$\left[2(l + b) \times h\right]$$
 sq. units

> Diagonal of a cuboid =
$$\sqrt{l^2 + b^2 + h^2}$$

Cube

For a cube having each edge = a units, we have:

- \blacktriangleright Volume = a^3 cubic units
- > Total surface area = $6a^2$ sq. units
- > Lateral surface area = $4a^2$ sq. units
- > Diagonal of a cube = $a \sqrt{3}$

Cylinder

Solids like jar, circular pencils, circular pipes, road rollers, gas cylinders are of cylindrical shape. For a cylinder of base radius

= r units and height = h units, we have:

- > Volume = $\pi r^2 h$ cubic units
- \blacktriangleright Curved surface area = $2\pi rh$ square units
- > Total surface area = $(2\pi rh + 2\pi r^2) = 2\pi r(h+r)$ sq. units

Cone

Consider a cone in which base radius = r, height = h and slant height $(l) = \sqrt{h^2 + r^2}$, then we have:

- > Volume of the cone $\frac{1}{3}\pi r^2 h$
- \blacktriangleright Curved surface area of the cone = πrl
- > Total surface area of the cone = (curved surface area) + (area of the base) = $\pi r l + \pi r^2 = \pi r (l + r)$

Sphere

Objects like a football, a cricket ball, etc. are of spherical shapes. For a sphere of radius r, we have:

- > Volume of the sphere $=\frac{4}{3}\pi r^3$
- > Surface area of the sphere = $4\pi r^3$

Hemisphere

A plane through the centre of a sphere cuts it into two equal parts, each part is called a hemisphere. For a hemisphere of radius r, we have:

- > Volume of the hemisphere $=\frac{2}{3}\pi r^3$
- \succ Curved surface area of the hemisphere = $2\pi r^2$
- > Total surface area of the hemisphere = $3\pi r^2$

> Example:

Find the area of the triangle whose base is 25 cm and height is 10.8 cm.

(a) 125 cm ²	(b) 135 <i>cm</i> ²
(c) 124 <i>cm</i> ²	(d) 199 <i>cm</i> ²
(e) None of these	

Ans. (b)

Explanation: Area of the given triangle = $\left(\frac{1}{2} \times 25 \times 10.8\right) cm^2 = 135 \ cm^2$

> Example:

A chord of a circle of radius 14 cm makes a right angle at the centre. Find the area of the major sector of the circle.

(a) 590 cm^2 (b) 462 cm^2 (c) 595 cm^2 (d) 995 cm^2 (e) None of these

Ans. (b)

Explanation: Area of the major sector $\frac{270}{360^{\circ}} \times \pi r^2$

$$= \frac{270^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 14 \times 14 = 462 \text{ cm}^2$$

> Example:

The length of a rectangular plot of land is twice its breadth. If the perimeter of the plot is 210 m, then find its area.

(a) $2450 m^2$	(b) 2251 m ²
(c) $5560 m^2$	(d) 9060 m ²
(e) None of these	

Ans. (a)

Explanation: Let x metre be the breadth of the triangle, then its length will be 2x metre.

Now, $2(x + 2x) = 210 \implies x = 35$ Area = $35 \times 70 = 2450 \ m^2$